From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Background and Global Context of ETS
2.2. Bidirectional Interactions Between ETS and Macro-Financial Variables
2.3. Empirical and Methodological Gaps in ETS Research
- High-frequency (monthly) data from seven major ETS jurisdictions (USA, Canada, China, Korea, Germany, UK, and New Zealand), allowing real-time inferences and international comparisons;
- A panel vector autoregression (PVAR) framework that captures bidirectional and dynamic propagation effects;
- A complementary explainable machine learning model (XGBoost with SHAP) to reveal nonlinear interactions, conditional effects, and predictive factors often invisible in traditional econometrics.
2.4. Conceptual Framework
3. Materials and Methods
3.1. Dataset
3.2. Methodology
3.2.1. Panel Vector Autoregression (PVAR) via Common Correlated Effects (CCE) Estimator
- are the coefficient matrices for lag j;
- is the cross-sectional mean of the endogenous variables at time t;
- is a white noise disturbance term.
3.2.2. Nonlinear Learning: XGBoost with SHAP and PDP
4. Results
4.1. Evolution and Design of ETS Markets
4.2. Pre-Estimation Diagnostics
4.3. Dynamic Estimation of ETS Drivers and Transmission Effects
4.4. Impulse Response Analysis
4.5. Machine Learning Evidence on ETS Determinants
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ETS | Emissions Trading Systems |
PVAR | Panel Vector Autoregressive |
IRFs | Impulse Response Functions |
ESG | Environmental, Social and Governance |
EPU | Economic Policy Uncertainty |
XAI | Explainable Artificial Intelligence |
GHG | Greenhouse Gas |
UK | United Kingdom |
US | United States |
AI | Artificial Intelligence |
EU ETS | European Union Emissions Trading Scheme |
MSR | Market Stability Reserve |
XGBoost | Machine Learning Framework |
tCO2e | Ton of CO2 Equivalent |
VOL | Stock Market Volatility |
CPI | Consumer Price Index |
UNEMP | Unemployment Rate |
RATE | Brent Oil Price |
FRED | Federal Reserve Economic Data |
OECD | Organisation for Economic Co-operation and Development |
LSDV | Least Squares Dummy Variable |
GMM | Generalized Method of Moments |
MSE | Mean Squared Error |
PDP | Partial Dependence Plot |
EUR | Euro |
Appendix A. Data Analysis
Lags | AIC | BIC |
---|---|---|
1 | −972.79 | −687.35 |
2 | −911.74 | −494.56 |
3 | −866.10 | −317.18 |
4 | −796.66 | −115.99 |
Dependent Variable | Demeaned_D_ETS | Demeaned_VOL | Demeaned_EPU | Demeaned_CPI | Demeaned_UNEMP | Demeaned_D_ESG |
---|---|---|---|---|---|---|
demeaned_esg_epu | 0.0321 (0.1834) | 0.2129 (0.6201) | 0.1913 * (0.0009) | −0.0068 (0.0226) | 0.0035 (0.0952) | 0.0000 (0.0000) |
References
- Ekins, P.; Osorio, S.; Doda, B.; Wildgrube, T.; Raude, M.; Ferrari, A.; Heinrich, L.; Borghesi, S. Impacts and Evolution of Emissions Trading Systems: Insights from Research and Regulation; European University Institute: Fiesole, Italy, 2024; Available online: https://hdl.handle.net/1814/76438 (accessed on 21 June 2025).
- Heiaas, A. The EU ETS and Aviation: Evaluating the Effectiveness of the EU Emission Trading System in Reducing Emissions from Air Travel. Rev. Bus. Econ. Stud. 2021, 9, 84–120. [Google Scholar] [CrossRef]
- Chevallier, J. Econometric Analysis of Carbon Markets: The European Union Emissions Trading Scheme and the Clean Development Mechanism; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 978-94-007-2412-9. [Google Scholar]
- Friedrich, M.; Mauer, E.-M.; Pahle, M.; Tietjen, O. From Fundamentals to Financial Assets: The Evolution of Understanding Price Formation in the EU ETS; ZBW-Leibniz Information Centre for Economics: Hamburg, Germany, 2020; Available online: https://hdl.handle.net/10419/225210 (accessed on 21 June 2025).
- Blyth, W.; Bunn, D.; Kettunen, J.; Wilson, T. Policy Interactions, Risk and Price Formation in Carbon Markets. Energy Policy 2009, 37, 5192–5207. [Google Scholar] [CrossRef]
- Mo, S.; Wang, T. Synergistic Effects of International Oil Price Fluctuations and Carbon Tax Policies on the Energy–Economy–Environment System in China. Int. J. Environ. Res. Public. Health 2022, 19, 14177. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, Y. Oil Prices, Emission Permits Trade of Carbon, and the Dependence between Their Quantiles. Int. J. Circuits Syst. Signal Process. 2022, 16, 38–45. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Ren, F.; Yang, M.-Y.; Lu, F.-Z.; Li, S.-P. Dynamic Lead–Lag Relationship between Chinese Carbon Emission Trading and Stock Markets under Exogenous Shocks. Int. Rev. Econ. Financ 2023, 85, 295–305. [Google Scholar] [CrossRef]
- Ma, J.; Feng, J.; Chen, J.; Zhang, J. Volatility Spillover from Carbon Prices to Stock Prices: Evidence from China’s Carbon Emission Trading Markets. J. Risk Financ. Manag. 2024, 17, 123. [Google Scholar] [CrossRef]
- Dai, P.-F.; Xiong, X.; Huynh, T.L.D.; Wang, J. The Impact of Economic Policy Uncertainties on the Volatility of European Carbon Market. J. Commod. Mark. 2022, 26, 100208. [Google Scholar] [CrossRef]
- Wang, K.-H.; Liu, L.; Zhong, Y.; Lobonţ, O.-R. Economic Policy Uncertainty and Carbon Emission Trading Market: A China’s Perspective. Energy Econ. 2022, 115, 106342. [Google Scholar] [CrossRef]
- Xu, Y.; Lien, D. Do Carbon Prices Spill over to Inflation? Multiscale Evidence from China. J. Clean. Prod. 2024, 445, 141225. [Google Scholar] [CrossRef]
- Jaeger, J.; Walls, G.; Clarke, E.; Altamirano, J.-C.; Harsono, A.; Mountford, H.; Burrow, S.; Smith, S.; Tate, A. The Green Jobs Advantage: How Climate-Friendly Investments Are Better Job Creators. World Resour. Inst. 2021, 1–44. [Google Scholar] [CrossRef]
- Känzig, D.R. The Unequal Economic Consequences of Carbon Pricing; National Bureau of Economic Research: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Kong, X.; Li, Z.; Lei, X. Research on the Impact of ESG Performance on Carbon Emissions from the Perspective of Green Credit. Sci. Rep. 2024, 14, 10478. [Google Scholar] [CrossRef] [PubMed]
- Calel, R.; Dechezleprêtre, A. Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef]
- Yang, R.; An, X.; Chen, Y.; Yang, X. The Knowledge Analysis of Panel Vector Autoregression: A Systematic Review. SAGE Open 2023, 13, 1–20. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, B.; Xu, Z.; Li, M.; Skare, M. A Multi-Dimensional Decision Framework Based on the XGBoost Algorithm and the Constrained Parametric Approach. Sci. Rep. 2025, 15, 4315. [Google Scholar] [CrossRef]
- Barnett, A.H. The Pigouvian Tax Rule under Monopoly. Am. Econ. Rev. 1980, 70, 1037–1041. [Google Scholar]
- Cadoret, I.; Galli, E.; Padovano, F. Environmental Taxation: Pigouvian or Leviathan? J. Ind. Bus. Econ. 2021, 48, 37–51. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Convery, F.J.; de Perthuis, C. Pricing Carbon: The European Union Emissions Trading Scheme; Cambridge University Press: Cambridge, NY, UK, 2010; ISBN 978-1-139-48604-0. [Google Scholar]
- Goulder, L.H.; Schein, A.R. Carbon Taxes Versus Cap and Trade: A Critical Review. Clim. Change Econ. 2013, 4, 1350010. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Marcantonini, C.; Zaklan, A. The European Union Emissions Trading System: Ten Years and Counting. Rev. Environ. Econ. Policy 2016, 10, 89–107. [Google Scholar] [CrossRef]
- Borghesi, S.; Montini, M. The Best (and Worst) of GHG Emission Trading Systems: Comparing the EU ETS with Its Followers. Front. Energy Res. 2016, 4, 27. [Google Scholar] [CrossRef]
- Perino, G. New EU ETS Phase 4 Rules Temporarily Puncture Waterbed. Nat. Clim. Change 2018, 8, 262–264. [Google Scholar] [CrossRef]
- European Commission; Directorate General for Climate Action; Vivid Economics. Review of the EU ETS Market Stability Reserve: Final Report; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Flachsland, C.; Marschinski, R.; Edenhofer, O. To Link or Not to Link: Benifits and Disadvantages of Linking Cap-and-Trade Systems. Clim. Policy 2009, 9, 358–372. [Google Scholar] [CrossRef]
- Haites, E. Carbon Taxes and Greenhouse Gas Emissions Trading Systems: What Have We Learned? Clim. Policy 2018, 18, 955–966. [Google Scholar] [CrossRef]
- Wang, B.; Yang, M.; Zhang, X. The Effect of the Carbon Emission Trading Scheme on a Firm’s Total Factor Productivity: An Analysis of Corporate Green Innovation and Resource Allocation Efficiency. Front. Environ. Sci. 2022, 10, 1036482. [Google Scholar] [CrossRef]
- Narassimhan, E.; Gallagher, K.S.; Koester, S.; Alejo, J.R. Carbon Pricing in Practice: A Review of Existing Emissions Trading Systems. Clim. Policy 2018, 18, 967–991. [Google Scholar] [CrossRef]
- World Bank. State and Trends of Carbon Pricing 2023; World Bank: Washington, DC, USA, 2023; ISBN 978-1-4648-2006-9. [Google Scholar]
- Baranzini, A.; Van Den Bergh, J.C.J.M.; Carattini, S.; Howarth, R.B.; Padilla, E.; Roca, J. Carbon Pricing in Climate Policy: Seven Reasons, Complementary Instruments, and Political Economy Considerations. WIREs Clim. Change 2017, 8, e462. [Google Scholar] [CrossRef]
- Ellerman, A.D.; Buchner, B.K. The European Union Emissions Trading Scheme: Origins, Allocation, and Early Results. Rev. Environ. Econ. Policy 2007, 1, 66–87. [Google Scholar] [CrossRef]
- Burtraw, D.; Sekar, S. Two World Views on Carbon Revenues. J. Environ. Stud. Sci. 2014, 4, 110–120. [Google Scholar] [CrossRef]
- Hintermann, B. Chapter 5: Emissions Trading and Market Manipulation. In Research Handbook on Emissions Trading; Edward Elgar Publishing: Northampton, MA, USA, 2016; ISBN 978-1-78471-062-0. [Google Scholar]
- Krokida, S.-I.; Lambertides, N.; Savva, C.S.; Tsouknidis, D.A. The Effects of Oil Price Shocks on the Prices of EU Emission Trading System and European Stock Returns. Eur. J. Financ 2020, 26, 1–13. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Yuan, Y.; Hao, A. Time-Varying Impacts of Carbon Price Drivers in the EU ETS: A TVP-VAR Analysis. Front. Environ. Sci. 2021, 9, 651791. [Google Scholar] [CrossRef]
- Zheng, Y.; Yin, H.; Zhou, M.; Liu, W.; Wen, F. Impacts of Oil Shocks on the EU Carbon Emissions Allowances under Different Market Conditions. Energy Econ. 2021, 104, 105683. [Google Scholar] [CrossRef]
- Olasehinde-Williams, G. Carbon Pricing and Aggregate Macroeconomic Performance in the Eurozone: A Contribution to the Climate Policy Debate Using the EU ETS and Macroeconomic Performance Index. Environ. Sci. Pollut. Res. 2024, 31, 28290–28305. [Google Scholar] [CrossRef] [PubMed]
- Benz, E.; Trück, S. Modeling the Price Dynamics of CO2 Emission Allowances. Energy Econ. 2009, 31, 4–15. [Google Scholar] [CrossRef]
- Chevallier, J. A Model of Carbon Price Interactions with Macroeconomic and Energy Dynamics. Energy Econ. 2011, 33, 1295–1312. [Google Scholar] [CrossRef]
- Mansanet-Bataller, M.; Pardo, A.; Valor, E. CO2 Prices, Energy and Weather. Energy J. 2007, 28, 73–92. [Google Scholar] [CrossRef]
- International Labour Organization. World Employment and Social Outlook 2018–Greening with Jobs. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/---publ/documents/publication/wcms_628654.pdf (accessed on 21 June 2025).
- Bredin, D.; Muckley, C. An Emerging Equilibrium in the EU Emissions Trading Scheme. Energy Econ. 2011, 33, 353–362. [Google Scholar] [CrossRef]
- Chevallier, J. Evaluating the Carbon-Macroeconomy Relationship: Evidence from Threshold Vector Error-Correction and Markov-Switching VAR Models. Econ. Model. 2011, 28, 2634–2656. [Google Scholar] [CrossRef]
- Moessner, R. Effects of Carbon Pricing on Inflation. Clim. Policy 2025, 1–14. [Google Scholar] [CrossRef]
- Santabárbara, D.; Suárez-Varela, M. Carbon Pricing and Inflation Volatility; Banco de Espana Working Paper No. 223; CEPR Office: Madrid, Spain, 2022. [Google Scholar] [CrossRef]
- OECD. Investing in Climate, Investing in Growth; OECD: Paris, France, 2017; ISBN 978-92-64-27351-1. [Google Scholar]
- Pollin, R.; Callaci, B. The Economics of Just Transition: A Framework for Supporting Fossil Fuel–Dependent Workers and Communities in the United States. Labor Stud. J. 2019, 44, 93–138. [Google Scholar] [CrossRef]
- Chateau, J.; Rebolledo, C.; Dellink, R. An Economic Projection to 2050: The OECD" ENV-Linkages" Model Baseline; OECD Environment Working Papers No. 41; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef]
- Welfens, P.J.; Celebi, K. CO2 Allowance Price Dynamics and Stock Markets in EU Countries: Empirical Findings and Global CO2-Perspectives; EIIW Discussion Paper No. 267; Universitätsbibliothek Wuppertal, University Library: Wuppertal, Germany, 2020; Available online: https://www.researchgate.net/publication/345764665_CO2_Allowance_Price_Dynamics_and_Stock_Markets_in_EU_Countries_Empirical_Findings_and_Global_CO2-Perspectives#fullTextFileContent (accessed on 21 June 2025).
- Aharon, D.Y.; Baig, A.S.; Jacoby, G.; Wu, Z. Greenhouse Gas Emissions and the Stability of Equity Markets. J. Int. Financ. Mark. Inst. Money 2024, 92, 101952. [Google Scholar] [CrossRef]
- García, A.; García-Álvarez, M.T.; Moreno, B. The Impact of EU Allowance Prices on the Stock Market Indices of the European Power Industries: Evidence From the Ongoing EU ETS Phase III. Organ. Environ. 2021, 34, 459–478. [Google Scholar] [CrossRef]
- Pástor, L.; Veronesi, P. Uncertainty about Government Policy and Stock Prices. J. Financ 2012, 67, 1219–1264. [Google Scholar] [CrossRef]
- Liu, T.; Guan, X.; Wei, Y.; Xue, S.; Xu, L. Impact of Economic Policy Uncertainty on the Volatility of China’s Emission Trading Scheme Pilots. Energy Econ. 2023, 121, 106626. [Google Scholar] [CrossRef]
- Gao, Q.; Zeng, H.; Sun, G.; Li, J. Extreme Risk Spillover from Uncertainty to Carbon Markets in China and the EU—A Time Varying Copula Approach. J. Environ. Manag. 2023, 326, 116634. [Google Scholar] [CrossRef]
- Krueger, P.; Sautner, Z.; Starks, L.T. The Importance of Climate Risks for Institutional Investors. Rev. Financ. Stud. 2020, 33, 1067–1111. [Google Scholar] [CrossRef]
- Albuquerque, R.; Koskinen, Y.; Yang, S.; Zhang, C. Love in the Time of COVID-19: The Resiliency of Environmental and Social Stocks. SSRN Electron. J. 2020, 9, 593–621. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, R. ESG Performance and Stock Price Volatility in Public Health Crisis: Evidence from COVID-19 Pandemic. Int. J. Environ. Res. Public. Health 2021, 19, 202. [Google Scholar] [CrossRef] [PubMed]
- Broadstock, D.C.; Chan, K.; Cheng, L.T.W.; Wang, X. The Role of ESG Performance during Times of Financial Crisis: Evidence from COVID-19 in China. Financ Res. Lett. 2021, 38, 101716. [Google Scholar] [CrossRef]
- Shrestha, K.; Naysary, B. ESG and Economic Policy Uncertainty: A Wavelet Application. Financ Res. Lett. 2023, 58, 104645. [Google Scholar] [CrossRef]
- Dewaelheyns, N.; Schoubben, F.; Struyfs, K.; Van Hulle, C. The Influence of Carbon Risk on Firm Value: Evidence from the European Union Emission Trading Scheme. J. Environ. Manag.. 2023, 344, 118293. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, M.; Xu, H.; Guo, S.; Guo, R.; Lee, C.T. Simulation on the Effectiveness of Carbon Emission Trading Policy: A System Dynamics Approach. J. Oper. Res. Soc. 2021, 72, 1447–1460. [Google Scholar] [CrossRef]
- Mercure, J.-F.; Pollitt, H.; Bassi, A.M.; Viñuales, J.E.; Edwards, N.R. Modelling Complex Systems of Heterogeneous Agents to Better Design Sustainability Transitions Policy. Glob. Environ. Change 2016, 37, 102–115. [Google Scholar] [CrossRef]
- Pástor, Ľ.; Stambaugh, R.F.; Taylor, L.A. Sustainable Investing in Equilibrium. J. Financ. Econ. 2021, 142, 550–571. [Google Scholar] [CrossRef]
- Golosov, M.; Menzio, G. Agency Business Cycles. Theor. Econ. 2020, 15, 123–158. [Google Scholar] [CrossRef]
- Haasnoot, M.; Van’t Klooster, S.; Van Alphen, J. Designing a Monitoring System to Detect Signals to Adapt to Uncertain Climate Change. Glob. Environ. Change 2018, 52, 273–285. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J. Measuring Economic Policy Uncertainty. Q. J. Econ. 2016, 131, 1593–1636. [Google Scholar] [CrossRef]
- Canova, F.; Ciccarelli, M. Panel Vector Autoregressive Models: A Survey☆ The Views Expressed in This Article Are Those of the Authors and Do Not Necessarily Reflect Those of the ECB or the Eurosystem. In VAR Models in Macroeconomics—New Developments and Applications: Essays in Honor of Christopher A. Sims; Emerald Group Publishing Limited: Leeds, UK, 2013; pp. 205–246. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.G.; Lee, S.-I. Consistent Individualized Feature Attribution for Tree Ensembles. arXiv 2019, arXiv:1802.03888. [Google Scholar] [CrossRef]
- Pesaran, M.H. Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors. J. Econom. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Sigmund, M.; Ferstl, R. Panel Vector Autoregression in R with the Package Panelvar. Q. Rev. Econ. Financ 2021, 80, 693–720. [Google Scholar] [CrossRef]
- Roodman, D. A Note on the Theme of Too Many Instruments. Oxf. Bull. Econ. Stat. 2009, 71, 135–158. [Google Scholar] [CrossRef]
- Bun, M.J.; Windmeijer, F. The Weak Instrument Problem of the System GMM Estimator in Dynamic Panel Data Models. Econom. J. 2010, 13, 95–126. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar] [CrossRef]
- Assael, J.; Carlier, L.; Challet, D. Dissecting the Explanatory Power of ESG Features on Equity Returns by Sector, Capitalization, and Year with Interpretable Machine Learning. J. Risk Financ. Manag. 2023, 16, 159. [Google Scholar] [CrossRef]
- Hintermann, B. Allowance Price Drivers in the First Phase of the EU ETS. J. Environ. Econ. Manag. 2010, 59, 43–56. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, Y.; Guo, L.; Chen, J. Leveraging Machine Learning to Forecast Carbon Returns: Factors from Energy Markets. Appl. Energy 2024, 357, 122515. [Google Scholar] [CrossRef]
- Jang, M.; Yoon, S.; Jung, S.; Min, B. Simulating and Assessing Carbon Markets: Application to the Korean and the EU ETSs. Renew. Sustain. Energy Rev. 2024, 195, 114346. [Google Scholar] [CrossRef]
- Rizzati, M.C.P.; Ciola, E.; Turco, E.; Bazzana, D.; Vergalli, S. Beyond Green Preferences: Demand-Side and Supply-Side Drivers in the Low-Carbon Transition. Environ. Resour. Econ. 2025, 88, 1239–1295. [Google Scholar] [CrossRef]
- Engle, R.F.; Giglio, S.; Kelly, B.; Lee, H.; Stroebel, J. Hedging Climate Change News. Rev. Financ. Stud. 2020, 33, 1184–1216. [Google Scholar] [CrossRef]
- Soliman, A.M.; Nasir, M.A. Association between the Energy and Emission Prices: An Analysis of EU Emission Trading System. Resour. Policy 2019, 61, 369–374. [Google Scholar] [CrossRef]
- Bowen, A.; Kuralbayeva, K. Looking for Green Jobs: The Impact of Green Growth on Employment; Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE) 2015. pp. 1–28. Available online: https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2015/03/Looking-for-green-jobs_the-impact-of-green-growth-on-employment.pdf (accessed on 21 June 2025).
Variable | Abbrev | Description | Unit | Source |
---|---|---|---|---|
ETS return | ETS | Monthly change in ETS price, capturing short-term dynamics of carbon pricing | EUR per tCO2e | ICAP |
Stock market volatility | VOL | Monthly standard deviation of daily stock index returns (domestic) | Standard deviation (unitless) | Yahoo Finance |
Policy uncertainty index | EPU | Economic Policy Uncertainty Index (country-specific) | Index | Economic Policy Uncertainty |
Consumer Price Index | CPI | National Consumer Price Index—proxy for inflation | Index | OECD/FRED |
Unemployment rate | UNEMP | National unemployment rate, % of labor force | Percent (%) | OECD/FRED |
Brent oil price | RATE | Brent crude oil price—proxy for global energy shocks | USD per barrel | Investing.com |
ESG Leaders Index | ESG | World ESG Leaders Index—proxy for global sustainable investment sentiment | Index | investing.com |
Variable | IPS Stat | IPS p | MW Stat | MW p | Hadri Stat | Hadri p |
---|---|---|---|---|---|---|
ETS | −1.50 | 0.13 | 5.2 | 0.74 | 15 | 0 |
VOL | −8.58 | 0 | 114.38 | 0 | 4.83 | 0 |
RATE | −1.70 | 0.09 | 10.5 | 0.13 | 12.5 | 0 |
EPU | −6.54 | 0 | 83.4 | 0 | 11.1 | 0 |
CPI | −4.63 | 0 | 62.86 | 0 | 49.81 | 0 |
UNEMP | −1.38 | 0.08 | 47.43 | 0 | 23.24 | 0 |
ESG | 2.19 | 0.99 | 2.79 | 0.99 | 35.59 | 0 |
Variable | Mean | Std. Dev. | Min | Max | Skew | Kurtosis | Description |
---|---|---|---|---|---|---|---|
ETS | 0.00 | 0.08 | −0.34 | 0.41 | 0.39 | 4.02 | First-diff log ETS price |
VOL | 4.14 | 1.87 | −1.04 | 6.57 | −1.52 | 1.20 | Log equity index volatility |
EPU | 5.32 | 0.61 | 4.32 | 7.00 | 0.71 | −0.36 | Log economic policy uncertainty (national) |
CPI | 4.82 | 0.14 | 4.61 | 5.09 | 0.20 | −1.14 | Log Consumer Price Index |
UNEMP | 1.39 | 0.25 | 0.92 | 1.96 | 0.18 | −0.93 | Log unemployment rate |
Variable | D_ETS | VOL | EPU | CPI | UNEMP |
---|---|---|---|---|---|
lag1_d_ets | 0.0490 (0.0634) | 0.0613 (0.2132) | −0.0520 (0.1825) | −0.0059 (0.0077) | −0.1207 *** (0.0346) |
lag1_vol | 0.0216 (0.0182) | 0.1544 * (0.0613) | 0.0314 (0.0524) | −0.0017 (0.0022) | −0.0123 (0.0099) |
lag1_epu | 0.0116 (0.0223) | −0.1426 (0.0749) | 0.1728 ** (0.0641) | 0.0028 (0.0027) | 0.0151 (0.0121) |
lag1_cpi | 0.1864 (0.5738) | 0.1679 (1.9296) | −0.4317 (1.6513) | 0.9709 *** (0.0701) | 0.1922 (0.3131) |
lag1_unemp | −0.0583 (0.1283) | 0.8118 (0.4315) | 0.5283 (0.3692) | 0.0109 (0.0157) | 0.5058 *** (0.0700) |
lag2_d_ets | −0.0385 (0.0658) | 0.0882 (0.2213) | 0.0381 (0.1894) | 0.0173 * (0.0080) | 0.0424 (0.0359) |
lag2_vol | −0.0236 (0.0189) | −0.0828 (0.0635) | 0.0046 (0.0543) | −0.0028 (0.0023) | 0.0069 (0.0103) |
lag2_epu | 0.0032 (0.0227) | 0.0061 (0.0764) | 0.0877 (0.0654) | −0.0029 (0.0028) | 0.0075 (0.0124) |
lag2_cpi | 0.0116 (0.6591) | 1.2570 (2.2163) | −0.3730 (1.8967) | −0.0963 (0.0805) | −0.5707 (0.3596) |
lag2_unemp | 0.0175 (0.1439) | 0.1073 (0.4841) | −0.1985 (0.4143) | −0.0008 (0.0176) | 0.1096 (0.0786) |
lag3_d_ets | −0.0993 (0.0650) | 0.1720 (0.2186) | −0.1507 (0.1870) | −0.0069 (0.0079) | −0.0425 (0.0355) |
lag3_vol | −0.0242 (0.0183) | 0.0259 (0.0616) | −0.0009 (0.0527) | 0.0020 (0.0022) | 0.0035 (0.0100) |
lag3_epu | 0.0163 (0.0226) | 0.0987 (0.0760) | 0.0165 (0.0650) | 0.0021 (0.0028) | 0.0008 (0.0123) |
lag3_cpi | −0.4192 (0.4780) | −0.1216 (1.6076) | 0.2953 (1.3757) | 0.0247 (0.0584) | 0.2555 (0.2609) |
lag3_unemp | −0.1015 (0.1413) | −0.5186 (0.4751) | −0.5563 (0.4066) | −0.0097 (0.0173) | 0.1078 (0.0771) |
lag4_d_ets | −0.1375 * (0.0638) | −0.0732 (0.2147) | −0.1214 (0.1837) | 0.0001 (0.0078) | −0.0449 (0.0348) |
lag4_vol | −0.0273 (0.0184) | 0.0224 (0.0618) | −0.0447 (0.0528) | 0.0002 (0.0022) | −0.0099 (0.0100) |
lag4_epu | 0.0105 (0.0221) | 0.0148 (0.0742) | 0.0500 (0.0635) | 0.0026 (0.0027) | 0.0124 (0.0120) |
lag4_cpi | 0.7408 * (0.3542) | −1.2105 (1.1913) | −0.1746 (1.0195) | −0.0411 (0.0433) | 0.3625 (0.1933) |
lag4_unemp | −0.0135 (0.1194) | −0.3069 (0.4014) | 0.2246 (0.3435) | 0.0091 (0.0146) | 0.0313 (0.0651) |
d_ets.mean | 0.9366 *** (0.1571) | 0.3273 (0.5284) | 0.0609 (0.4522) | −0.0003 (0.0192) | −0.1529 (0.0857) |
vol.mean | 0.0046 (0.0310) | 0.9910 *** (0.1044) | −0.0420 (0.0893) | −0.0008 (0.0038) | −0.0081 (0.0169) |
epu.mean | 0.0148 (0.0502) | 0.0121 (0.1687) | 1.0041 *** (0.1443) | −0.0006 (0.0061) | 0.0068 (0.0274) |
cpi.mean | −0.6871 (0.4000) | −0.3919 (1.3451) | 0.4772 (1.1511) | 0.1532 ** (0.0489) | −0.1390 (0.2183) |
unemp.mean | 0.1062 (0.1692) | 0.1350 (0.5690) | 0.3624 (0.4870) | −0.0291 (0.0207) | 0.3599 *** (0.0923) |
d_rate | −0.0033 (0.0774) | 0.0154 (0.2602) | 0.1651 (0.2227) | 0.0044 (0.0095) | −0.0257 (0.0422) |
d_esg | −0.0131 (0.1189) | −0.1193 (0.3997) | 0.1249 (0.3421) | −0.0053 (0.0145) | −0.0045 (0.0649) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudor, C.; Girlovan, A.; Sova, R.; Sierra, J.; Stancu, G.R. From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems. Energies 2025, 18, 4125. https://doi.org/10.3390/en18154125
Tudor C, Girlovan A, Sova R, Sierra J, Stancu GR. From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems. Energies. 2025; 18(15):4125. https://doi.org/10.3390/en18154125
Chicago/Turabian StyleTudor, Cristiana, Aura Girlovan, Robert Sova, Javier Sierra, and Georgiana Roxana Stancu. 2025. "From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems" Energies 18, no. 15: 4125. https://doi.org/10.3390/en18154125
APA StyleTudor, C., Girlovan, A., Sova, R., Sierra, J., & Stancu, G. R. (2025). From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems. Energies, 18(15), 4125. https://doi.org/10.3390/en18154125