Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems
Abstract
1. Introduction
2. Submerged Cultivation
3. Morphology of Fungi in Submerged Fermentation
3.1. Microparticles in Fungal Submerged Fermentation
3.2. Safety and Toxicity Issues of Microparticles in Fungal Submerged Fermentation
4. Bioreactors for Submerged Fungal Fermentation
4.1. Stirred Tank Bioreactor (STR)
4.2. Air Lift Bioreactor
5. Operational Modes Employed to Produce Mycelium and Metabolites Derived from Mushrooms
5.1. Batch Mode
5.2. Fed-Batch Mode
5.3. Continuous Fermentation Mode
6. Solid-State Fermentation Systems for Edible Mushrooms
7. Control Systems for Submerged Fermentation
7.1. Smart Sensing and Online Monitoring
7.2. Intelligent and Predictive Control
7.3. Integrated Process Management
7.4. Process Optimization and Scalability
7.5. Challenges in Bioreactor Control for Fungal Fermentation Systems
7.6. Sensor Failure Management in Fungi Cultivation Systems
8. Future Perspectives
9. Conclusions
Funding
Conflicts of Interest
References
- Sandargo, B.; Chepkirui, C.; Cheng, T.; Chaverra-Muñoz, L.; Thongbai, B.; Stadler, M.; Hüttel, S. Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 2019, 37, 107344. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Brugnari, T.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 2016, 50, 103–117. [Google Scholar] [CrossRef]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. PharmaNutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Hamza, A.; Mylarapu, A.; Krishna, K.V.; Kumar, D.S. An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. J. Biotechnol. 2024, 381, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Horincar, V.-B.; Popa, A.; Parfene, G.; Balaes, T. Study of preliminary biotechnological conditions for Pleurotus ostreatus cultivation on submerged system. Innov. Rom. Food Biotechnol. 2014, 15, 58–62. Available online: https://www.gup.ugal.ro/ugaljournals/index.php/IFRB/article/view/3496 (accessed on 6 June 2025).
- Lindequist, U.; Niedermeyer, T.H.; Jülich, W.-D. The pharmacological potential of mushrooms. Evid. Based Complement. Altern. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef]
- Molitorisová, A.; Monaco, A.; Purnhagen, K.P. An Analysis of the Regulatory Framework Applicable to Products Obtained from Mushroom and Mycelium; Adalbert Raps Stiftung: Kulmbach, Germany, 2021; SSRN 3955899. [Google Scholar] [CrossRef]
- Sande, D.; de Oliveira, G.P.; e Moura, M.A.F.; de Almeida Martins, B.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef]
- Singh, M.; Kamal, S.; Sharma, V.P. Status and trends in world mushroom production-III-World Production of different mushroom species in 21st century. Mushroom Res. 2020, 29, 75. [Google Scholar] [CrossRef]
- Sangeeta, S.; Sharma, D.; Ramniwas, S.; Mugabi, R.; Uddin, J.; Nayik, G.A. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem. X 2024, 23, 101774. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: A review. Int. J. Med. Mushrooms 2017, 19, 279–317. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, A.; Tripathi, A. Biological activities of Pleurotus spp. polysaccharides: A review. J. Food Biochem. 2021, 45, e13748. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Abdalla, N.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Eid, Y.; Prokisch, J. Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. Sustainability 2022, 14, 4941. [Google Scholar] [CrossRef]
- Vlassopoulou, M.; Paschalidis, N.; Savvides, A.L.; Saxami, G.; Mitsou, E.K.; Kerezoudi, E.N.; Koutrotsios, G.; Zervakis, G.I.; Georgiadis, P.; Kyriacou, A. Immunomodulating activity of Pleurotus eryngii mushrooms following their in vitro fermentation by human fecal microbiota. J. Fungi 2022, 8, 329. [Google Scholar] [CrossRef]
- Morris-Quevedo, H.J.; Llauradó-Maury, G.; Bermúdez-Savón, R.C.; Cos, P.; Lebeque-Pérez, Y.; Beltrán-Delgado, Y.; Tamayo-Ortega, V.; Fong-Lores, O.; Marcos-Albear, J.; Gaime-Perraud, I. Evaluation of the immunomodulatory activity of bioproducts obtained from the edible-medicinal mushroom Pleurotus ostreatus. Biotecnol. Apl. 2018, 35, 3511–3514. Available online: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=95629 (accessed on 6 June 2025).
- Berger, R.G.; Ersoy, F. Improved Foods Using Enzymes from Basidiomycetes. Processes 2022, 10, 726. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Wiley: Hoboken, NJ, USA, 2017; pp. 5–13. [Google Scholar] [CrossRef]
- Pashaei, K.H.A.; Irankhah, K.; Namkhah, Z.; Sobhani, S.R. Edible mushrooms as an alternative to animal proteins for having a more sustainable diet: A review. J. Health Popul. Nutr. 2024, 43, 205. [Google Scholar] [CrossRef]
- El Enshasy, H.A. Fungal morphology: A challenge in bioprocess engineering industries for product development. Curr. Opin. Chem. Eng. 2022, 35, 100729. [Google Scholar] [CrossRef]
- Dudekula, U.T.; Doriya, K.; Devarai, S.K. A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech 2020, 10, 337. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Zhu, L.-W.; Li, H.-M.; Li, D.-S. Submerged culture of mushrooms in bioreactors–challenges, current state-of-the-art, and future prospects. Food Technol. Biotechnol. 2007, 45, 221–229. [Google Scholar]
- Vunduk, J.; Tura, D.; Biketova, A.Y. Medicinal mushroom nutraceutical commercialization: Two sides of a coin. In Wild Mushrooms; CRC Press: Boca Raton, FL, USA, 2022; pp. 89–131. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Guan, Y.-Y.; Hu, P.-F.; Chen, L.; Xu, G.-R.; Liu, L.; Cheung, P.C. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: Recent advances and future development. Crit. Rev. Biotechnol. 2019, 39, 541–554. [Google Scholar] [CrossRef]
- Horincar, V.-B.; Popa, A.-M.; Parfene, G.; Bahrim, G. Evaluation of some biotechnological parameters influencing the Pleurotus ostreatus biomass production by submerged cultivation. Ann. Univ. Dunarea Jos Galati. Fascicle VI Food Technol. 2015, 39, 55–63. Available online: https://www.proquest.com/scholarly-journals/evaluation-some-biotechnological-parameters/docview/1776148613/se-2 (accessed on 6 June 2025).
- Papaspyridi, L.-M.; Aligiannis, N.; Topakas, E.; Christakopoulos, P.; Skaltsounis, A.-L.; Fokialakis, N. Submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor as a promising alternative for the effective production of bioactive metabolites. Molecules 2012, 17, 2714–2724. [Google Scholar] [CrossRef]
- Elisashvili, V.I. Submerged cultivation of medicinal mushrooms: Bioprocesses and products. Int. J. Med. Mushrooms 2012, 14, 211–239. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible mushrooms as a novel protein source for functional foods. Food Funct. 2020, 11, 7400–7414. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.; Shankar, M.P.; Chowdary, U.S.; Ghanekar, S.; Sahoo, S.; Krishnaiah, C.V.; Kumar, D.S. Submerged production of mycelium biomass and bioactive compounds from P. ostreatus in a controlled fermentation medium. Food Humanit. 2024, 2, 100302. [Google Scholar] [CrossRef]
- Veiter, L.; Rajamanickam, V.; Herwig, C. The filamentous fungal pellet—Relationship between morphology and productivity. Appl. Microbiol. Biotechnol. 2018, 102, 2997–3006. [Google Scholar] [CrossRef]
- Meyer, V.; Cairns, T.; Barthel, L.; King, R.; Kunz, P.; Schmideder, S.; Müller, H.; Briesen, H.; Dinius, A.; Krull, R. Understanding and controlling filamentous growth of fungal cell factories: Novel tools and opportunities for targeted morphology engineering. Fungal Biol. Biotechnol. 2021, 8, 8. [Google Scholar] [CrossRef]
- Veiter, L.; Herwig, C. The filamentous fungus Penicillium chrysogenum analysed via flow cytometry—A fast and statistically sound insight into morphology and viability. Appl. Microbiol. Biotechnol. 2019, 103, 6725–6735. [Google Scholar] [CrossRef] [PubMed]
- Sohoni, S.V.; Bapat, P.M.; Lantz, A.E. Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb. Cell Factories 2012, 11, 9. [Google Scholar] [CrossRef]
- Ferrer-Romero, J.C.; Mas-Diego, S.M.; Beltrán-Delgado, Y.; Rodríguez-Quiala, Y.; Morris Quevedo, H.J. Optimization of medium composition for the production of Pleurotus ostreatus biomass and phenols in submerged fermentation with response surface methodology. Tecnol. Química 2019, 39, 1–16. Available online: http://scielo.sld.cu/scielo.php?pid=S2224-61852019000100001&script=sci_arttext&tlng=pt (accessed on 6 June 2025).
- Ferrer-Romero, J.C.; Mas-Diego, S.M.; Beltrán-Delgado, Y.; Morris-Quevedo, H.J.; Díaz-Fernández, U. Kinetic study of the production of biomass and phenolic compounds for Pleurotus ostreatus in submerged phase. Rev. Cuba. Química 2019, 31, 16–30. Available online: http://scielo.sld.cu/scielo.php?pid=S2224-54212019000100016&script=sci_arttext (accessed on 6 June 2025).
- Shen, K.; Liu, Y.; Liu, L.; Khan, A.W.; Normakhamatov, N.; Wang, Z. Characterization, Optimization, and Scaling-up of Submerged Inonotus hispidus Mycelial Fermentation for Enhanced Biomass and Polysaccharide Production. Appl. Biochem. Biotechnol. 2024, 197, 1534–1555. [Google Scholar] [CrossRef] [PubMed]
- Dzurendova, S.; Losada, C.B.; Dupuy-Galet, B.X.; Fjær, K.; Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 2022, 106, 101–115. [Google Scholar] [CrossRef]
- Negi, B.B.; Das, C. Mycoremediation of wastewater, challenges, and current status: A review. Bioresour. Technol. Rep. 2023, 22, 101409. [Google Scholar] [CrossRef]
- Patel, A.K.; Agrawal, R.; Dong, C.-D.; Chen, C.-W.; Singhania, R.R.; Pandey, A. Filamentous Fungal Morphology in Industrial Aspects. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 197–217. [Google Scholar]
- Dhillon, G.S.; Brar, S.K.; Kaur, S.; Verma, M. Rheological studies during submerged citric acid fermentation by Aspergillus niger in stirred fermentor using apple pomace ultrafiltration sludge. Food Bioprocess Technol. 2013, 6, 1240–1250. [Google Scholar] [CrossRef]
- Schmideder, S.; Barthel, L.; Müller, H.; Meyer, V.; Briesen, H. From three-dimensional morphology to effective diffusivity in filamentous fungal pellets. Biotechnol. Bioeng. 2019, 116, 3360–3371. [Google Scholar] [CrossRef] [PubMed]
- Schmideder, S.; Müller, H.; Barthel, L.; Friedrich, T.; Niessen, L.; Meyer, V.; Briesen, H. Universal law for diffusive mass transport through mycelial networks. Biotechnol. Bioeng. 2021, 118, 930–943. [Google Scholar] [CrossRef]
- Doran, P.M. Chapter 10—Mass Transfer. In Bioprocess Engineering Principles, 2nd ed.; Academic Press: London, UK, 2013; pp. 379–444. [Google Scholar] [CrossRef]
- Bizukojc, M.; Gonciarz, J. Influence of oxygen on lovastatin biosynthesis by Aspergillus terreus ATCC 20542 quantitatively studied on the level of individual pellets. Bioprocess Biosyst. Eng. 2015, 38, 1251–1266. [Google Scholar] [CrossRef]
- Huang, J.; Guan, H.W.; Huang, Y.Y.; Lai, K.S.; Chen, H.Y.; Xue, H.; Zhang, B.B. Evaluating the effects of microparticle addition on mycelial morphology, natural yellow pigments productivity, and key genes regulation in submerged fermentation of Monascus purpureus. Biotechnol. Bioeng. 2021, 118, 2503–2513. [Google Scholar] [CrossRef]
- Hao, F.; Zhong, B.; Shen, F.; Mao, Y.; Wu, Z. Macroparticle-enhanced morphology engineering of Cordyceps sinensis for high glucose fermentation to optimize the production of bioactive exopolysaccharides. Biochem. Eng. J. 2024, 211, 109470. [Google Scholar] [CrossRef]
- Khushboo; Dhaka, N.; Dubey, K.K. Effect of natural precursors and micro/macroparticles addition on the morphology modulation of Streptomyces toxytricini KD18 stimulates lipstatin productivity. bioRxiv 2023. [Google Scholar] [CrossRef]
- Tong, L.-L.; Wang, Y.; Du, Y.-H.; Yuan, L.; Liu, M.-Z.; Mu, X.-Y.; Chen, Z.-L.; Zhang, Y.-D.; He, S.-J.; Li, X.-J.; et al. Transcriptomic analysis of morphology regulatory mechanisms of microparticles to Paraisaria dubia in submerged fermentation. Appl. Biochem. Biotechnol. 2022, 194, 4333–4347. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Mira, A.; Castillo-Saldarriaga, C.; Uribe-Gutiérrez, L.; Céspedes-Gutíerrez, E.; Cortés-Rojas, D.; Gómez-Álvarez, M.; Cruz-Barrera, M. Culture media design and scaling-up of submerged fermentation for the nematophagous fungus Duddingtonia flagrans. Exp. Parasitol. 2025, 269, 108901. [Google Scholar] [CrossRef] [PubMed]
- Iram, A.; Özcan, A.; Yatmaz, E.; Turhan, İ.; Demirci, A. Effect of microparticles on fungal fermentation for fermentation-based product productions. Processes 2022, 10, 2681. [Google Scholar] [CrossRef]
- Etschmann, M.; Huth, I.; Walisko, R.; Schuster, J.; Krull, R.; Holtmann, D.; Wittmann, C.; Schrader, J. Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 2015, 32, 145–157. [Google Scholar] [CrossRef]
- Karahalil, E.; Coban, H.B.; Turhan, I. A current approach to the control of filamentous fungal growth in media: Microparticle enhanced cultivation technique. Crit. Rev. Biotechnol. 2019, 39, 192–201. [Google Scholar] [CrossRef]
- Laible, A.R.; Dinius, A.; Schrader, M.; Krull, R.; Kwade, A.; Briesen, H.; Schmideder, S. Effects and interactions of metal oxides in microparticle-enhanced cultivation of filamentous microorganisms. Eng. Life Sci. 2022, 22, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.S.; Lee, J.I.; Kang, D.H. TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157:H7. Food Microbiol. 2023, 109, 104119. [Google Scholar] [CrossRef]
- Driscoll, K.E. Review of lung particle overload, rat lung cancer, and the conclusions of the Edinburgh expert panel-It’s time to revisit cancer hazard classifications for titanium dioxide and carbon black. Front. Public Health 2022, 10, 907318. [Google Scholar] [CrossRef]
- Manzoor, Q.; Sajid, A.; Ali, Z.; Nazir, A.; Sajid, A.; Imtiaz, F.; Iqbal, S.; Younas, U.; Arif, H.; Iqbal, M. Toxicity spectrum and detrimental effects of titanium dioxide nanoparticles as an emerging pollutant: A review. Desalination Water Treat. 2024, 317, 100025. [Google Scholar] [CrossRef]
- Mohamed, H.R.H.; Shaheen, S.E.E.; Ibrahim, E.H.; Hussein, N.O.E.; Safwat, G. Calcium titanate nanoparticles-induced cytotoxicity, genotoxicity and oxidative stress in human non-small lung cancer cells. Sci. Rep. 2025, 15, 6373. [Google Scholar] [CrossRef]
- Grzybek, P.; Jakubski, Ł.; Dudek, G. Neat Chitosan Porous Materials: A Review of Preparation, Structure Characterization and Application. Int. J. Mol. Sci. 2022, 23, 9932. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xu, P.; Huang, R.; Huang, J.; Zhan, J.; Su, J.; You, R.; Lu, Y. Biomacromolecular composite microspheres based on sodium alginate and Tremella fuciformis polysaccharide for enhanced protection and delivery of Camellia oil: A comprehensive study in simulated digestion. Int. J. Biol. Macromol. 2025, 310, 143481. [Google Scholar] [CrossRef]
- Porto de Souza Vandenberghe, L.; Murawski de Mello, A.F.; Matte Borges Machado, C.; Biagini, G.; Gruening de Mattos, P.B.; Negreiros Piazenski, I.; Candelario, J.P.M.; Soccol, C.R. Alternative proteins production: Current scenario, bioreactor types, and scale-up strategies. Syst. Microbiol. Biomanuf. 2024, 5, 15–34. [Google Scholar] [CrossRef]
- Liu, S. Chapter 18—Bioreactor Design and Operation. In Bioprocess Engineering, 3rd ed.; Liu, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 819–856. [Google Scholar] [CrossRef]
- Doran, P.M. Chapter 14—Reactor Engineering. In Bioprocess Engineering Principles, 2nd ed.; Academic Press: London, UK, 2013; pp. 761–852. [Google Scholar] [CrossRef]
- Reuss, M. Stirred Tank Bioreactors: Of Bioreactor for Industrial. In Bioreactor System Design; CRC Press: Boca Raton, FL, USA, 1994; pp. 227–276. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781482277470-10/stirred-tank-bioreactors-matthias-reuss (accessed on 6 June 2025).
- Namdeo, N.; Kumar, B.; Jha, H. Bioreactor Design for the Production of Microbial Polysaccharides. In Microbial Exopolysaccharides; CRC Press: Boca Raton, FL, USA, 2024; pp. 94–112. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003342687-5/bioreactor-design-production-microbial-polysaccharides-neha-namdeo-bikash-kumar-harit-jha (accessed on 6 June 2025).
- Merten, O.-W. Introduction to animal cell culture technology—Past, present and future. Cytotechnology 2006, 50, 1–7. [Google Scholar] [CrossRef]
- Barragán, L.P.; Figueroa, J.; Durán, L.R.; González, C.A.; Hennigs, C. Fermentative Production Methods. In Biotransformation of Agricultural Waste and By-Products; Elsevier: Amsterdam, The Netherlands, 2016; pp. 189–217. [Google Scholar] [CrossRef]
- Chisti, Y.; Moo-Young, M. Bioreactors. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 247–271. [Google Scholar] [CrossRef]
- Rawat, J.M.; Bhandari, A.; Raturi, M.; Rawat, B. Agrobacterium Rhizogenes Mediated Hairy Root Cultures: A Promising Approach for Production of Useful Metabolites. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–118. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, W.; Chen, Y.; Amin, F.R.; Li, Y.; Lu, M.; Li, D. CFD optimization of an air lift fermenter for Fusarium venenatum fermentation. Bioresour. Technol. Rep. 2025, 29, 102024. [Google Scholar] [CrossRef]
- Cerrone, F.; O’Connor, K.E. Cultivation of filamentous fungi in airlift bioreactors: Advantages and disadvantages. Appl. Microbiol. Biotechnol. 2025, 109, 41. [Google Scholar] [CrossRef] [PubMed]
- Aragão, M.S.; Menezes, D.B.; Ramos, L.C.; Oliveira, H.S.; Bharagava, R.N.; Romanholo Ferreira, L.F.; Teixeira, J.A.; Ruzene, D.S.; Silva, D.P. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere 2020, 244, 125432. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, F.; Lochlainn, C.Ó.; Callaghan, T.; McDonald, P.; O’Connor, K.E. Airlift bioreactor–based strategies for prolonged semi-continuous cultivation of edible Agaricomycetes. Appl. Microbiol. Biotechnol. 2024, 108, 377. [Google Scholar] [CrossRef]
- Klaus, A.; Wan-Mohtar, W.A.A.Q.I.; Nikolić, B.; Cvetković, S.; Vunduk, J. Pink oyster mushroom Pleurotus flabellatus mycelium produced by an airlift bioreactor—The evidence of potent in vitro biological activities. World J. Microbiol. Biotechnol. 2021, 37, 17. [Google Scholar] [CrossRef]
- Whittaker, J.A.; Johnson, R.I.; Finnigan, T.J.A.; Avery, S.V.; Dyer, P.S. The Biotechnology of Quorn Mycoprotein: Past, Present and Future Challenges. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 59–79. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Y.; Lu, H.; Chen, Q. A critical review of fungal proteins: Emerging preparation technology, active efficacy and food application. Trends Food Sci. Technol. 2023, 141, 104178. [Google Scholar] [CrossRef]
- Galindo, E.; Peña, C.; Leobardo, S.-C. Domesticar microorganismos en un biorreactor: Los retos del bioingeniero. Claridades Agropecu. 2017, 5, 131–144. Available online: https://ibt.unam.mx/documentos/general/ibt-libro-25-aniv-capitulo12-1300.pdf (accessed on 6 June 2025).
- Liu, S. Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Croughan, M.S.; Konstantinov, K.B.; Cooney, C. The future of industrial bioprocessing: Batch or continuous? Biotechnol. Bioeng. 2015, 112, 648–651. [Google Scholar] [CrossRef]
- Yang, Y.; Sha, M. A beginner’s guide to bioprocess modes–batch, fed-batch, and continuous fermentation. Enfield CT Eppendorf Inc 2019, 408, 1–16. Available online: www.eppendorf.com (accessed on 6 June 2025).
- Soerjawinata, W.; Kockler, I.; Wommer, L.; Frank, R.; Schüffler, A.; Schirmeister, T.; Ulber, R.; Kampeis, P. Novel bioreactor internals for the cultivation of spore-forming fungi in pellet form. Eng. Life Sci. 2022, 22, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Vogel, H.C.; Todaro, C.M. Fermentation and Biochemical Engineering Handbook Principles, Process Design, and Equipment, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Bakratsas, G.; Polydera, A.; Katapodis, P.; Stamatis, H. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods 2021, 4, 100086. [Google Scholar] [CrossRef]
- Zou, X. Fed-batch fermentation for hyperproduction of polysaccharide and ergosterol by medicinal mushroom Agaricus brasiliensis. Process Biochem. 2006, 41, 970–974. [Google Scholar] [CrossRef]
- Gaykawad, S.S.; Ramanand, S.S.; Blomqvist, J.; Zimmermann, B.; Shapaval, V.; Kohler, A.; Oostindjer, M.; Boccadoro, C. Submerged Fermentation of Animal Fat By-Products by Oleaginous Filamentous Fungi for the Production of Unsaturated Single Cell Oil. Fermentation 2021, 7, 300. [Google Scholar] [CrossRef]
- Guo, J.; Tang, C.; Liu, Y.; Shi, J.; Vunduk, J.; Tang, C.; Feng, J.; Zhang, J. Innovative submerged directed fermentation: Producing high molecular weight polysaccharides from Ganoderma lucidum. Food Chem. 2025, 471, 142759. [Google Scholar] [CrossRef]
- Xie, D. Continuous biomanufacturing with microbes—Upstream progresses and challenges. Curr. Opin. Biotechnol. 2022, 78, 102793. [Google Scholar] [CrossRef] [PubMed]
- Asadollahzadeh, M.; Mohammadi, M.; Lennartsson, P.R. 2—Fungal Biotechnology. In Current Developments in Biotechnology and Bioengineering; Taherzadeh, M.J., Ferreira, J.A., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 31–66. [Google Scholar] [CrossRef]
- Fukushima, Y.; Okada, K.; Kawai, G.; Motai, H. Efficient production of mycelium of Lentinus edodes by a continuous culture and the effect of lignin on growth. J. Ferment. Bioeng. 1993, 76, 45–48. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Krishna, C. Solid-state fermentation systems—An overview. Crit. Rev. Biotechnol. 2005, 25, 1–30. [Google Scholar] [CrossRef]
- Rodríguez Couto, S. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol. J. Healthc. Nutr. Technol. 2008, 3, 859–870. [Google Scholar] [CrossRef]
- López-Gómez, J.P.; Manan, M.A.; Webb, C. Solid-State Fermentation of Food Industry Wastes. In Food Industry Wastes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 135–161. [Google Scholar] [CrossRef]
- Hu, C.; Meguro, S.; Kawachi, S. Effects of physical properties of wood on the water activity of wood meal media for the cultivation of edible mushrooms. J. Wood Sci. 2004, 50, 365–370. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Wiesnerová, L.; Hřebečková, T.; Jablonský, I.; Koudela, M. Effect of different water contents in the substrate on cultivation of Pleurotus ostreatus Jacq. P. Kumm. Folia Hortic. 2023, 35, 25–31. [Google Scholar] [CrossRef]
- Manan, M.; Webb, C. Design aspects of solid state fermentation as applied to microbial bioprocessing. J. Appl. Biotechnol. Bioeng. 2017, 4, 511–532. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Jiang, Q.; Roubík, H.; Xu, Q.; Gharsallaoui, A.; Cai, M.; Yang, K.; Sun, P. Fungal solid-state fermentation of crops and their by-products to obtain protein resources: The next frontier of food industry. Trends Food Sci. Technol. 2023, 138, 628–644. [Google Scholar] [CrossRef]
- Berovic, M. Cultivation of Medicinal Mushroom Biomass by Solid-State Bioprocessing in Bioreactors. In Solid State Fermentation, Research and Industrial Applications; Springer: Cham, Switzerland, 2019; pp. 3–25. [Google Scholar] [CrossRef]
- Arora, S.; Rani, R.; Ghosh, S. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J. Biotechnol. 2018, 269, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, I.; Nwulu, N.; Adebo, O.A. Internet of Things (IoT) in the food fermentation process: A bibliometric review. J. Food Process Eng. 2023, 46, e14321. [Google Scholar] [CrossRef]
- Chien, T.-Y.; Lo, H.-C.; Liu, M.-L.; Hsu, T.-H.; Lee, S.-C.; Hsu, W.-K.; Yang, J.-S.; Yang, S.-F.; Chao, S.-C. Internet of Things (loT)−Driven Fermentation System for Enhanced Cordycepin Production in Cordyceps militaris (Ascomycetes) under Hypoxic Conditions. Int. J. Med. Mushrooms 2025, 27, 57–69. [Google Scholar] [CrossRef]
- Wu, L.; Xiao, G.; Huang, D.; Zhang, X.; Ye, D.; Weng, H. Edge Computing-Based Machine Vision for Non-Invasive and Rapid Soft Sensing of Mushroom Liquid Strain Biomass. Agronomy 2025, 15, 242. [Google Scholar] [CrossRef]
- Khaleghi, M.K.; Savizi, I.S.P.; Lewis, N.E.; Shojaosadati, S.A. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol. J. 2021, 16, 2100212. [Google Scholar] [CrossRef]
- Lu, Z.-M.; Lei, J.-Y.; Xu, H.-Y.; Shi, J.-S.; Xu, Z.-H. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Appl. Microbiol. Biotechnol. 2011, 92, 371–379. [Google Scholar] [CrossRef] [PubMed]
- El-Khawaldeh, R.; Guy, M.; Bork, F.; Taherimakhsousi, N.; Jones, K.N.; Hawkins, J.M.; Han, L.; Pritchard, R.P.; Cole, B.A.; Monfette, S. Keeping an “eye” on the experiment: Computer vision for real-time monitoring and control. Chem. Sci. 2024, 15, 1271–1282. [Google Scholar] [CrossRef]
- Hamza, A.; Khalad, A.; Kumar, D.S. Enhanced production of mycelium biomass and exopolysaccharides of Pleurotus ostreatus by integrating response surface methodology and artificial neural network. Bioresour. Technol. 2024, 399, 130577. [Google Scholar] [CrossRef]
- Chai, W.Y.; Teo, K.T.K.; Tan, M.K.; Tham, H.J. Fermentation process control and optimization. Chem. Eng. Technol. 2022, 45, 1731–1747. [Google Scholar] [CrossRef]
- Nikita, S.; Banerjee, S.; Jesubalan, N.G.; Kulkarni, A.; Gupta, K.; Rathore, A.S. Holistic process control framework for smart biomanufacturing: A deep learning driven approach. Comput. Chem. Eng. 2024, 187, 108742. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, J.; Sun, H.; Zhao, M.; Wang, Y.; Chu, J.; Zhuang, Y. Evaluation of mixing effect and shear stress of different impeller combinations on nemadectin fermentation. Process Biochem. 2020, 92, 120–129. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, S.; Wang, X.; Shi, Y.; Guo, J.; Qiao, N.; Zhang, X.; Yu, D. The dispersion of Trichosporon fermentans was controlled by optimizing the shear environment in the reactor to improve the cell sedimentation and separation performance. J. Clean. Prod. 2023, 414, 137649. [Google Scholar] [CrossRef]
- Zhu, X.; Rehman, K.U.; Wang, B.; Shahzad, M. Modern Soft-Sensing Modeling Methods for Fermentation Processes. Sensors 2020, 20, 1771. [Google Scholar] [CrossRef]
- Liu, Y.; Ni, D.; Wang, Z. A Fault-Tolerant Soft Sensor Algorithm Based on Long Short-Term Memory Network for Uneven Batch Process. Processes 2024, 12, 495. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Khan, A.Q.; Mustafa, G.; Abid, M.; Khan, A.S.; Ullah, N. Data-driven fault diagnostics for industrial processes: An application to Penicillin fermentation process. IEEE Access 2021, 9, 65977–65987. [Google Scholar] [CrossRef]
- Yafetto, L. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef] [PubMed]
- Xena, Y.C. Geography: Origin of the Complexity of the Food System. In Sustainable Development Goals in Europe: A Geographical Approach; Springer: Cham, Switzerland, 2023; pp. 23–41. [Google Scholar] [CrossRef]
- Krishania, M.; Sindhu, R.; Binod, P.; Ahluwalia, V.; Kumar, V.; Sangwan, R.S.; Pandey, A. Chapter 5—Design of Bioreactors in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–96. [Google Scholar] [CrossRef]
- American Mushroom Institute. Sustainability. Available online: https://www.americanmushroom.org/main/sustainability/ (accessed on 26 June 2025).
- Dorr, E.; Koegler, M.; Gabrielle, B.; Aubry, C. Life cycle assessment of a circular, urban mushroom farm. J. Clean. Prod. 2021, 288, 125668. [Google Scholar] [CrossRef]
- Shahid, M.; Shah, P.; Mach, K.; Rodgers-Hunt, B.; Finnigan, T.; Frost, G.; Neal, B.; Hadjikakou, M. The environmental impact of mycoprotein-based meat alternatives compared to plant-based meat alternatives: A systematic review. Future Foods 2024, 10, 100410. [Google Scholar] [CrossRef]
- Li, W.; Ma, H.; He, R.; Ren, X.; Zhou, C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. Ultrason. Sonochem. 2021, 76, 105613. [Google Scholar] [CrossRef]
- Diego, S.M.M. Efectos biológicos del campo electromagnético en el crecimiento de microorganismos. Mecanismos de acción. Rev. Cuba. Química 2005, 17, 161. [Google Scholar]
- Veiga, M.C.; Seibel, J.; Díaz, H.J.N.; Santos, L.O.; Mazutti, M.A. Magnetic Field and Ultrasound to Intensify the Production of Biomass, Polysaccharides and Enzymes by Lentinula edodes Cultivated in Submerged Fermentation. Ind. Biotechnol. 2023, 19, 347–354. [Google Scholar] [CrossRef]
- Bakratsas, G.; Tsoumanis, C.; Stamatis, H.; Katapodis, P. Exopolysaccharide Production in Submerged Fermentation of Pleurotus ostreatus under Red and Green Light. Fermentation 2024, 10, 313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, J.C.F.; Oprea, O.B.; Gaceu, L.; Más Diego, S.M.; Morris Quevedo, H.J.; Galindo Alonso, L.; Rivero Ramírez, L.; Badea, M. Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems. Processes 2025, 13, 2452. https://doi.org/10.3390/pr13082452
Romero JCF, Oprea OB, Gaceu L, Más Diego SM, Morris Quevedo HJ, Galindo Alonso L, Rivero Ramírez L, Badea M. Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems. Processes. 2025; 13(8):2452. https://doi.org/10.3390/pr13082452
Chicago/Turabian StyleRomero, Juan Carlos Ferrer, Oana Bianca Oprea, Liviu Gaceu, Siannah María Más Diego, Humberto J. Morris Quevedo, Laura Galindo Alonso, Lilianny Rivero Ramírez, and Mihaela Badea. 2025. "Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems" Processes 13, no. 8: 2452. https://doi.org/10.3390/pr13082452
APA StyleRomero, J. C. F., Oprea, O. B., Gaceu, L., Más Diego, S. M., Morris Quevedo, H. J., Galindo Alonso, L., Rivero Ramírez, L., & Badea, M. (2025). Edible Mushroom Cultivation in Liquid Medium: Impact of Microparticles and Advances in Control Systems. Processes, 13(8), 2452. https://doi.org/10.3390/pr13082452