A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control
Abstract
:1. Introduction
2. Types of Bio-Inspired Actuators
2.1. Shape Memory Alloys (SMAs)
2.2. Dielectric Elastomer Actuators (DEAs)
2.3. Ionic Polymer–Metal Composites (IPMCs)
2.4. Polyvinylidene Fluoride (PVDF)-Based Electrostrictive Actuators
2.5. Soft Pneumatic Actuators (SPAs)
3. Current Applications in Vehicle Control Systems
3.1. Adaptive Suspension Systems
3.2. Active Steering and Braking Systems
3.3. Autonomous Vehicle Interfaces
4. Discussion
4.1. Advantages of Bio-Inspired Actuators for Vehicle Control
4.2. Challenges and Limitations
5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SMA | Shape memory alloys |
DEA | Dielectric elastomer actuators |
IPMC | Ionic polymer–metal composites |
PVDF | Polyvinylidene fluoride |
SPA | Soft pneumatic actuators |
References
- Sarker, A.; Islam, T.U.; Islam, M.R. A Review on Recent Trends of Bioinspired Soft Robotics: Actuators, Control Methods, Materials Selection, Sensors, Challenges, and Future Prospects. Adv. Intell. Syst. 2024, 7, 2400414. [Google Scholar] [CrossRef]
- Ren, L.; Li, B.; Wei, G.; Wang, K.; Song, Z.; Wei, Y.; Ren, L.; Liu, Q. Biology and Bioinspiration of Soft Robotics: Actuation, Sensing, and System Integration. iScience 2021, 24, 103075. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, Fabrication and Control of Soft Robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Shreekrishna, S.; Nachimuthu, R.; Nair, V.S. A Review on Shape Memory Alloys and Their Prominence in Automotive Technology. J. Intell. Mater. Syst. Struct. 2023, 34, 499–524. [Google Scholar] [CrossRef]
- Battaglia, M.; Sellitto, A.; Giamundo, A.; Visone, M.; Riccio, A. Shape Memory Alloys Applied to Automotive Adaptive Aerodynamics. Materials 2023, 16, 4832. [Google Scholar] [CrossRef] [PubMed]
- Sofla, A.Y.N.; Meguid, S.A.; Tan, K.T.; Yeo, W.K. Shape Morphing of Aircraft Wing: Status and Challenges. Mater. Des. 2010, 31, 1284–1292. [Google Scholar] [CrossRef]
- Jani, J.; Leary, M.; Subic, A.; Gibson, M.A. A Review of Shape Memory Alloy Research, Applications and Opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Hu, K.; Rabenorosoa, K.; Ouisse, M. A review of SMA-based actuators for bidirectional rotational motion: Application to origami robots. Front. Robot. AI 2021, 8, 698427. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.; Park, H. Shape memory alloy-based reactive tubular (SMART) brake for compact and energy-efficient wearable robot design. ACS Appl. Mater. Interfaces 2024, 16, 8974–8983. [Google Scholar] [CrossRef]
- Turner, T.L.; Lach, C.L.; Cano, R.J. Fabrication and characterization of SMA hybrid composites. In Proceedings of the SPIE—The International Society for Optical Engineering, Newport Beach, CA, USA, 5 March 2001; Volume 4333, pp. 343–353. [Google Scholar]
- Costanza, G.; Tata, M.E. Shape memory alloys for aerospace, recent developments, and new applications: A short review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-speed electrically actuated elastomers with strain greater than 100%. Science 2000, 287, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Z.; Chen, Y.; Liu, H. Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Youn, J.; Jeong, S.M.; Hwang, G.; Kim, H.; Hyeon, K.; Park, J.; Kyung, K. Dielectric elastomer actuator for soft robotics applications and challenges. Appl. Sci. 2020, 10, 640. [Google Scholar] [CrossRef]
- Feng, W.; Wang, J.; Xiao, S.; Ma, X.; Sun, Y.; Li, Y.; Liao, G.; Zhang, D. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot. Nat. Commun. 2024, 15, 48243. [Google Scholar] [CrossRef]
- Kellaris, N.; Helgeson, M.E.; Smith, G.M.; Mitchell, S.K.; Keplinger, C. Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 2018, 3, eaar3276. [Google Scholar] [CrossRef] [PubMed]
- Rothemund, P.; Kellaris, N.; Mitchell, S.; Acome, E.; Keplinger, C. HASEL artificial muscles for a new generation of lifelike robots—recent progress and future opportunities. Adv. Mater. 2021, 33, 2003375. [Google Scholar] [CrossRef]
- Perera, O.; Zhang, L.; Sharma, Y.; Elgeneidy, K. A review of soft robotic actuators and their applications in bioengineering, with an emphasis on HASEL actuators’ future potential. Actuators 2024, 13, 524. [Google Scholar] [CrossRef]
- Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2016, 29, 1603483. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators (HASEL). Science 2018, 359, 61–65. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Kim, K.J. Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 2001, 10, 819–833. [Google Scholar] [CrossRef]
- Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J.O.; Smith, J. Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators, and artificial muscles—A review. Smart Mater. Struct. 1998, 7, R15–R30. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Yang, Y. Modeling and control of ionic polymer metal composite actuators: A review. Eur. Polym. J. 2023, 186, 111821. [Google Scholar] [CrossRef]
- Bhandari, B.; Lee, G.-Y.; Ahn, S.-H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 2012, 13, 141–163. [Google Scholar] [CrossRef]
- Nemat-Nasser, S.; Wu, Y. Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 2003, 93, 5255–5267. [Google Scholar] [CrossRef]
- Kim, K.J.; Shahinpoor, M. Ionic polymer metal composites: II. Manufacturing techniques. Smart Mater. Struct. 2003, 12, 65–79. [Google Scholar] [CrossRef]
- Xavier, M.S.; Tawk, C.D.; Zolfagharian, A.; Pinskier, J.; Howard, D.; Young, T.; Lai, J.; Harrison, S.M.; Yong, Y.K.; Bodaghi, M.; et al. Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control, and applications. IEEE Access 2022, 10, 59442–59485. [Google Scholar] [CrossRef]
- Tawk, C.; Alici, G. A review of 3D-printable soft pneumatic actuators and sensors: Research challenges and opportunities. Adv. Mater. Technol. 2021, 3, 2000223. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft pneumatic glove for hand rehabilitation. Robot. Auton. Syst. 2015, 73, 135–146. [Google Scholar] [CrossRef]
- Pan, K.; Hsu, L.; Lee, L.; Chiang, H.; Li, I.; Wang, W. Development and control of active vehicle suspension systems using pneumatic muscle actuator. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017; pp. 617–622. [Google Scholar] [CrossRef]
- Li, I.; Lee, L. Design and development of an active suspension system using pneumatic-muscle actuator and intelligent control. Appl. Sci. 2019, 9, 4453. [Google Scholar] [CrossRef]
- Maciejewski, I.; Pecolt, S.; Błażejewski, A.; Krzyzynski, T.; Glowinski, S. Controller of pneumatic muscles implemented in active seat suspension. Appl. Sci. 2024, 14, 6385. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Cheng, Z.-Y.; Bharti, V. Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sens. Actuators A Phys. 2005, 121, 267–274. [Google Scholar] [CrossRef]
- Sellitto, A.; Pappalettera, G. Numerical simulation of a shape memory alloy–based active suspension for off-road vehicles. Materials 2023, 16, 2123. [Google Scholar] [CrossRef]
- Colorado, J.; Barrientos, A.; Rossi, C.; Breuer, K.S. Biomechanics of Smart Wings in a Bat Robot: Morphing Wings Using SMA Actuators. Bioinspiration Biomim. 2012, 7, 036006. [Google Scholar] [CrossRef]
- Lazos, B.S. Biologically inspired fixed-wing configuration studies. J. Aircr. 2005, 42, 1089–1098. [Google Scholar] [CrossRef]
- Hao, M.; Wang, Y.; Zhu, Z.; He, Q.; Zhu, D.; Luo, M. A compact review of IPMC as soft actuator and sensor: Current trends, challenges, and potential solutions. Front. Robot. AI 2019, 6, 129. [Google Scholar] [CrossRef]
- Cheng, Z.-Y.; Xu, H.S.; Zhang, Q.M. High-performance micromachined unimorph actuators based on electrostrictive poly (vinylidene fluoride–trifluoroethylene) copolymer. Appl. Phys. Lett. 2002, 80, 1082–1084. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Cheng, Z.-Y.; Li, J.Y. Design, modeling, fabrication, and performances of bridge-type high-performance electroactive polymer micromachined actuators. J. Microelectromech. Syst. 2005, 14, 464–471. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Cheng, Z.-Y.; Xu, H.S. An electroactive polymer–ceramic hybrid actuation system for enhanced electromechanical performance. Appl. Phys. Lett. 2004, 85, 1045–1047. [Google Scholar] [CrossRef]
- Riccio, A.; Sellitto, A.; Battaglia, M. Morphing Spoiler for Adaptive Aerodynamics by Shape Memory Alloys. Actuators 2024, 13, 330. [Google Scholar] [CrossRef]
- Kim, N.-G.; Han, M.-W.; Iakovleva, A.; Park, H.-B.; Chu, W.-S.; Ahn, S.-H. Hybrid Composite Actuator with Shape Retention Capability for Morphing Flap of UAV. Compos. Struct. 2020, 243, 112227. [Google Scholar] [CrossRef]
- Hajarian, A.; Zakerzadeh, M.R.; Baghani, M. Design, Analysis and Testing of a Smart Morphing Airfoil Actuated by SMA Wires. Smart Mater. Struct. 2019, 28, 115043. [Google Scholar] [CrossRef]
- Plum, F.; Labisch, S.; Dirks, J.-H. SAUV—A Bio-Inspired Soft-Robotic Autonomous Underwater Vehicle. Front. Neurorobotics 2020, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.-S.; Lee, K.-T.; Song, S.-H.; Han, M.-W.; Lee, J.-Y.; Kim, H.-S.; Kim, M.-S.; Park, Y.-J.; Cho, K.-J.; Ahn, S.-H. Review of Biomimetic Underwater Robots Using Smart Actuators. Int. J. Precis. Eng. Manuf. 2012, 13, 1281–1292. [Google Scholar] [CrossRef]
- Berlinger, F.; Duduta, M.; Nagpal, R.; Wood, R.J. A modular dielectric elastomer actuator to drive miniature autonomous underwater vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3429–3435. [Google Scholar]
- Jung, Y.; Kwon, K.; Ko, S.H. Untethered soft actuators for soft standalone robotics. Nat. Commun. 2024, 15, 5197. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Nam, J.; Choi, H. Investigations on actuation characteristics of IPMC artificial muscle actuator. Sens. Actuators A Phys. 2003, 107, 183–192. [Google Scholar] [CrossRef]
- Zhou, C.; Low, K.H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatron. 2011, 17, 25–35. [Google Scholar] [CrossRef]
- Barbarino, S.; Bilgen, O.; Ajaj, R.M.; Friswell, M.I.; Inman, D.J. A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 2011, 22, 823–877. [Google Scholar] [CrossRef]
- Depari, L.; Shrestha, M.; Teo, E.H.T. Rotary haptic device solutions using a conical dielectric elastomer actuator. In Proceedings of the SPIE—The International Society for Optical Engineering, Long Beach, CA, USA, 9 May 2024; Volume 10. [Google Scholar] [CrossRef]
- Boys, H.; Frediani, G.; Poslad, S.; Busfield, J.; Carpi, F. A dielectric elastomer actuator-based tactile display for multiple fingertip interaction with virtual soft bodies. In Proceedings of the SPIE—The International Society for Optical Engineering, Portland, OR, USA, 17 April 2017; Volume 10163. [Google Scholar]
- Zhang, Q.; Yu, W.; Zhao, J.; Meng, C.; Guo, S. A review of the applications and challenges of dielectric elastomer actuators in soft robotics. Machines 2025, 13, 101. [Google Scholar] [CrossRef]
- Bernat, J.; Bojar, P.; Kula, K.; Krajnik, M.; Krysicki, T. Review of soft actuators controlled with electrical stimuli: IPMC, DEAP, and MRE. Appl. Sci. 2023, 13, 1651. [Google Scholar] [CrossRef]
- Kovacs, G.; Düring, L.; Michel, S.; Terrasi, G. Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A Phys. 2009, 155, 299–307. [Google Scholar] [CrossRef]
- Wingert, A.; Lichter, M.D.; Dubowsky, S. On the design of large degree-of-freedom digital mechatronic devices based on bistable dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 2006, 11, 448–456. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [Google Scholar] [CrossRef]
- Cheng, Z.-Y.; Zhang, Q.M.; Bharti, V.; Xu, H.S.; Xia, F. Electrostrictive poly (vinylidene fluoride-trifluoroethylene) copolymers. Sens. Actuators A Phys. 2001, 90, 138–147. [Google Scholar] [CrossRef]
- Mazzolai, B.; Margheri, L.; Cianchetti, M.; Dario, P.; Laschi, C. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspir. Biomim. 2012, 7, 025005. [Google Scholar] [CrossRef]
- Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249. [Google Scholar] [CrossRef]
- Ankit, N.; Ho, T.Y.K.; Nirmal, A.; Kulkarni, M.R.; Accoto, D.; Mathews, N. Soft actuator materials for electrically driven haptic interfaces. Adv. Intell. Syst. 2021, 4, 2100061. [Google Scholar] [CrossRef]
- Park, J.; Lee, Y.; Cho, S.; Choe, A.; Yeom, J.; Ro, Y.G.; Kim, J.; Kang, D.; Lee, S.; Ko, H. Soft sensors and actuators for wearable Human–Machine interfaces. Chem. Rev. 2024, 124, 1464–1534. [Google Scholar] [CrossRef]
- Gupta, A.; Mukherjee, S. 10 - Ionic polymer–metal composites: Smart multifunctional properties and applications in an underwater environment. Nanocomposite Manufacturing Technologies 2025, 227–241. [Google Scholar] [CrossRef]
- Thalman, C.; Artemiadis, P. A review of soft wearable robots that provide active assistance: Trends, common actuation methods, fabrication, and applications. Wearable Technol. 2020, 1, e3. [Google Scholar] [CrossRef]
- Wang, Y. A Comprehensive Survey of Ionic Polymer–Metal Composite Transducers: Preparation, Performance Optimization and Applications. Soft Sci. 2023, 3, 9. [Google Scholar] [CrossRef]
- Majidi, C. Soft Robotics: A Perspective—Current Trends and Prospects for the Future. Soft Robot. 2014, 1, 5–11. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.-H.; Kim, T.; Kang, B.B.; Lee, M.; Park, W.; Ku, S.; Kim, D.; Kwon, J.; Lee, H.; et al. Review of machine learning methods in soft robotics. PLoS ONE 2021, 16, e0246102. [Google Scholar] [CrossRef]
- Turabimana, P.; Sohn, J.W.; Choi, S.-B. Design and Control of a Shape Memory Alloy-Based Idle Air Control Actuator for a Mid-Size Passenger Vehicle Application. Appl. Sci. 2024, 14, 4784. [Google Scholar] [CrossRef]
- Lai, J.; Song, A.; Shi, K.; Ji, Q.; Lu, Y.; Li, H. Design and Evaluation of a Bidirectional Soft Glove for Hand Rehabilitation-Assistance Tasks. IEEE Trans. Med. Robot. Bionics 2023, 5, 730–740. [Google Scholar] [CrossRef]
- Sun, B.; Li, W.; Wang, Z.; Zhu, Y.; He, Q.; Guan, X.; Dai, G.; Yuan, D.; Li, A.; Cui, W.; et al. Recent Progress in Modeling and Control of Bio-Inspired Fish Robots. J. Mar. Sci. Eng. 2022, 10, 773. [Google Scholar] [CrossRef]
- García-Córdova, F.; Guerrero-González, A.; Hidalgo-Castelo, F. Bioinspired control architecture for adaptive and resilient navigation of unmanned underwater vehicle in monitoring missions of submerged aquatic vegetation meadows. Biomimetics 2024, 9, 329. [Google Scholar] [CrossRef]
- Lodh, T.; Le, H. An Ultra High Gain Converter for Driving HASEL Actuator Used in Soft Mobile Robots. Biomimetics 2023, 8, 53. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Li, R.; Gu, X.; Zhang, Y.; Zhu, J.; Zhang, W. Design and Prototype Testing of a Smart SMA Actuator for UAV Foldable Tail Wings. Actuators 2024, 13, 499. [Google Scholar] [CrossRef]
- Kashef Tabrizian, S.; Cedric, F.; Terryn, S.; Vanderborght, B. SMA Wire Use in Hybrid Twisting and Bending/Extending Soft Fiber-Reinforced Actuators. Actuators 2024, 13, 125. [Google Scholar] [CrossRef]
- Du, B.; Tang, C.; Jiang, S.; Wang, Y.; Liu, X.-J.; Zhao, H. High-Speed Rotary Motor for Multidomain Operations Driven by Resonant Dielectric Elastomer Actuators. Adv. Intell. Syst. 2023, 5, 2300243. [Google Scholar] [CrossRef]
- Liu, Y.; Ming, P.; Chen, J.; Jing, C. Experimental Analysis of IPMC Optical-Controlled Flexible Driving Performance under PLZT Ceramic Configuration. Sensors 2024, 24, 5650. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, C.; Zhang, Y.; Yang, L.; Tan, W.; Qin, H.; Wang, F.; Liu, L. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle. Soft Robot. 2024, 11, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Ege, E.S.; Balikci, A. Transparent Localized Haptics: Utilization of PVDF Actuators on Touch Displays. Actuators 2023, 12, 289. [Google Scholar] [CrossRef]
- Jafferis, N.T.; Helbling, E.F.; Karpelson, M.; Wood, R.J. Untethered flight of an insect-sized robot with flapping wings. Nature 2019, 570, 491–495. [Google Scholar] [CrossRef] [PubMed]
Technology | Descriptions | Typical Actuation Uses |
---|---|---|
Shape Memory Alloys (SMAs) | Metal alloys that “remember” and return to a pre-defined shape when heated, due to a reversible solid-state phase transformation between the martensitic and austenitic phases. | Compact, high-strain actuation systems |
Dielectric Elastomer Actuators (DEAs) | Soft, stretchable actuators that deform in response to high-voltage electrical input, using electrostatic forces to compress and expand a dielectric elastomer film. | Systems that require large, fast, and lightweight muscle-like motion |
Ionic Polymer–Metal Composites (IPMCs) | Electroactive polymers that bend in response to low-voltage stimulation by redistributing ions and water molecules within a hydrated polymer membrane. | Compact, biomimetic systems |
Polyvinylidene Fluoride (PVDF)-Based Electrostrictive Actuators | Electroactive polymers that exhibit electrostrictive behavior with a high energy density, a fast response, and low hysteresis. | Precise, high-performance actuation systems in demanding environments |
Soft Pneumatic Actuators (SPAs) | Compliant systems that generate motion by pressurizing internal chambers, producing large, controllable deformations in bending, twisting, or linear directions. | Soft robotics and adaptive vehicle components. |
Technology | Key Limitations/Challenges | Characteristics |
---|---|---|
Shape Memory Alloys (SMAs) |
|
|
Dielectric Elastomer Actuators (DEAs) |
|
|
|
|
|
|
|
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittal, V.; Lotwin, M.; Shah, R. A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control. Actuators 2025, 14, 303. https://doi.org/10.3390/act14070303
Mittal V, Lotwin M, Shah R. A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control. Actuators. 2025; 14(7):303. https://doi.org/10.3390/act14070303
Chicago/Turabian StyleMittal, Vikram, Michael Lotwin, and Rajesh Shah. 2025. "A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control" Actuators 14, no. 7: 303. https://doi.org/10.3390/act14070303
APA StyleMittal, V., Lotwin, M., & Shah, R. (2025). A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control. Actuators, 14(7), 303. https://doi.org/10.3390/act14070303