A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms
Abstract
1. Introduction
2. Supervisory Control Framework Algorithm
2.1. Steady-State Wake Model: FLORIS
2.2. Dynamic Inflow Identification
2.3. Adaptive Optimization Procedure
3. Results and Discussion
3.1. Inflow Data Processing
3.2. Supervisory Wake Steering Control
3.3. Comparative Evaluation of Control Strategies
- During the 60–90 min interval, it retains the prior yaw configuration to mitigate unnecessary actuation in response to minor wind direction shifts (within ), leading to only a slight power deficit compared to SRO;
- Between 190–240 min, wake steering is suspended altogether as wind speeds fall below the 3.5 m/s cut-in threshold of Turbine Type C, thereby avoiding potential mechanical resonance risks associated with low-RPM operation;
- From 290–1050 min, both strategies yield power outputs indistinguishable from the baseline greedy-mode operation due to negligible wake interactions under southeast wind directions, where inter-turbine spacing exceeds seven rotor diameters.
3.4. Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMDs | Commands |
DNV | Det Norske Veritas |
FLORIS | Flow Redirection and Induction in Steady State |
NREL | National Renewable Energy Laboratory |
SCADA | Supervisory Control And Data Acquisition |
SRO | Serial-refine Optimization |
SWSC | Supervisory Wake Steering Controller |
Appendix A. Wind Farm Layout
References
- Meyers, J.; Bottasso, C.; Dykes, K.; Fleming, P.; Gebraad, P.; Giebel, G.; Göçmen, T.; Van Wingerden, J.-W. Wind farm flow control: Prospects and challenges. Wind Energy Sci. 2022, 7, 2271–2306. [Google Scholar] [CrossRef]
- Fleming, P.; King, J.; Dykes, K.; Simley, E.; Roadman, J.; Scholbrock, A.; Murphy, P.; Lundquist, J.K.; Moriarty, P.; Fleming, K.; et al. Initial results from a field campaign of wake steering applied at a commercial wind farm—Part 1. Wind Energy Sci. 2019, 4, 273–285. [Google Scholar] [CrossRef]
- Fleming, P.; King, J.; Simley, E.; Roadman, J.; Scholbrock, A.; Murphy, P.; Lundquist, J.K.; Moriarty, P.; Fleming, K.; van Dam, J.; et al. Continued results from a field campaign of wake steering applied at a commercial wind farm: Part 2. Wind Energy Sci. 2020, 5, 945–958. [Google Scholar] [CrossRef]
- Bensason, D.; Simley, E.; Roberts, O.; Fleming, P.; Debnath, M.; King, J.; Bay, C.; Mudafort, R. Evaluation of the potential for wake steering for US land-based wind power plants. J. Renew. Sustain. Energy 2021, 13, 033303. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; Kern, S.; Maturu, S.; Kanev, S.; Salbert, B.; Schreiber, J.; Campagnolo, F.; Bottasso, C.L.; Schuler, S.; Wilts, F.; et al. Field experiment for open-loop yaw-based wake steering at a commercial onshore wind farm in Italy. Wind Energy Sci. 2021, 6, 159–176. [Google Scholar] [CrossRef]
- Simley, E.; Fleming, P.; Girard, N.; Alloin, L.; Godefroy, E.; Duc, T. Results from a wake-steering experiment at a commercial wind plant: Investigating the wind speed dependence of wake-steering performance. Wind Energy Sci. 2021, 6, 1427–1453. [Google Scholar] [CrossRef]
- Ti, Z.; Deng, X.W.; Zhang, M. Artificial Neural Networks based wake model for power prediction of wind farm. Renew. Energy 2021, 172, 618–631. [Google Scholar] [CrossRef]
- Lin, J.W.; Zhu, W.J.; Shen, W.Z. New engineering wake model for wind farm applications. Renew. Energy 2022, 198, 1354–1363. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X. A novel dynamic wind farm wake model based on deep learning. Appl. Energy 2020, 277, 115552. [Google Scholar] [CrossRef]
- Ling, Z.; Zhao, Z.; Liu, Y.; Liu, H.; Liu, Y.; Ma, Y.; Wang, T.; Wang, D. A three-dimensional wake model for wind turbines based on a polynomial distribution of wake velocity. Ocean Eng. 2023, 282, 115064. [Google Scholar] [CrossRef]
- Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy 2020, 257, 114025. [Google Scholar] [CrossRef]
- Qian, G.W.; Ishihara, T. Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity. Energy 2021, 220, 119680. [Google Scholar] [CrossRef]
- Shaler, K.; Jonkman, J.; Barter, G.E.; Kreeft, J.J.; Muller, J.P. Loads assessment of a fixed-bottom offshore wind farm with wake steering. Wind Energy 2022, 25, 1530–1554. [Google Scholar] [CrossRef]
- He, R.; Yang, H.; Lu, L. Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control. Appl. Energy 2023, 337, 120878. [Google Scholar] [CrossRef]
- Lin, M.; Porté-Agel, F. Power maximization and fatigue-load mitigation in a wind-turbine array by active yaw control: An LES study. In Proceedings of the Science of Making Torque from Wind (TORQUE 2020), The Netherlands (online), 28 September 2020. [Google Scholar]
- He, R.; Yang, H.; Lu, L.; Gao, X. Site-specific wake steering strategy for combined power enhancement and fatigue mitigation within wind farms. Renew. Energy 2024, 225, 120324. [Google Scholar] [CrossRef]
- Bachant, P.; Ireland, P.; Burrows, B.; Qiao, C.; Duncan, J.; Zheng, D.; Dua, M. Development and validation of a hybrid data-driven model-based wake steering controller and its application at a utility-scale wind plant. Wind Energy Sci. 2024, 9, 2235–2259. [Google Scholar] [CrossRef]
- Fleming, P.A.; Stanley, A.P.J.; Bay, C.J.; King, J.; Simley, E.; Doekemeijer, B.M.; Mudafort, R. Serial-refine method for fast wake-steering yaw optimization. In Proceedings of the Science of Making Torque from Wind (TORQUE 2022), Delft, The Netherlands, 1 June 2022. [Google Scholar]
- Kanev, S. Dynamic wake steering and its impact on wind farm power production and yaw actuator duty. Renew. Energy 2020, 146, 9–15. [Google Scholar] [CrossRef]
- FLORIS: FLOw Redirection and Induction in Steady State. Available online: https://www2.nrel.gov/wind/floris (accessed on 4 March 2025).
- Gebraad, P.M.O.; Teeuwisse, F.W.; Van Wingerden, J.W.; Fleming, P.A.; Ruben, S.D.; Marden, J.R.; Pao, L.Y. Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study. Wind Energy 2016, 19, 95–114. [Google Scholar] [CrossRef]
- Compare Yaw Optimizers Within FLORIS. Available online: https://nrel.github.io/floris/examples/examples_control_optimization/006_compare_yaw_optimizers.html (accessed on 11 March 2025).
- DNV-ST-0437 Loads and Site Conditions for Wind Turbines. Available online: https://www.dnv.com/energy/standards-guidelines/dnv-st-0437-loads-and-site-conditions-for-wind-turbines/ (accessed on 19 May 2025).
- Damiani, R.; Dana, S.; Annoni, J.; Fleming, P.; Roadman, J.; van Dam, J.; Dykes, K. Assessment of wind turbine component loads under yaw-offset conditions. Wind Energy Sci. 2018, 3, 173–189. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Reference wind height [m] | 94.64 |
Reference air density [] | 1.219 |
Wind shear [-] * | 0.0916 |
Turbulence [-] * | 0.1 |
Rotor diameter [m] | 146 (Type A) |
149.8 (Type B) | |
171 (Type C) | |
Power capacity [MW] | 4.0 (Type A, B) |
6.2 (Type C) | |
Cut-in speed [m/s] | 3.0 (Type A, B) |
3.5 (Type C) | |
Yaw rate [°] | 0.21 (Type A) |
0.20 (Type B) | |
0.18 (Type C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Zhu, J.; Hou, P.; Zhang, S.; Wang, X.; He, G.; Lu, C.; Wang, E.; Wu, Y. A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms. Energies 2025, 18, 3452. https://doi.org/10.3390/en18133452
Shen Y, Zhu J, Hou P, Zhang S, Wang X, He G, Lu C, Wang E, Wu Y. A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms. Energies. 2025; 18(13):3452. https://doi.org/10.3390/en18133452
Chicago/Turabian StyleShen, Yang, Jinkui Zhu, Peng Hou, Shuowang Zhang, Xinglin Wang, Guodong He, Chao Lu, Enyu Wang, and Yiwen Wu. 2025. "A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms" Energies 18, no. 13: 3452. https://doi.org/10.3390/en18133452
APA StyleShen, Y., Zhu, J., Hou, P., Zhang, S., Wang, X., He, G., Lu, C., Wang, E., & Wu, Y. (2025). A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms. Energies, 18(13), 3452. https://doi.org/10.3390/en18133452