Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (258)

Search Parameters:
Keywords = steel tube column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 209
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 130
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 - 31 Jul 2025
Viewed by 154
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

18 pages, 5580 KiB  
Article
Experimental Study on the Eccentric Compression Behavior of Stiffened Alkali-Activated Concrete-Filled Steel Tube Short Columns
by Hongjie Wang, Zhixin Peng, Tianqi Wang and Changchun Pei
Buildings 2025, 15(14), 2457; https://doi.org/10.3390/buildings15142457 - 13 Jul 2025
Viewed by 278
Abstract
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, [...] Read more.
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, and eccentricity. The results show that increasing eccentricity reduces load-bearing capacity and stiffness, while stiffeners delay local buckling and improve stability. Based on the experimental findings, the applicability of the GB 50936-2014, Design of Steel and Composite Structures Specification, and the American AISC-LRFD specification to the design of ACFST columns is further evaluated. Corresponding design recommendations are proposed, and a regression-based predictive model for eccentric bearing capacity is developed, showing good agreement with the test results, with prediction errors within 10%.providing technical references for the development of low-carbon, high-performance CFST members. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 8184 KiB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 250
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

33 pages, 6318 KiB  
Review
A Review of External Confinement Methods for Enhancing the Strength of Concrete Columns
by Oliwia Sikora and Krzysztof Adam Ostrowski
Materials 2025, 18(14), 3222; https://doi.org/10.3390/ma18143222 - 8 Jul 2025
Viewed by 315
Abstract
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability [...] Read more.
The growing application of carbon fiber-reinforced polymers (CFRPs) in construction opens new possibilities for replacing traditional materials such as steel, particularly in strengthening and retrofitting concrete structures. CFRP materials offer notable advantages, including high tensile strength, low self-weight, corrosion resistance, and the ability to be tailored to complex geometries. This paper provides a comprehensive review of current technologies used to strengthen concrete columns, with a particular focus on the application of fiber-reinforced polymer (FRP) tubes in composite column systems. The manufacturing processes of FRP composites are discussed, emphasizing the influence of resin types and fabrication methods on the mechanical properties and durability of composite elements. This review also analyzes how factors such as fiber type, orientation, thickness, and application method affect the load-bearing capacity of both newly constructed and retrofitted damaged concrete elements. Furthermore, the paper identifies research gaps concerning the use of perforated CFRP tubes as internal reinforcement components. Considering the increasing interest in innovative column strengthening methods, this paper highlights future research directions, particularly the application of perforated CFRP tubes combined with external composite strengthening and self-compacting concrete (SCC). Full article
Show Figures

Graphical abstract

25 pages, 5206 KiB  
Article
Compressive Behavior of Waste-Steel-Fiber-Reinforced Concrete-Filled Steel Tubes with External Steel Rib Rings
by Jianhua Gao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(13), 2246; https://doi.org/10.3390/buildings15132246 - 26 Jun 2025
Viewed by 302
Abstract
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste [...] Read more.
In order to explore the axial compression performance of external steel rib ring restraint waste-steel-fiber-reinforced concrete-filled steel tubes (ERWCFSTs), 18 short-column axial compression tests were conducted. The effects of the number of rib rings, rib ring spacing, rib ring setting position, and waste steel fiber (WSF) content on the axial compression performance of the columns were analyzed. The results show that the concrete-filled steel tube (CFST) short columns with rib rings were strengthened, the specimens were mainly characterized by drum-shaped failure, and the buckling was concentrated between the rib rings. Without rib ring specimens, the steel tube is unable to resist the rapid increase in lateral expansion, leading to buckling initiation near the bottom of the specimens. The columns with rib rings exhibited a minimum increase of 32.5% and a maximum increase of 53.17% in load-bearing capacity compared to those without rib rings, with an average improvement of 37.78%. The columns achieved the best ductility when the rib ring spacing was 50 mm. When the rib ring spacing remained constant, columns with a number of rib rings no less than the height-to-diameter ratio (H/D) demonstrated more uniform stress distribution and optimal confinement effects. For a fixed number of rib rings, specimens with rib ring spacing between H/8 and H/4 showed significant improvements in both load-bearing capacity and ductility. The confinement effect was better when the rib rings were positioned in the middle of the column height rather than near the ends. The incorporation of WSF resulted in a minimum increase of 2.86% and a maximum increase of 10.49% in column load-bearing capacity, indicating limited enhancement. However, WSF improved the ductility performance of the columns by at least 10%. Combined with theoretical analysis and experimental data, a formula for calculating the bearing capacity of ERWCFSTs was established. Full article
Show Figures

Figure 1

27 pages, 8178 KiB  
Article
Experiment and Finite Element Research on Mechanical Performance of Thin-Walled Steel–Wood Composite Columns Under Eccentric Compression
by Yangfa Zhu, Jianhua Shao, Anxiang Feng, Xianglan Li, Zhanguang Wang, Hongxuan Xu, Jiajun Gao and Boshi Ma
Buildings 2025, 15(12), 2114; https://doi.org/10.3390/buildings15122114 - 18 Jun 2025
Viewed by 374
Abstract
In order to conduct an in-depth and exhaustive investigation into the mechanical properties of steel tubes filled with wood, a thin-walled steel–wood composite column was elaborately designed. The damage progression, failure mode, and mechanical performance of this column under eccentric compression were systematically [...] Read more.
In order to conduct an in-depth and exhaustive investigation into the mechanical properties of steel tubes filled with wood, a thin-walled steel–wood composite column was elaborately designed. The damage progression, failure mode, and mechanical performance of this column under eccentric compression were systematically investigated through both experimental research and finite element simulations. The impacts of different numbers of bolts on the mechanical properties of the composite column were minutely analyzed, and the test results of composite columns were compared with the pure steel pipe column under the same experimental conditions. It was clearly observed that the pure thin-walled steel pipe specimen was highly susceptible to elastic instability under eccentric compression, and the high-strength and high-ductility potential of structural steel was not fully developed. However, after filling with wood and applying bolt restraints, the greater the number of bolts in the specimen of thin-walled steel–wood composite column under the identical eccentricity condition, the higher the ultimate load-bearing capacity. Specifically, the ultimate load-bearing capacity of the columns filled with wood increased by 77.78–114% in comparison with that of the pure steel pipe column. Through a meticulous comparison between the test and finite element analysis results, the error was ascertained to be in the range of 4.9–11.1%. In addition, filling the thin-walled steel tube with wood and restraining it with bolts can effectively enhance the lateral deformation resistance of the specimens, and the reduction rate of lateral deflection exceeded 50%. Moreover, the greater the number of filling bolts, the smaller the strain of components subjected to the eccentric compression occurred, and the better the mechanical properties. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 9265 KiB  
Article
Seismic Behavior and Resilience of an Endplate Rigid Connection for Circular Concrete-Filled Steel Tube Columns
by Yu Gao, Peilin Zhu, Junping Liu and Feng Lou
Buildings 2025, 15(12), 2035; https://doi.org/10.3390/buildings15122035 - 13 Jun 2025
Viewed by 472
Abstract
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite [...] Read more.
A novel endplate bolted rigid joint is proposed in this study for connecting circular concrete-filled steel tube (CCFT) columns to wide-flange (WF) steel beams. The seismic performance and potential failure mechanisms of the proposed joint were investigated through quasi-static cyclic tests and finite element (FE) simulations. This study aims to address several engineering challenges commonly observed in existing joint configurations, including an irrational force-resisting mechanism, complicated detailing and installation, on-site construction difficulties, constraints on beam size, and limited repairability. By optimizing the force transfer path, the new joint effectively reduces the number of critical tension welds, thereby enhancing the ductility and reliability. The experimental results indicate that the joint exhibits adequate flexural strength, stiffness, and ductility, with stable moment–rotation hysteresis loops under cyclic loading. Moreover, full restoration of the joint can be achieved by replacing only the steel beam and endplate, facilitating post-earthquake repair. FE analysis reveals that, under the ultimate bending moment at the beam end, multiple through cracks develop in the high-strength grout—which serves as a key load-transferring component—and significant debonding occurs between the grout and the surrounding steel members. However, due to confinement from adjacent components, these internal cracks do not compromise the overall strength and stiffness of the joint. This research provides an efficient and practical connection solution, along with valuable experimental insights, for the application of CCFT columns in moment-resisting frames located in high seismic zones. Full article
Show Figures

Figure 1

14 pages, 2220 KiB  
Article
Numerical Simulation Analysis of Concrete-Filled Circular CFRP–Steel Middle Long Columns
by Chuheng Zhong, Shuai Wang, Jun Leng and Jinzhi Zhou
Appl. Sci. 2025, 15(11), 6311; https://doi.org/10.3390/app15116311 - 4 Jun 2025
Viewed by 431
Abstract
Based on the research on concrete-filled circular steel tubular columns, the influence of carbon-fiber-reinforced polymers (CFRPs) on the ultimate bearing capacity of concrete-filled steel tubes (CFSTs) was further explored in this paper. Ten different concrete-filled circular CFRP–steel middle long columns were made for [...] Read more.
Based on the research on concrete-filled circular steel tubular columns, the influence of carbon-fiber-reinforced polymers (CFRPs) on the ultimate bearing capacity of concrete-filled steel tubes (CFSTs) was further explored in this paper. Ten different concrete-filled circular CFRP–steel middle long columns were made for an axial compression test, and the influence of the CFRP layers, the concrete strength grades, the steel tube wall thickness, and the slenderness ratio on the ultimate bearing capacity was discussed. Combined with theoretical analysis, the calculation method of ultimate bearing capacity of it was found. The load midspan deflection diagram was obtained by numerical simulation with finite element analysis software ANSYS2021R1, and the test results were compared. The results demonstrate that CFRP layers significantly enhance the ultimate bearing capacity of circular steel tube–CFRP confined concrete columns, with one to three layers increasing the capacity by 42.5%, 69.4%, and 88.4%, respectively, under identical conditions. In comparison, the concrete strength, the steel tube thickness, and the slenderness ratio showed lesser effects (<20% improvement), providing critical support for engineering applications of CFRP-confined circular steel tubular columns. Moreover, the error of ANSYS calculation results is small, which is in line with the test. This is of great significance to verify the correctness of the test of concrete-filled circular CFRP–steel middle long columns. Full article
Show Figures

Figure 1

36 pages, 23108 KiB  
Article
Research on Mechanical Properties of Steel Tube Concrete Columns Reinforced with Steel–Basalt Hybrid Fibers Based on Experiment and Machine Learning
by Bohao Zhang, Xiao Xu and Wenxiu Hao
Buildings 2025, 15(11), 1859; https://doi.org/10.3390/buildings15111859 - 28 May 2025
Viewed by 508
Abstract
In this paper, a new type of combined column, square steel tube hybrid steel–basalt fiber reinforced concrete column (BSFCFST), is proposed for the first time, and a new hybrid machine learning model, NRBO-XGBoost, is proposed to predict the axial compressive load capacity of [...] Read more.
In this paper, a new type of combined column, square steel tube hybrid steel–basalt fiber reinforced concrete column (BSFCFST), is proposed for the first time, and a new hybrid machine learning model, NRBO-XGBoost, is proposed to predict the axial compressive load capacity of BSFCFST. Eleven specimens were designed and fabricated to investigate the axial mechanical properties of BSFCFST. The variables considered include basalt fiber volume content, steel fiber volume content, steel tube wall thickness and specimen length to slenderness ratio. The characteristics of damage modes, load-displacement curves and load-strain curves of the new combined columns were mainly investigated. The results showed that the hybrid fibers improved the ultimate load carrying capacity of the specimen, and the improvement of the ductility was obvious. On the basis of the experiments, a parametric expansion analysis of several structural parameters of the specimen was carried out by using ABAQUS finite element software, and a combined model NRBO-XGBoost, based on the Newton-Raphson optimization algorithm (NRBO), and the advanced machine learning model XGBoost was proposed for the prediction of the BSFCFST’s ultimate carrying capacity. The combined model NRBO-XGBoost was evaluated by comparing it with several prediction methods. The results show that the prediction accuracy of the NRBO-XGBoost model is significantly higher than that of other prediction methods, with R2 = 0.988, which is a good alternative to existing empirical models. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3703 KiB  
Article
Seismic Performance of Recycled Aggregate Concrete-Filled Steel Tube Column–Composite Beam Frames with Column-End Stirrup Confinement
by Zhi Yang, Xingnian Chen, Hongchang Xu, Baoye Hui, Jia Huang, Liping Wang, Said Ikram Sadat and Faxing Ding
Materials 2025, 18(11), 2458; https://doi.org/10.3390/ma18112458 - 23 May 2025
Viewed by 491
Abstract
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. [...] Read more.
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. This study investigates the effect of the recycled aggregate replacement ratio on the seismic performance of concrete-filled steel tube column–composite beam frames. Five finite element models were developed, considering varying recycled aggregate replacement ratios and the presence or absence of column-end stirrup-confined reinforcement. Dynamic response analyses were conducted. The results reveal that replacing natural aggregates with recycled aggregates reduces the stiffness of concrete-filled steel tube columns by weakening the core concrete, negatively impacting seismic performance and increasing structural stiffness damage. Column-end stirrup-confined reinforcement reduces interface slip between the core concrete and the steel tube by directly restraining the core concrete, thereby enhancing the bending stiffness of the concrete-filled steel tube column and improving the seismic performance of the structure. The seismic performance of recycled concrete frames with column-end stirrup-confined reinforcement is superior to that of conventional concrete frames, demonstrating that column-end reinforcement can effectively mitigate the adverse effects of recycled aggregate replacement on the structure’s seismic performance. Full article
(This article belongs to the Special Issue Advances in Modern Cement-Based Materials for Composite Structures)
Show Figures

Figure 1

20 pages, 5610 KiB  
Article
Behavior of Eccentrically Loaded Concrete-Filled Steel Tube Latticed Columns with Corrugated Steel Plates for Industrial Structures
by Xue-Wen Xiao, Ning-Ning Zhang, Xuan Zhao, Jun Liu, Zhao-Hui Hu and Xian Li
Buildings 2025, 15(11), 1788; https://doi.org/10.3390/buildings15111788 - 23 May 2025
Viewed by 258
Abstract
This paper presents a numerical simulation and theoretical analysis of the eccentric compressive performance of a novel composite concrete-filled steel tube (CFST) latticed column with corrugated steel plates for industrial buildings. The influence of multiple parameters was systematically examined, encompassing the eccentricity ratio, [...] Read more.
This paper presents a numerical simulation and theoretical analysis of the eccentric compressive performance of a novel composite concrete-filled steel tube (CFST) latticed column with corrugated steel plates for industrial buildings. The influence of multiple parameters was systematically examined, encompassing the eccentricity ratio, material strengths (steel tube and concrete), corrugated steel plate waveform, and steel lacing tube strength. The results show that eccentric loading causes typical bending failure, with corrugated steel plates providing significant restraining effects, and diagonal lacing tubes optimizing load distribution and bending resistance. Increased eccentricity reduces the load capacity by up to 41.8% but improves the ductility by 50.6%, with benefits ceasing beyond 350 mm of eccentricity. A higher steel strength enhances the load capacity (28.6%) and ductility (14.5%), while a higher concrete strength improves the capacity but reduces the ductility. Longer waveforms in corrugated steel plates improve the stress redistribution, enhancing both capacity (19.1%) and ductility (9.7%). The eccentric compression modification formulas proposed in this study for the latticed column show a reliable calculation accuracy within 11% of simulations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 14258 KiB  
Article
Bearing Capacity Prediction of Cold-Formed Steel Columns with Gene Expression Programming
by Wei Kong and Shouhua Liu
Buildings 2025, 15(10), 1597; https://doi.org/10.3390/buildings15101597 - 9 May 2025
Viewed by 408
Abstract
In recent years, there has been a growing use of cold-formed steel (CFS) structures in the field of civil engineering. The objective of this study is to utilize gene expression programming (GEP) in order to forecast the ultimate bearing capacity of cold-formed steel [...] Read more.
In recent years, there has been a growing use of cold-formed steel (CFS) structures in the field of civil engineering. The objective of this study is to utilize gene expression programming (GEP) in order to forecast the ultimate bearing capacity of cold-formed steel columns. The buckling resistance of built-up back-to-back cold-formed (BCF) thin-walled tube columns under axial compression, and of cold-formed thick-walled steel columns under combined axial compression and bending, is examined in this paper. The data were collected from various studies to develop and verify the proposed model, with training and testing sets of 160 and 14, and 2000 and 500, respectively. The performance of the genetically developed GEP models was evaluated and compared with that of the mechanical models specified in American and Chinese specifications. The GEP models demonstrated significantly better performance compared with that of the code-specified models. The results generated by the GEP models demonstrate stronger alignment with both experimental data and analytical predictions. This study also demonstrates the capability of the GEP models to calculate the ultimate bearing capacity, with the proposed mechanical models being used as a reference for calculations. Full article
(This article belongs to the Special Issue Application of Experiment and Simulation Techniques in Engineering)
Show Figures

Figure 1

22 pages, 11117 KiB  
Article
Study on the Seismic Performance of Steel Tube-Reinforced Concrete Columns After Fire on One Side
by Chong Tang, Yanhong Bao and Yang Yu
Materials 2025, 18(9), 1975; https://doi.org/10.3390/ma18091975 - 26 Apr 2025
Viewed by 513
Abstract
To investigate the seismic performance of steel tube-reinforced concrete (ST-RC) columns after fire on one side, this study employs numerical simulation and theoretical analysis methods. A numerical analysis model of ST-RC columns post-fire is established using ABAQUS to simulate and analyze their seismic [...] Read more.
To investigate the seismic performance of steel tube-reinforced concrete (ST-RC) columns after fire on one side, this study employs numerical simulation and theoretical analysis methods. A numerical analysis model of ST-RC columns post-fire is established using ABAQUS to simulate and analyze their seismic performance under cyclic loading. The characteristics of the hysteresis curves of ST-RC columns after fire on one side under cyclic loading are described in detail. Comparisons are made between the skeleton curves, ductility, stiffness degradation, and energy dissipation capacity of ST-RC columns under three conditions: unexposed to fire, exposed to fire on all sides, and exposed to fire on one side. Finally, multiple influencing factors, including heating time, slenderness ratio, section size, core area ratio, external concrete strength, reinforcement ratio, and load ratio, are selected for parametric analysis of the ductility coefficient, stiffness, and viscous damping coefficient. Mathematical formulas for the ductility coefficient, stiffness, and viscous damping coefficient of ST-RC columns after fire on one side under cyclic loading are derived through regression analysis. The results show that the seismic performance of ST-RC columns is attenuated after fire on one side, and the ductility and initial stiffness of ST-RC columns decreases by 5.62% and 24.69%, respectively, compared with those without fire. The energy dissipation capacity of the ST-RC column increases significantly when it enters the plastic deformation stage under the action of reciprocating load. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop