Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,023)

Search Parameters:
Keywords = state of market

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2504 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
22 pages, 1177 KiB  
Article
An Empirical Study on the Impact of Financial Technology on the Profitability of China’s Listed Commercial Banks
by Xue Yuan, Chin-Hong Puah and Dayang Affizzah binti Awang Marikan
J. Risk Financial Manag. 2025, 18(8), 440; https://doi.org/10.3390/jrfm18080440 - 6 Aug 2025
Abstract
This paper selects 50 listed commercial banks in China from 2012 to 2023 as research samples, and employs the fixed effects model and Hansen’s threshold regression method to systematically examine the impact mechanism and non-linear characteristics of FinTech development on the profitability of [...] Read more.
This paper selects 50 listed commercial banks in China from 2012 to 2023 as research samples, and employs the fixed effects model and Hansen’s threshold regression method to systematically examine the impact mechanism and non-linear characteristics of FinTech development on the profitability of commercial banks. The key findings are summarized as follows: (1) FinTech significantly undermines the overall profitability of commercial banks by reshaping the competitive landscape of the industry and intensifying the technology substitution effect. This is primarily reflected in the reduction in traditional interest income and the erosion of market share in intermediary business. (2) Heterogeneity analysis indicates that large state-owned banks and joint-stock banks experience more pronounced negative impacts compared to small and medium-sized banks. (3) Additional research findings reveal a significant single-threshold effect between FinTech and bank profitability, with a critical value of 4.169. When the development level of FinTech surpasses this threshold, its inhibitory effect diminishes substantially, suggesting that after achieving a certain degree of technological integration, commercial banks may partially alleviate external competitive pressures through synergistic effects. This study offers crucial empirical evidence and theoretical support for commercial banks to develop differentiated technology strategies and for regulatory authorities to design dynamically adaptable policy frameworks. Full article
(This article belongs to the Section Financial Technology and Innovation)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
28 pages, 346 KiB  
Review
Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States
by Sushil Grewal and Debalina Saha
Horticulturae 2025, 11(8), 926; https://doi.org/10.3390/horticulturae11080926 (registering DOI) - 6 Aug 2025
Abstract
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed [...] Read more.
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed infestations, herbicide resistance development, and the limited availability of selective herbicides for ornamental crops in the United States. This review synthesizes current chemical weed control tactics, focusing not only on both preemergence and postemergence herbicides commonly used in ornamental nurseries, but also organic alternatives and integrated weed management (IWM) approaches as complementary strategies by evaluating their effectiveness, crop safety, and usage. There is a critical need for research in the areas of alternative chemical options such as insecticides, miticides (e.g., Zerotol and Tetra Curb Max), and organic products for liverwort control in greenhouses. Although essential oils and plant-based extracts show some potential, their effectiveness and practical use remain largely unexplored. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Graphical abstract

23 pages, 3337 KiB  
Article
Imbalance Charge Reduction in the Italian Intra-Day Market Using Short-Term Forecasting of Photovoltaic Generation
by Cristina Ventura, Giuseppe Marco Tina and Santi Agatino Rizzo
Energies 2025, 18(15), 4161; https://doi.org/10.3390/en18154161 - 5 Aug 2025
Abstract
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability [...] Read more.
In the Italian intra-day electricity market (MI-XBID), where energy positions can be adjusted up to one hour before delivery, imbalance charges due to forecast errors from non-programmable renewable sources represent a critical issue. This work focuses on photovoltaic (PV) systems, whose production variability makes them particularly sensitive to forecast accuracy. To address these challenges, a comprehensive methodology for assessing and mitigating imbalance penalties by integrating a short-term PV forecasting model with a battery energy storage system is proposed. Unlike conventional approaches that focus exclusively on improving statistical accuracy, this study emphasizes the economic and regulatory impact of forecast errors under the current Italian imbalance settlement framework. A hybrid physical-artificial neural network is developed to forecast PV power one hour in advance, combining historical production data and clear-sky irradiance estimates. The resulting imbalances are analyzed using regulatory tolerance thresholds. Simulation results show that, by adopting a control strategy aimed at maintaining the battery’s state of charge around 50%, imbalance penalties can be completely eliminated using a storage system sized for just over 2 equivalent hours of storage capacity. The methodology provides a practical tool for market participants to quantify the benefits of storage integration and can be generalized to other electricity markets where tolerance bands for imbalances are applied. Full article
(This article belongs to the Special Issue Advanced Forecasting Methods for Sustainable Power Grid: 2nd Edition)
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Viewed by 40
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Viewed by 63
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 208
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 236
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

20 pages, 2272 KiB  
Article
An Important Step for the United States: Efforts to Establish the First Official Trade and Diplomatic Relations with the Ottoman Empire During the Process of Developing Its Economy
by Ebru Güher
Histories 2025, 5(3), 37; https://doi.org/10.3390/histories5030037 - 2 Aug 2025
Viewed by 276
Abstract
This study examines how the newly established United States pursued economic development through diplomatic and commercial initiatives with the Ottoman Empire, navigating regional powers and the era’s political-economic conditions. It analyzes using American archival sources how America endeavored to establish commercial and diplomatic [...] Read more.
This study examines how the newly established United States pursued economic development through diplomatic and commercial initiatives with the Ottoman Empire, navigating regional powers and the era’s political-economic conditions. It analyzes using American archival sources how America endeavored to establish commercial and diplomatic relations with the Ottoman Empire in the Mediterranean and Black Sea regions, which it viewed as critical markets in the late 18th and early 19th centuries, before signing any formal agreement. The research tracks how these early efforts laid foundations for what would become one of the world’s largest economies. The study analyzes America’s diplomatic efforts to secure an agreement with the Ottoman Empire prior to the 7 May 1830 trade agreement—which laid the foundation for bilateral relations—alongside the reactions of regional powers, the prevailing conditions of the period, and the Ottoman administration’s reluctance due to various factors, based on U.S. archival sources that, to the best of our knowledge, have not previously been utilized in existing studies. Full article
(This article belongs to the Section Political, Institutional, and Economy History)
Show Figures

Figure 1

25 pages, 904 KiB  
Review
Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
by Juan Carlos Ferrer Romero, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez and Mihaela Badea
Processes 2025, 13(8), 2452; https://doi.org/10.3390/pr13082452 - 2 Aug 2025
Viewed by 344
Abstract
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of [...] Read more.
Mushrooms are eukaryotic organisms with absorptive heterotrophic nutrition, capable of feeding on organic matter rich in cellulose and lignocellulose. Since ancient times, they have been considered allies and, in certain cultures, they were seen as magical beings or food of the gods. Of the great variety of edible mushrooms identified worldwide, less than 2% are traded on the market. Although mushrooms have been valued for their multiple nutritional and healing benefits, some cultures perceive them as toxic and do not accept them in their culinary practices. Despite the existing skepticism, several researchers are promoting the potential of edible mushrooms. There are two main methods of mushroom cultivation: solid-state fermentation and submerged fermentation. The former is the most widely used and simplest, since the fungus grows in its natural environment; in the latter, the fungus grows suspended without developing a fruiting body. In addition, submerged fermentation is easily monitored and scalable. Both systems are important and have their limitations. This article discusses the main methods used to increase the performance of submerged fermentation with emphasis on the modes of operation used, types of bioreactors and application of morphological bioengineering of filamentous fungi, and especially the use of intelligent automatic control technologies and the use of non-invasive monitoring in fermentation systems thanks to the development of machine learning (ML), neural networks, and the use of big data, which will allow more accurate decisions to be made in the fermentation of filamentous fungi in submerged environments with improvements in production yields. Full article
Show Figures

Figure 1

34 pages, 434 KiB  
Article
Mobile Banking Adoption: A Multi-Factorial Study on Social Influence, Compatibility, Digital Self-Efficacy, and Perceived Cost Among Generation Z Consumers in the United States
by Santosh Reddy Addula
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 192; https://doi.org/10.3390/jtaer20030192 - 1 Aug 2025
Viewed by 368
Abstract
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies [...] Read more.
The introduction of mobile banking is essential in today’s financial sector, where technological innovation plays a critical role. To remain competitive in the current market, businesses must analyze client attitudes and perspectives, as these influence long-term demand and overall profitability. While previous studies have explored general adoption behaviors, limited research has examined how individual factors such as social influence, lifestyle compatibility, financial technology self-efficacy, and perceived usage cost affect mobile banking adoption among specific generational cohorts. This study addresses that gap by offering insights into these variables, contributing to the growing literature on mobile banking adoption, and presenting actionable recommendations for financial institutions targeting younger market segments. Using a structured questionnaire survey, data were collected from both users and non-users of mobile banking among the Gen Z population in the United States. The regression model significantly predicts mobile banking adoption, with an intercept of 0.548 (p < 0.001). Among the independent variables, perceived cost of usage has the strongest positive effect on adoption (B=0.857, β=0.722, p < 0.001), suggesting that adoption increases when mobile banking is perceived as more affordable. Social influence also has a significant positive impact (B=0.642, β=0.643, p < 0.001), indicating that peer influence is a central driver of adoption decisions. However, self-efficacy shows a significant negative relationship (B=0.343, β=0.339, p < 0.001), and lifestyle compatibility was found to be statistically insignificant (p=0.615). These findings suggest that reducing perceived costs, through lower fees, data bundling, or clearer communication about affordability, can directly enhance adoption among Gen Z consumers. Furthermore, leveraging peer influence via referral rewards, Partnerships with influencers, and in-app social features can increase user adoption. Since digital self-efficacy presents a barrier for some, banks should prioritize simplifying user interfaces and offering guided assistance, such as tutorials or chat-based support. Future research may employ longitudinal designs or analyze real-life transaction data for a more objective understanding of behavior. Additional variables like trust, perceived risk, and regulatory policies, not included in this study, should be integrated into future models to offer a more comprehensive analysis. Full article
17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 202
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

43 pages, 2466 KiB  
Article
Adaptive Ensemble Learning for Financial Time-Series Forecasting: A Hypernetwork-Enhanced Reservoir Computing Framework with Multi-Scale Temporal Modeling
by Yinuo Sun, Zhaoen Qu, Tingwei Zhang and Xiangyu Li
Axioms 2025, 14(8), 597; https://doi.org/10.3390/axioms14080597 - 1 Aug 2025
Viewed by 209
Abstract
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional [...] Read more.
Financial market forecasting remains challenging due to complex nonlinear dynamics and regime-dependent behaviors that traditional models struggle to capture effectively. This research introduces the Adaptive Financial Reservoir Network with Hypernetwork Flow (AFRN–HyperFlow) framework, a novel ensemble architecture integrating Echo State Networks, temporal convolutional networks, mixture density networks, adaptive Hypernetworks, and deep state-space models for enhanced financial time-series prediction. Through comprehensive feature engineering incorporating technical indicators, spectral decomposition, reservoir-based representations, and flow dynamics characteristics, the framework achieves superior forecasting performance across diverse market conditions. Experimental validation on 26,817 balanced samples demonstrates exceptional results with an F1-score of 0.8947, representing a 12.3% improvement over State-of-the-Art baseline methods, while maintaining robust performance across asset classes from equities to cryptocurrencies. The adaptive Hypernetwork mechanism enables real-time regime-change detection with 2.3 days average lag and 95% accuracy, while systematic SHAP analysis provides comprehensive interpretability essential for regulatory compliance. Ablation studies reveal Echo State Networks contribute 9.47% performance improvement, validating the architectural design. The AFRN–HyperFlow framework addresses critical limitations in uncertainty quantification, regime adaptability, and interpretability, offering promising directions for next-generation financial forecasting systems incorporating quantum computing and federated learning approaches. Full article
(This article belongs to the Special Issue Financial Mathematics and Econophysics)
Show Figures

Figure 1

11 pages, 4743 KiB  
Communication
The Remarkable Increase in the Invasive Autumn Fern, Dryopteris erythrosora, One of the World’s Most Marketed Ferns, in Eastern North America
by Robert W. Pemberton and Eduardo Escalona
Plants 2025, 14(15), 2369; https://doi.org/10.3390/plants14152369 - 1 Aug 2025
Viewed by 211
Abstract
Autumn fern, Dryopteris erythrosora, is the most marketed temperate fern in the world. The rapid increase and spread of this recently naturalized fern in North America was determined and mapped using 76 herbarium specimen records and 2553 Research Grade iNaturalist posts. In [...] Read more.
Autumn fern, Dryopteris erythrosora, is the most marketed temperate fern in the world. The rapid increase and spread of this recently naturalized fern in North America was determined and mapped using 76 herbarium specimen records and 2553 Research Grade iNaturalist posts. In 2008, it was recorded in two states, but by 2025, it was found in 25 states in the eastern United States and Ontario, Canada. At the end of 2017, there had been only 23 iNaturalist posts, but this grew to 511 by the end of 2020 and 2553 by May 2025. The great increase in the number of iNaturalist posts is thought to be due to the real geographic spread and an actual increase in the abundance of the fern, as well as recognition of the fern by iNaturalists, and the increase in the number of iNaturalists. The spread and great increase are probably related to the high level of marketing, which introduces plants to the environment, and to biological characteristics of the fern, including apogamy and polyploidy, and possibly natural enemy release, which allows it to flourish in new environments and to displace native plants. This novel study demonstrated citizen science’s (iNaturalist’s) great value in detecting the naturalization and spread of alien plants. Full article
Show Figures

Figure 1

Back to TopTop