Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (193)

Search Parameters:
Keywords = steel–timber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5490 KiB  
Technical Note
Double vs. Single Shear in Dowelled Timber Connections Under Fire Conditions, Thermal Analysis
by Elza M. M. Fonseca
Fire 2025, 8(8), 310; https://doi.org/10.3390/fire8080310 - 5 Aug 2025
Abstract
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects [...] Read more.
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects of double and single shear. Several parameters will be examined to determine the load capacity. Furthermore, a numerical thermal analysis using finite element methods will be performed to estimate the temperatures inside the connections and compare them. The results show that the double shear connection in steel-to-timber, with a steel plate of any thickness as the central element and with a higher density of wood material, has better mechanical and fire resistance. Lower temperatures were also observed in this connection type in the wood material and along the length of the dowel. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

19 pages, 4862 KiB  
Article
Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning
by Igor Džolev, Sofija Kekez-Baran and Andrija Rašeta
Buildings 2025, 15(13), 2334; https://doi.org/10.3390/buildings15132334 - 3 Jul 2025
Viewed by 420
Abstract
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. [...] Read more.
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. The most common passive fire protection measure is the application of intumescent coating (IC), a thin film that expands at elevated temperatures and forms an insulating char layer of lower thermal conductivity. This paper focuses on structural steel beams with IPE open-section profiles protected by a water-based IC and subjected to static and standard fire loading. ANSYS 16.0 is used to simulate heat transfer, with thermal conductivity function described by standard multivariate linear regression analysis, followed by mechanical analysis considering degradation of material mechanical properties at elevated temperatures. Simulations are conducted for all IPE profile sizes, with varying initial degrees of utilisation, beam lengths, and coating thicknesses. Results indicated fire resistance times ranging from 24 to 53.5 min, demonstrating a relatively good level of fire resistance even with the minimal IC thickness. Furthermore, artificial neural networks were developed to predict the fire resistance time of steel members with IC using varying numbers of hidden neurons and subset ratios. The model achieved a predictability level of 99.9% upon evaluation. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

31 pages, 3456 KiB  
Review
Advancements in Timber–Steel Hybridisation: A Review on Techniques, Applications, and Structural Performances
by Abdulaziz Abdulmalik, Benoit P. Gilbert, Hong Guan, Tuan Ngo and Alex Remennikov
Buildings 2025, 15(13), 2252; https://doi.org/10.3390/buildings15132252 - 26 Jun 2025
Viewed by 476
Abstract
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key [...] Read more.
Timber–steel hybridisation offers a balanced approach by capitalising on the high strength-to-weight ratio and sustainability of the timber while also benefiting from the high stiffness and ductility of the steel, contributing to the improved performance of hybrid structural elements. This paper reviews key aspects of timber–steel hybridisation, with a particular emphasis on the connection methods between timber and steel, including adhesive bonding and mechanical fastening, as well as the different types of reinforcement configurations. In particular, this review covers two main types of adhesives used in timber–steel hybrid systems, namely, epoxy and polyurethane, and two primary types of mechanical fasteners, namely, bolts and screws. The mechanical performances of all hybridisation methods are reviewed. The importance of surface treatments, such as shot blasting for steel and mechanical abrasion for timber, is also discussed as a key factor in optimising adhesive bonds. Furthermore, various reinforcement configurations, including top, bottom, side, and embedded arrangements, are evaluated for their impact on the structural efficiency and fire performance. To support this evaluation, calculations have been carried out to illustrate how different reinforcement configurations influence the stress distribution in timber–steel hybrid beams. By providing detailed insights into these critical aspects, this paper serves as a valuable decision-making tool, offering guidance for researchers and industry professionals for selecting the appropriate bonding techniques and configurations to meet specific structural objectives and advance sustainable construction practices. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 3485 KiB  
Article
Experimental Evaluation of the Effects of SRP Reinforcement on the Flexural Behavior of CLT Panels
by Giovanna Concu, Daniel Meloni and Monica Valdes
Technologies 2025, 13(7), 271; https://doi.org/10.3390/technologies13070271 - 26 Jun 2025
Viewed by 527
Abstract
Cross-laminated timber (CLT) is a high-performance engineered timber that is very widely adopted. In several conditions, such as strength improvement at vulnerable connection points, local stress concentrations, existing structure retrofitting, and others, it is desirable to enhance the mechanical performance of CLT by [...] Read more.
Cross-laminated timber (CLT) is a high-performance engineered timber that is very widely adopted. In several conditions, such as strength improvement at vulnerable connection points, local stress concentrations, existing structure retrofitting, and others, it is desirable to enhance the mechanical performance of CLT by applying additional reinforcement systems. This paper reports on an experimental campaign aimed at assessing the mechanical behavior of CLT panels reinforced with steel-reinforced polymers (SRPs). Twenty Sardinian Maritime Pine CLT panels, including unreinforced, SRP single- and double-layer reinforced panels, have been subjected to bending tests to determine the bending strength, stiffness, failure mechanism and enhancement of the reinforced panels compared to the unreinforced ones. In addition, an analytical model has been proposed to understand the mechanical behavior of SRP-reinforced CLT panels. The results show that SRP reinforcement significantly increases the strength and stiffness and influences the failure mechanism of CLT panels. The strength improvement induced by the reinforcement, however, is not proportional to its amount, since the increase due to the SRP double layer is only slightly higher than that due to the SRP single layer. The stiffness enhancement is less relevant, as expected. Attention has been paid to the possible shear failures of reinforced panels. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

25 pages, 8853 KiB  
Article
Experimental and Finite Element Study on Wooden Joints Strengthened by Detachable Steel Sleeves
by Jiajun Gao, Jianhua Shao, Yong Wang, Anxiang Feng, Zhanguang Wang, Hongxuan Xu, Yangfa Zhu and Boshi Ma
Buildings 2025, 15(12), 2139; https://doi.org/10.3390/buildings15122139 - 19 Jun 2025
Viewed by 305
Abstract
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious [...] Read more.
We designed detachable steel sleeves to reinforce wooden joints and improve their integrity under earthquake action and investigated their mechanical properties. Monotonic bending tests were performed on a half-tenon pure wooden joint and a joint strengthened by a detachable steel sleeve. More obvious tenon pulling-out failure was observed in the pure wood joint; in comparison, only slight extrusion fracture of wooden beams and extrusion deformation of steel sleeves occurred in the wood joint reinforced by a detachable steel sleeve. Our test results showed that the initial rotational stiffness of the strengthened joint, JG1, was increased by 495.4% compared with that of the unstrengthened joint, JG0. The yield bending moment increased by 425.9%, and the ultimate bending moment increased by 627.5%, which indicated that the mechanical performance was significantly improved when the joint was reinforced by a detachable steel sleeve. Numerical simulations of different components were performed with finite element analysis software to analyze the mechanical performance of the reinforced joint. It was found that the stiffness and ultimate flexural performance of the joint could be increased by setting stiffeners on the steel sleeve and connecting the wooden column with self-tapping screws. The results of the tests were compared with those obtained through finite element analysis, and a high degree of accuracy was achieved, which could provide a theoretical basis for the reinforcement of timber structural buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 2245 KiB  
Review
Life Cycle Assessment with Carbon Footprint Analysis in Glulam Buildings: A Review
by Ruijing Liu, Lihong Yao, Yingchun Gong and Zhen Wang
Buildings 2025, 15(12), 2127; https://doi.org/10.3390/buildings15122127 - 19 Jun 2025
Viewed by 776
Abstract
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from [...] Read more.
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from representative countries across six continents show that wood buildings, compared to traditional materials, have a reduced carbon footprint. The geographical distribution of forest resources significantly influences the carbon footprint of glulam production. Europe and North America demonstrate optimal performance metrics (e.g., carbon sequestration), attributable to advanced technology and investment in long-term sustainable forest management. Our review research shows the lowest glulam carbon footprints (28–70% lower than traditional materials) due to clean energy and sustainable practices. In contrast, Asia and Africa exhibit systemic deficits, driven by resource scarcity, climatic stressors, and land-use pressures. South America and Oceania display transitional dynamics, with heterogeneous outcomes influenced by localized deforestation trends and conservation efficacy. Glulam buildings outperformed concrete and steel across 11–18 environmental categories, with carbon storage offsetting 30–47% of emissions and energy mixes cutting operational impacts by up to 67%. Circular strategies like recycling and prefabrication reduced end-of-life emissions by 12–29% and cut construction time and costs. Social benefits included job creation (e.g., 1 million in the EU) and improved well-being in wooden interiors. To further reduce carbon footprint disparities, this study emphasizes sustainable forest management, longer building lifespans, optimized energy mixes, shorter transport distances, advanced production technologies, and improved recycling systems. Additionally, the circular economy and social benefits of glulam buildings, such as reduced construction costs, value recovery, and job creation, are highlighted. In the future, prioritizing equitable partnerships and enhancing international exchanges of technical expertise will facilitate the adoption of sustainable practices in glulam buildings and advance decarbonization goals in the global building sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 4361 KiB  
Article
Building Sustainable Futures: Evaluating Embodied Carbon Emissions and Biogenic Carbon Storage in a Cross-Laminated Timber Wall and Floor (Honeycomb) Mass Timber Building
by Aayusha Chapagain and Paul Crovella
Sustainability 2025, 17(12), 5602; https://doi.org/10.3390/su17125602 - 18 Jun 2025
Viewed by 643
Abstract
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to [...] Read more.
The building sector significantly contributes to global energy consumption and carbon emissions, primarily due to the extensive use of carbon-intensive materials such as concrete and steel. Mass timber construction, particularly using cross-laminated timber (CLT), offers a promising low-carbon alternative. This study aims to calculate the embodied carbon emissions and biogenic carbon storage of a CLT-based affordable housing project, 340+ Dixwell in New Haven, Connecticut. This project was designed using a honeycomb structural system, where mass timber floors and roofs are supported by mass timber-bearing walls. The authors are not aware of a prior study that has evaluated the life cycle impacts of honeycomb mass timber construction while considering Timber Use Intensity (TUI). Unlike traditional post-and-beam systems, the honeycomb design uses nearly twice the amount of timber, resulting in higher carbon sequestration. This makes the study significant from a sustainability perspective. This study follows International Standard Organization (ISO) standards 14044, 21930, and 21931 and reports the results for both lifecycle stages A1–A3 and A1–A5. The analysis covers key building components, including the substructure, superstructure, and enclosure, with timber, concrete, metals, glass, and insulation as the materials assessed. Material quantities were extracted using Autodesk Revit®, and the life cycle assessment (LCA) was evaluated using One Click LCA (2015)®. The A1 to A3 stage results of this honeycomb building revealed that, compared to conventional mass timber housing structures such as Adohi Hall and Heartwood, it demonstrates the lowest embodiedf carbon emissions and the highest biogenic carbon storage per square foot. This outcome is largely influenced by its higher Timber Use Intensity (TUI). Similarly, the A1-A5 findings indicate that the embodied carbon emissions of this honeycomb construction are 40% lower than the median value for other multi-family residential buildings, as assessed using the Carbon Leadership Forum (CLF) Embodied Carbon Emissions Benchmark Study of various buildings. Moreover, the biogenic carbon storage per square foot of this building is 60% higher than the average biogenic carbon storage of reference mass timber construction types. Full article
Show Figures

Figure 1

23 pages, 1759 KiB  
Article
A Practical Framework for the Design of Low-Carbon and Circular Building Structures
by Kaveh Andisheh, Amir ShahMohammadi and Troy Coyle
Sustainability 2025, 17(12), 5337; https://doi.org/10.3390/su17125337 - 9 Jun 2025
Viewed by 473
Abstract
The construction sector is responsible for nearly 40% of annual global carbon emissions. This includes approximately 28% from operational carbon, 23% from transportation, and 11% from building and infrastructure materials. Following a review of the literature and a survey, a Low-Carbon Circular Design [...] Read more.
The construction sector is responsible for nearly 40% of annual global carbon emissions. This includes approximately 28% from operational carbon, 23% from transportation, and 11% from building and infrastructure materials. Following a review of the literature and a survey, a Low-Carbon Circular Design Framework was developed. The Framework was piloted to develop specific design guidance for low-rise steel, steel–concrete, and steel–timber hybrid structures. The specific guidance is targeted at industry experts, researchers, and building designers. Additionally, a Low-carbon Circular Design Hierarchy and associated flowchart was proposed. The effectiveness of the Framework, specific guidance, and proposed design flowchart was evaluated through a real-world case study involving a three-story commercial building typical of this typology in Aotearoa New Zealand. The results demonstrated that a 57% reduction in carbon using the proposed hierarchy is readily achievable within the Aotearoa New Zealand context. Full article
Show Figures

Figure 1

30 pages, 6120 KiB  
Review
Review of Experimental Testing and Fire Performance of Mass Timber Structures
by Sumita Maharjan, Tharaka Gunawardena and Priyan Mendis
J. Compos. Sci. 2025, 9(6), 290; https://doi.org/10.3390/jcs9060290 - 5 Jun 2025
Viewed by 746
Abstract
Mass timber construction is gaining popularity in mid-rise and tall buildings due to its sustainability, aesthetics, versatile prefabrication, light weight, and faster construction time compared to conventional building materials such as concrete and steel. One of the challenges with timber construction is a [...] Read more.
Mass timber construction is gaining popularity in mid-rise and tall buildings due to its sustainability, aesthetics, versatile prefabrication, light weight, and faster construction time compared to conventional building materials such as concrete and steel. One of the challenges with timber construction is a potential fire hazard, and the risk is even aggravated in taller buildings due to the increased evacuation period. Several researchers have identified and reported important parameters that will have direct influence over mass timber fire performance behaviour. However, the current findings from the literature do not provide a correlation between the key parameters and the fire performance behaviour. This paper presents a review of experimental fire testing of mass timber structures and analyses the fire performance results output obtained from the experimental testing. This paper attempts to identify several key parameters that influence the fire performance behaviour of mass timber structures, such as peak temperature, charring rate and decay behaviour. The correlation between the key parameters and the fire performance behaviour of mass timber structures will enhance in developing a rational model to determine the time to reach the fire growth, peak temperature, charring behaviour, structural integrity (strength and stiffness reduction) and decay behaviour of the exposed timber. Full article
Show Figures

Figure 1

11 pages, 3733 KiB  
Article
Effect of Wet–Dry Cycles on the Shear Behavior of Compressed Wood Nails Compared to Steel Nails
by Wei Fan, Xinrui Zhu, Xinyu Hu and Hongguang Liu
Forests 2025, 16(6), 940; https://doi.org/10.3390/f16060940 - 3 Jun 2025
Viewed by 399
Abstract
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. [...] Read more.
The corrosion-induced strength degradation of steel nails poses a critical challenge to the structural integrity of timber connection joints, particularly in hygrothermal environments. Compressed wood nails exhibit hygroscopic expansion characteristics, demonstrating their potential as a sustainable alternative to steel nails in structural connections. However, systematic investigations on their shear performance under cyclic hygrothermal conditions remain limited. This study comparatively analyzed the shear behavior evolution of compressed wood nail and galvanized steel nail connections under wet-dry cycles. Distinct failure mechanisms were observed: wood nail connections exhibited characteristic brittle fracture patterns, whereas steel nail connections demonstrated ductile failure through pull-out deformation with nail bending. Notably, compressed wood nails displayed superior environmental stability, with significantly lower degradation rates in terms of load-bearing capacity (2.8% vs. 22.3%) and stiffness (16.3% vs. 38.0%) than their steel counterparts under identical hygrothermal exposure. These findings provide critical design references and data support for implementing wood-based fasteners in moisture-prone engineering applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

33 pages, 8892 KiB  
Article
Performance Analysis of Hybrid Steel–Concrete and Timber–Concrete Composite Pile Systems in Variable Density Sandy Soils Using Experimental and Numerical Insights
by Ibrahim Haruna Umar, Müge Elif Fırat, Hang Lin, Hamza Tijjani Shehu and Rihong Cao
Appl. Sci. 2025, 15(11), 5868; https://doi.org/10.3390/app15115868 - 23 May 2025
Viewed by 489
Abstract
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance [...] Read more.
Hybrid composite pile foundations face critical challenges in terms of optimizing load transfer mechanisms across variable soil densities, particularly in regions like Kano, Nigeria, characterized by loose to dense sandy deposits and fluctuating groundwater levels. This study addresses the need for sustainable, high-performance foundation systems that are adaptable to diverse geotechnical conditions. The research evaluates the mechanical behavior of steel–concrete and timber–concrete hybrid piles, quantifying skin friction dynamics, combining eight (8) classical ultimate bearing capacity (UBC) methods (Vesic, Hansen, Coyle and Castello, etc.) with numerical simulations, and assessing load distribution across sand relative densities (10%, 35%, 50%, 75%, 95%). Laboratory investigations included the geotechnical characterization of Wudil River well-graded sand (SW), direct shear tests, and interface shear tests on composite materials. Relative densities were calibrated using electro-pneumatic compaction. Increasing Dr from 10% to 95% reduced void ratios (0.886–0.476) and permeability (0.01–0.0001 cm/s) while elevating dry unit weight (14.1–18.0 kN/m3). Skin friction angles rose from 12.8° (steel–concrete) to 37.4° (timber–concrete) at Dr = 95%, with timber interfaces outperforming steel by 7.4° at Dr = 10%. UBC for steel–concrete piles spanned from 353.1 kN (Vesic, Dr = 10%) to 14,379 kN (Vesic, Dr = 95%), while timber–concrete systems achieved 9537.5 kN (Hansen, Dr = 95%). PLAXIS simulations aligned closely with Vesic’s predictions (14,202 vs. 14,379 kN). The study underscores the significance of soil density, material interfaces, and method selection in foundation design. Full article
(This article belongs to the Special Issue Advances and Application of Construction Materials)
Show Figures

Graphical abstract

21 pages, 3530 KiB  
Article
Crack Propagation Behavior Modeling of Bonding Interface in Composite Materials Based on Cohesive Zone Method
by Yulong Zhu, Yafen Zhang and Lu Xiang
Buildings 2025, 15(10), 1717; https://doi.org/10.3390/buildings15101717 - 19 May 2025
Viewed by 394
Abstract
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of [...] Read more.
Wood, steel, and concrete constitute the three predominant structural materials employed in contemporary commercial and residential construction. In composite applications, bond interfaces between these materials represent critical structural junctures that frequently exhibit a reduced load-bearing capacity, rendering them susceptible to the initiation of cracks. To elucidate the fracture propagation mechanisms at composite material interfaces, this study implements the cohesive zone method (CZM) to numerically simulate interfacial cracking behavior in two material systems: glued laminated timber (GLT) and reinforced concrete (RC). The adopted CZM framework utilizes a progressive delamination approach through cohesive elements governed by a bilinear traction–separation constitutive law. This methodology enables the simulation of interfacial failure through three distinct fracture modes: mode I (pure normal separation), mode II (pure in-plane shear), and mixed-mode (mode m) failure. Numerical models were developed for GLT beams, RC beams, and RC slab structures to investigate the propagation of interfacial cracks under monotonic loading conditions. The simulation results demonstrate strong agreement with experimental cracking observations in GLT structures, validating the CZM’s efficacy in characterizing both mechanical behavior and crack displacement fields. The model successfully captures transverse tensile failure (mode I) parallel to wood grain, longitudinal shear failure (mode II), and mixed-mode failure (mode m) in GLT specimens. Subsequent application of the CZM to RC structural components revealed a comparable predictive accuracy in simulating the interfacial mechanical response and crack displacement patterns at concrete composite interfaces. These findings collectively substantiate the robustness of the proposed CZM framework in modeling complex fracture phenomena across diverse construction material systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

25 pages, 6098 KiB  
Article
Assessment of Sustainable Hybrid Formwork Systems Using Life Cycle Assessment and the Wear-Out Coefficient—A Case Study
by Dheepika Baskaran, Umarani Chockkalingam and Renuka Senthil Muthalvan
Buildings 2025, 15(10), 1630; https://doi.org/10.3390/buildings15101630 - 12 May 2025
Cited by 1 | Viewed by 984
Abstract
The construction sector is swiftly evolving toward more sustainable practices. Life cycle assessment (LCA) is essential for assessing the environmental impact of construction materials. A crucial factor in this context is the wear-out coefficient (WOC), which indicates a material’s reusability and directly affects [...] Read more.
The construction sector is swiftly evolving toward more sustainable practices. Life cycle assessment (LCA) is essential for assessing the environmental impact of construction materials. A crucial factor in this context is the wear-out coefficient (WOC), which indicates a material’s reusability and directly affects the amount of material used during a project’s life cycle. This study contrasts conventional timber formwork with alternative materials, including aluminum, steel, plywood, plastic, and various hybrid systems. The environmental consequences are assessed throughout several life cycle stages—manufacturing, transportation, usage, and disposal—utilizing a 3D building information modeling (BIM)-integrated life cycle assessment (LCA) framework. This method facilitates adherence to green building standards and corresponds with the Sustainable Development Goals (SDGs). Hybrid Option 2 (timber–aluminum–steel) and Hybrid Option 4 (steel–plastic–aluminum) distinguish themselves as superior choices, integrating environmental efficacy with resilience. Aluminum exhibits the lowest WOC (0.13), signifying its exceptional reusability and lack of environmental impact. The results highlight the need to incorporate BIM and LCA in formwork material planning to improve sustainability, prolong the service life, and maximize resource efficiency in construction. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 6579 KiB  
Article
Optimising Embodied Carbon in Axial Tension Piles: A Comparative Study of Concrete, Steel, and Timber Piles Using a Hybrid Genetic Approach
by Kareem Abushama, Will Hawkins, Loizos Pelecanos and Tim Ibell
Materials 2025, 18(9), 2160; https://doi.org/10.3390/ma18092160 - 7 May 2025
Viewed by 464
Abstract
The construction industry is a major contributor to the global climate crisis, prompting increasing interest in minimising the embodied carbon of structures, whether through material production regulations or the optimisation of structural elements. While a wide body of literature addresses the reduction of [...] Read more.
The construction industry is a major contributor to the global climate crisis, prompting increasing interest in minimising the embodied carbon of structures, whether through material production regulations or the optimisation of structural elements. While a wide body of literature addresses the reduction of embodied carbon in superstructures, limited attention has been devoted to the optimisation of foundations, particularly piles. This research introduces a hybrid genetic algorithm optimisation tool designed to minimise the embodied carbon of tension piles in different soil conditions. Six different pile types are analysed: solid and hollow concrete piles, steel pipes, universal column (UC) sections, and timber piles in both square and circular forms. The optimal design parameters for each pile type on undrained clay and loose sand are presented and compared. The results demonstrate the potential for reducing the embodied carbon of tension piles when utilising optimised designs. Finally, a case study involving an 8-metre-high cross-road signpost is presented, illustrating the practical application of the proposed optimisation algorithm for reducing embodied carbon in future designs. Full article
Show Figures

Figure 1

21 pages, 4870 KiB  
Article
Exploring the Impact of Span Length on Environmental Performance: A Comparative Study
by Giovanni Perrucci and Dario Trabucco
Sustainability 2025, 17(9), 4183; https://doi.org/10.3390/su17094183 - 6 May 2025
Viewed by 565
Abstract
Architects and building designers are pivotal in mitigating climate change by shaping the environmental footprint of buildings from their inception, with life cycle assessment (LCA) serving as a crucial tool for quantifying these impacts. Given that structural systems contribute significantly to embodied carbon, [...] Read more.
Architects and building designers are pivotal in mitigating climate change by shaping the environmental footprint of buildings from their inception, with life cycle assessment (LCA) serving as a crucial tool for quantifying these impacts. Given that structural systems contribute significantly to embodied carbon, accounting for approximately 24% of a building’s life cycle emissions, this research investigates the relationship between structural span length—a key design factor influencing material choices and construction methods—and overall environmental performance. Through a scenario-based analysis employing building information modeling (BIM) and whole building life cycle assessment (WBLCA) tools, this study evaluates various building configurations to reveal that in long-span scenarios, steel demonstrates a lower environmental impact compared to timber. This finding offers a novel, quantifiable insight for architects and designers to assess and optimize building designs, particularly in the context of emerging architectural trends featuring longer spans, ultimately contributing to more sustainable building practices. Full article
Show Figures

Figure 1

Back to TopTop