Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = steel winding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7861 KB  
Article
Research on Flexural Performance of Low-Strength Foamed Concrete Cold-Formed Steel Framing Composite Enclosure Wall Panels
by Xinliang Liu, Kunpeng Wang, Quanbin Zhao and Chenyuan Luo
Buildings 2025, 15(17), 3018; https://doi.org/10.3390/buildings15173018 (registering DOI) - 25 Aug 2025
Abstract
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance [...] Read more.
To meet the requirements of a prefabricated building with specific strength limitations and assembly rate criteria, the research proposes a Low-Strength Foamed Concrete Cold-Formed Steel (CFS) Framing Composite Enclosure Wall Panel (LFSW). The ABAQUS 2024 finite element analysis (FEA) combined with bending performance tests on five specimens were employed to examine crack propagation and failure modes of wall panels under wind load, investigating the influence mechanisms of foamed concrete strength, CFS framing wall thickness, CFS framing section height, and concrete cover thickness on the flexural performance of wall panels. The experimental results demonstrate that increasing the steel thickness from 1.8 mm to 2.5 mm enhances the ultimate load-carrying capacity by 46.15%, while enlarging the section height from 80 mm to 100 mm improves capacity by 26.67%. When the foamed concrete strength increased from 0.5 MPa to 1.0 MPa, the wall panel cracking load increased by 50%, while the ultimate load capacity changed by less than 5%. Increasing the concrete cover thickness from 25 mm to 35 mm enhanced the ultimate capacity by 7%, indicating that both parameters exert limited influence on the composite wall panel’s flexural capacity. Finite element simulations demonstrate excellent agreement with experimental results, confirming effective composite action between foamed concrete and CFS framing under service conditions. This validation establishes that the simplified analytical model neglecting interface slip provides better accuracy for engineering design, offering theoretical foundations and practical references for optimizing prefabricated building envelope systems. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 6960 KB  
Article
Silicon-Based Solar Brick for Textile Ceramic Technology
by P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Viewed by 291
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of [...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation. Full article
Show Figures

Figure 1

25 pages, 12931 KB  
Article
Development of a Strengthening Method Using Spring-Type Dampers for Tower–Foundation Connection in Existing Wind Turbines
by Mert Genç and Ayhan Nuhoğlu
Appl. Sci. 2025, 15(16), 8981; https://doi.org/10.3390/app15168981 - 14 Aug 2025
Viewed by 176
Abstract
Embedded steel ring connections are widely used in onshore wind turbines (WT) to transfer loads from the tower to the foundation. The structural behavior of the embedded steel ring connection greatly affects the structural integrity of wind turbines under ultimate loads. Approximately 90% [...] Read more.
Embedded steel ring connections are widely used in onshore wind turbines (WT) to transfer loads from the tower to the foundation. The structural behavior of the embedded steel ring connection greatly affects the structural integrity of wind turbines under ultimate loads. Approximately 90% of the bending loads (bending/overturning moments) are carried by the base flange of the embedded ring and the embedded ring–concrete contact surfaces. Damage that may occur in these areas significantly affects the tower’s stability and may lead to the tower overturning. The damages that may occur in these areas are the most dangerous that can occur in wind turbines. This study proposes a strengthening method for wind turbine foundations with damaged tower–foundation connections. In order to investigate the effect of the developed strengthening method on the structural behavior of the tower–foundation connection and also to verify the analytical models, 1/15 scale models of an existing wind turbine and its foundation were created. The effect of the developed strengthening method on the tower–foundation connection was investigated by testing the created models in a laboratory environment. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
Show Figures

Figure 1

22 pages, 3203 KB  
Article
Axial Compression Behavior of Square RC Columns Confined by Rectangular BFRP and Hybrid Ties
by Amr M. A. Moussa, Arafa M. A. Ibrahim, Ahmed Elsayed, Zhishen Wu and Ahmed Monier
Infrastructures 2025, 10(8), 206; https://doi.org/10.3390/infrastructures10080206 - 8 Aug 2025
Viewed by 306
Abstract
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to [...] Read more.
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to overcome common limitations of conventional FRP stirrups, such as reduced tensile strength at bent regions and premature rupture. A total of five RC column specimens were tested under monotonic axial loading: one reference specimen with conventional steel ties, two specimens with BFRP ties spaced at 45 mm and 90 mm, and two hybrid specimens combining steel and BFRP ties. Experimental results showed that the steel-confined column achieved the highest peak axial load of 1793.2 kN and an ultimate strain value of 1.12. The specimen with closely spaced BFRP ties (45 mm) reached 94.7% of the peak load of the steel-confined specimen and exhibited over 137% higher axial strain capacity. The hybrid specimen with two interleaved BFRP ties achieved the highest confinement effectiveness ratio of 1.306. The findings demonstrate that the proposed BFRP ties offer a structurally viable and corrosion-resistant alternative to steel ties, particularly when used in hybrid systems. This research contributes to the development of durable, high-performance confinement strategies for RC columns in seismic and aggressive environmental conditions. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

24 pages, 8197 KB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Viewed by 350
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

20 pages, 3000 KB  
Article
Non-Linear Analytical Model for Bread-Loaf Linear PM Motor
by Ferhat Turun, Tunahan Sapmaz, Yasemin Öner, Salman Ali and Fabrizio Marignetti
Energies 2025, 18(15), 3940; https://doi.org/10.3390/en18153940 - 24 Jul 2025
Viewed by 414
Abstract
This article presents a non-linear MEC for a linear PM motor, and its experimental validation. In the MEC model, winding flux leakage and iron saturation are considered. In addition, two different linear PM motor models (bread-loaf and surface-type) are examined for linear PM [...] Read more.
This article presents a non-linear MEC for a linear PM motor, and its experimental validation. In the MEC model, winding flux leakage and iron saturation are considered. In addition, two different linear PM motor models (bread-loaf and surface-type) are examined for linear PM motors. An iterative method is used to predict the magnetic behavior of saturated magnetic steel. The proposed MEC for linear PM motors is compared with finite element analysis (FEA) to determine its accuracy and suitability. FEA is widely regarded as a highly accurate and reliable tool for analyzing linear PM motors. However, its primary limitation lies in its considerable computational time requirement. This disadvantage becomes particularly problematic during the early stages of the design process. Therefore, the proposed model addresses this limitation. Also, experimental results validate the practicality of the MEC. Finally, the proposed model can be a tool for different slot/pole combinations. Thus, the model can be considered suitable for both bread-loaf and surface-type PM motors. Full article
(This article belongs to the Special Issue Condition Monitoring of Electrical Machines Based on Models)
Show Figures

Figure 1

34 pages, 5960 KB  
Article
Motor Temperature Observer for Four-Mass Thermal Model Based Rolling Mills
by Boris M. Loginov, Stanislav S. Voronin, Roman A. Lisovskiy, Vadim R. Khramshin and Liudmila V. Radionova
Sensors 2025, 25(14), 4458; https://doi.org/10.3390/s25144458 - 17 Jul 2025
Viewed by 313
Abstract
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with [...] Read more.
Thermal control in rolling mills motors is gaining importance as more and more hard-to-deform steel grades are rolled. The capabilities of diagnostics monitoring also expand as digital IIoT-based technologies are adopted. Electrical drives in modern rolling mills are based on synchronous motors with frequency regulation. Such motors are expensive, while their reliability impacts the metallurgical plant output. Hence, developing the on-line temperature monitoring systems for such motors is extremely urgent. This paper presents a solution applying to synchronous motors of the upper and lower rolls in the horizontal roll stand of plate mill 5000. The installed capacity of each motor is 12 MW. According to the digitalization tendency, on-line monitoring systems should be based on digital shadows (coordinate observers) that are similar to digital twins, widely introduced at metallurgical plants. Modern reliability requirements set the continuous temperature monitoring for stator and rotor windings and iron core. This article is the first to describe a method for calculating thermal loads based on the data sets created during rolling. The authors have developed a thermal state observer based on four-mass model of motor heating built using the Simscape Thermal Models library domains that is part of the MATLAB Simulink. Virtual adjustment of the observer and of the thermal model was performed using hardware-in-the-loop (HIL) simulation. The authors have validated the results by comparing the observer’s values with the actual values measured at control points. The discrete masses heating was studied during the rolling cycle. The stator and rotor winding temperature was analysed at different periods. The authors have concluded that the motors of the upper and lower rolls are in a satisfactory condition. The results of the study conducted generally develop the idea of using object-oriented digital shadows for the industrial electrical equipment. The authors have introduced technologies that improve the reliability of the rolling mills electrical drives which accounts for the innovative development in metallurgy. The authors have also provided recommendations on expanded industrial applications of the research results. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

19 pages, 4432 KB  
Article
Radial Temperature Distribution Characteristics of Long-Span Transmission Lines Under Forced Convection Conditions
by Feng Wang, Chuanxing Song, Xinghua Chen and Zhangjun Liu
Processes 2025, 13(7), 2273; https://doi.org/10.3390/pr13072273 - 16 Jul 2025
Viewed by 347
Abstract
This study proposes an iterative method based on thermal equilibrium equations to calculate the radial temperature distribution of long-span overhead transmission lines under forced convection. This paper takes the ACSR 500/280 conductor as the research object, establishes the three-dimensional finite element model considering [...] Read more.
This study proposes an iterative method based on thermal equilibrium equations to calculate the radial temperature distribution of long-span overhead transmission lines under forced convection. This paper takes the ACSR 500/280 conductor as the research object, establishes the three-dimensional finite element model considering the helix angle of the conductor, and carries out the experimental validation for the LGJ 300/40 conductor under the same conditions. The model captures internal temperature distribution through contour analysis and examines the effects of current, wind speed, and ambient temperature. Unlike traditional models assuming uniform conductor temperature, this method reveals internal thermal gradients and introduces a novel three-stage radial attenuation characterization. The iterative method converges and accurately reflects temperature variations. The results show a non-uniform radial distribution, with a maximum temperature difference of 8 °C and steeper gradients in aluminum than in steel. Increasing current raises temperature nonlinearly, enlarging the radial difference. Higher wind speeds reduce both temperature and radial difference, while rising ambient temperatures increase conductor temperature with a stable radial profile. This work provides valuable insights for the safe operation and optimal design of long-span transmission lines and supports future research on dynamic and environmental coupling effects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3084 KB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 466
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

16 pages, 2504 KB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 368
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

21 pages, 1929 KB  
Article
Economic Superiority of PIP Slip Joint Compared to Conventional Tubular Joints
by Md Ariful Islam, Sajid Ali, Hongbae Park and Daeyong Lee
Appl. Sci. 2025, 15(12), 6464; https://doi.org/10.3390/app15126464 - 8 Jun 2025
Cited by 1 | Viewed by 638
Abstract
This paper examines the costs associated with installing PIP (Pile-in-Pile) slip joints compared to traditional tubular joints, focusing on investment, installation processes, and long-term benefits. Previous studies have indicated that the structural performance of PIP slip joints is superior to that of traditional [...] Read more.
This paper examines the costs associated with installing PIP (Pile-in-Pile) slip joints compared to traditional tubular joints, focusing on investment, installation processes, and long-term benefits. Previous studies have indicated that the structural performance of PIP slip joints is superior to that of traditional joints. By utilizing the frictional interfaces between conventional structural steel components and the simplest installation methods, PIP slip joints maximize structural integrity and ease of maintenance. As a result, they can lead to lower lifecycle costs, provided they are installed correctly. Quantitatively, the PIP slip joint achieved the highest internal rate of return (IRR) at 43.42%, the lowest Levelized Cost of Energy (LCOE) at 0.013589 EUR/kWh, and the shortest payback period at 2.92 years—outperforming grouted and bolted flange joints across all key financial metrics. The analysis also addresses logistical challenges and workforce requirements, highlighting that significant economic benefits can be realized when implemented appropriately. Furthermore, the PIP slip joint promotes sustainability goals by minimizing material usage, which ultimately leads to reduced carbon emissions through more efficient fabrication and installation, as well as enabling faster deployment. A comprehensive financial assessment of these joint systems in offshore wind monopiles reveals that PIP slip joints are the most cost-effective and financially advantageous option, outperforming key metrics like IRR, LCOE, and payback period due to lower initial investments and operational costs. As PIP slip joints yield a higher net present value (NPV), a shorter payback period, and a lower LCOE, they can enhance profitability and reduce financial risk, and are suitable for streamlined implementation. While grouted and bolted flange joints exhibit similar financial performance, PIP slip joints’ minimal expenditure and consistent superiority make them the optimal choice for sustainable and economically viable offshore wind projects. Full article
Show Figures

Figure 1

10 pages, 623 KB  
Article
Offshore Wind Turbine Key Components’ Life Cycle Cost Analysis (LCCA): Specification Options in Western Australia
by Parit Akkawat, Andrew Whyte and Umair Hasan
Eng 2025, 6(6), 118; https://doi.org/10.3390/eng6060118 - 1 Jun 2025
Viewed by 628
Abstract
Laminated Veneer Lumber (LVL) presents an alternative material for offshore wind turbine towers and blades for an energy sector whose greenhouse gas emissions are substantial. In compliance with AS/NZS 4536, this case study facilitates a specifications’ selection framework that embraces a validated, cost–benefit [...] Read more.
Laminated Veneer Lumber (LVL) presents an alternative material for offshore wind turbine towers and blades for an energy sector whose greenhouse gas emissions are substantial. In compliance with AS/NZS 4536, this case study facilitates a specifications’ selection framework that embraces a validated, cost–benefit determination via life cycle cost analyses (LCCA) specification comparisons. A structured consultation with three key Western Australian offshore industry experts, compliant with a standard phenomenological qualitative approach, further facilitates offshore wind turbine (OWT), LCCA cost comparisons between traditional steel and fibreglass components and LVL wooden components. LVL is found to have a higher capital cost but can generate long-term savings of AUD 30,400 per comparable unit less than Traditional OWT specifications, noting a 5% lower LVL operation and maintenance cost. Where decommissioning recycling facilities exist, OWT LVL specification components are encouraged. This work argues that LVL options uptake in Western Australia (WA) is both practicable and whole-cost effective. Full article
Show Figures

Figure 1

28 pages, 9190 KB  
Article
Development and Optimization of a Novel Semi-Submersible Floater for Floating Wind Turbines in the South China Sea
by Yiming Zhong, Wenze Liu, Wei Shi, Xin Li, Shuaishuai Wang and Constantine Michailides
J. Mar. Sci. Eng. 2025, 13(6), 1073; https://doi.org/10.3390/jmse13061073 - 28 May 2025
Viewed by 785
Abstract
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW [...] Read more.
To mitigate the issue of high-pitch natural frequency in V-shaped floating offshore wind turbines (FOWTs), a novel semi-submersible floater design, termed NewSemi, is proposed in this study. The structural performance of the NewSemi floater is compared with that of two existing 5 MW FOWTs, namely, the V-shaped and Braceless. Frequency domain analysis demonstrates that the NewSemi floater exhibits the most favorable response amplitude operator (RAO) in the pitch direction, along with superior damping characteristics. The result reveals a 16.44% reduction in pitch natural frequency compared to the V-shaped floater. Time-domain analysis under extreme conditions reveals 14.6% and 65.2% reductions in mean surge and pitch motions compared to Braceless FOWT, demonstrating enhanced stability. In addition, compared with the V-shaped FOWT, it exhibits smaller standards and deviations in surge and pitch motion, with reductions of 11.3% and 31.9%, respectively. To accommodate the trend toward larger FOWTs, an optimization procedure for scaling up floater designs is developed in this study. Using a differential evolution algorithm, the optimization process adjusts column diameter and spacing while considering motion response and steel usage constraints. The NewSemi floater is successfully scaled from 5 MW to 10 MW, and the effects of this scaling on motion and structural dynamics are examined. Numerical analysis indicates that as turbine size increases, the motion response under extreme sea conditions decreases, while structural dynamic responses, including blade root torque, rotor thrust, tower-base-bending moment and axial force, significantly increase. The maximum values of blade root torque and tower-base-bending moment increase by 10.4 times and 3.95 times in different load cases, respectively, while the mooring forces remain stable. This study offers practical engineering guidance for the design and optimization of next-generation floating wind turbines, enhancing their performance and scalability in offshore wind energy applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 5246 KB  
Article
Structural Analysis of a Modular High-Concentration PV System Operating at ~1200 Suns
by Taher Maatallah, Mussad Alzahrani, William Cameron, Katie Shanks, Souheil El Alimi, Tapas K. Mallick and Sajid Ali
Machines 2025, 13(6), 468; https://doi.org/10.3390/machines13060468 - 28 May 2025
Viewed by 466
Abstract
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions [...] Read more.
The progression of research in concentration photovoltaic systems parallels the advancement of high-efficiency multi-junction solar cells. To translate the theoretical optical framework into practical experimentation, a modular and structurally validated mechanical configuration for a high-concentration photovoltaic (HCPV) system was developed, incorporating boundary conditions and ensuring full system integration. The system incorporates a modular mechanical architecture, allowing flexible integration and interchangeability of optical components for experimental configurations. The architecture offers a high degree of mechanical flexibility, providing each optical stage with multiple linear and angular adjustment capabilities to support precision alignment. To ensure tracking precision, the system was coupled with a three-dimensional sun tracker capable of withstanding torques up to 60 Nm and supporting a combined payload of 80 kg, including counterbalance. The integration necessitated implementation of a counterbalance mechanism along with comprehensive static load analysis to ensure alignment stability and mechanical resilience. A reinforced triangular support structure, fabricated from stainless steel, was validated through simulation to maintain deformation below 0.1 mm under stress levels reaching 5 MN/m2, confirming its mechanical robustness and reliability. Windage analysis confirmed that the tracker could safely operate at 15 m/s wind speed for tilt angles of 35° (counter-clockwise) and −5° (clockwise), while operation at a 80° (counter-clockwise) tilt is safe up to 12 m/s, ensuring compliance with local environmental conditions. Overall, the validated system demonstrates structural resilience and modularity, supporting experimental deployment and future scalability. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

15 pages, 2833 KB  
Article
Solid and Hollow Pre-Tensioned, Pre-Stressed Concrete Orchard Posts—Computational and Experimental Comparative Analysis
by Jarosław Michałek and Jacek Dudkiewicz
Materials 2025, 18(11), 2525; https://doi.org/10.3390/ma18112525 - 27 May 2025
Viewed by 1890
Abstract
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete [...] Read more.
For several years now, fruit-growers have increasingly often used pre-tensioned, pre-stressed concrete posts for supporting branches of fruit trees and suspending protective nets in order to limit damage to fruits caused by hail, wind, snow, heavy rainfall, insects and birds. Pre-tensioned, pre-stressed concrete posts most often have a trapezoidal cross-section, which is ideally suitable for mass production in a self-supporting non-dismantlable steel mould on a pre-stressing bed. Posts with 70 mm × 75 mm, 80 mm × 85 mm and 90 mm × 95 mm cross-sections are typically produced, whereas 100 mm × 120 mm and 130 mm × 140 mm posts are manufactured to order. Furthermore, it is proposed to produce hollow posts. Such posts are lighter than solid posts, but they require a more complicated production technology. This paper presents selected parts of a comparative computational–experimental analysis of solid and hollow posts. In the Building Structures Laboratory in the Building Structures Department at the Civil Engineering Faculty of the Wrocław University of Science and Technology, experimental tests of pre-stressed concrete orchard posts of 70 mm × 75 mm and 90 mm × 95 mm with solid and hollow cross-sections were carried out on a full scale. The theoretical analysis and research has shown that the resistance to bending, cracking resistance and rigidity of hollow posts (with their cross-sectional outline unchanged) will not significantly differ from those of the currently produced solid posts. At same time, material savings will be achieved. Therefore, the main task is to master the continuous moulding of hollow posts from dense plastic concrete with the simultaneous pulling out of the cores, producing longitudinal hollows in the posts. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Concrete Structures and RC Beams)
Show Figures

Figure 1

Back to TopTop