energies-logo

Journal Browser

Journal Browser

Energy Management Systems: Challenges, Techniques and Opportunities: 2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A1: Smart Grids and Microgrids".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 2330

Special Issue Editors


E-Mail Website
Guest Editor
Department of Power Electronics and Energy Control Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
Interests: building automation and control systems; building energy management systems; energy management; demand-side management; smart metering; smart grid; microgrid; microcontrollers; event-based control; prosumer
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Electrical Apparatus, Faculty of Electrical Engineering, Electronics, Computer Science and Automatic Control, Lodz University of Technology, B. Stefanowskiego 20, 90-537 Łódź, Poland
Interests: electrical apparatus; electromechatronics; electrotechnology; automation of measurement processes; software engineering; computer-aided design; modeling and computer simulation; building automation and control systems; building energy management systems; energy management; demand-side management; smart metering; smart grid; microgrid; event-based control; prosumer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the growing demand for energy and the growing number of distributed energy sources, the modern power grid is constantly changing. This is particularly true at the distribution level, where new structures such as microgrids, virtual power plants, and energy clusters appear. Moreover, an increasing number of existing energy consumers are turning into local prosumers. Renewable energy sources and storage systems are attached to the power grid as well, often constituting the infrastructure of industrial plants, buildings, and houses.

Therefore, along with the technological development and modernization of electric power grids, new systems and tools enabling the effective management of energy and power flows in such grids and facilities are being implemented. This Special Issue focuses on issues related to the development of modern energy management systems (EMSs) and platforms at different levels of contemporary energy systems and smart power grids. It aims to present original research and studies related to the development of technical frameworks, technologies and methods of energy and demand management in distribution networks, microgrids, virtual power plants, prosumer installations and buildings equipped with renewable energy sources (RESs), storage systems, heat pumps, etc. Moreover, innovative management approaches based on machine learning (ML) and reinforced learning (RL) are considered in this Special Issue.

All kinds of manuscripts presenting research, case studies, and state-of-the-art reviews can be submitted to this Special Issue; the scope of this Special Issue covers (but is not limited to) the following topics:

  • Energy management systems;
  • Effective demand-side management and response;
  • Flexibility of power supply and demand response;
  • Interactivity in power grids;
  • Technologies and solutions in microgrids and virtual power plants;
  • Innovative transactive energy systems;
  • Data communication networks for energy management;
  • The integration of renewable energy sources and storages;
  • Distributed generation with smart control and monitoring functions;
  • Microgrids with buildings integrated;
  • Energy management in buildings and homes;
  • Energy efficiency in buildings;
  • Renewable energy technologies in buildings;
  • Electric vehicles in smart grids;
  • Consumer and prosumer activization.

Dr. Andrzej Ożadowicz
Prof. Dr. Piotr Borkowski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • energy management
  • demand-side management
  • demand-side response
  • energy flexibility
  • energy efficiency
  • prosumers
  • microgrids
  • virtual plants
  • transactive energy
  • internet of energy
  • renewable energy sources
  • energy storage
  • distributed generation
  • building energy management systems
  • machine learning
  • reinforcement learning
  • vehicle-to-grid

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 234
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

29 pages, 1079 KiB  
Article
Electricity-Related Emissions Factors in Carbon Footprinting—The Case of Poland
by Anna Lewandowska, Katarzyna Joachimiak-Lechman, Jolanta Baran and Joanna Kulczycka
Energies 2025, 18(15), 4092; https://doi.org/10.3390/en18154092 - 1 Aug 2025
Viewed by 207
Abstract
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess [...] Read more.
Electricity is a significant factor in the life cycle of many products, so the reliability of greenhouse gas (GHG) emissions data is crucial. The article presents publicly available sources of emission factors representative of Poland. The aim of the study is to assess their strengths and weaknesses in the context of the calculation requirements of carbon footprint analysis in accordance with the GHG Protocol. The article presents the results of carbon footprint calculations for different ranges of emissions in the life cycle of 1 kWh of electricity delivered to a hypothetical organization. Next, a discussion on the quality of the emissions factors has been provided, taking account of data quality indicators. It was concluded that two of the emissions factors that are compared—those based on the national consumption mix and the residual mix for Poland—have been recognized as suitable for use in carbon footprint calculations. Beyond the calculation results, the research highlights the significance of the impact of the selection of emissions factors on the reliability of environmental analysis. The article identifies methodological challenges, including the risk of double counting, limited transparency, methodological inconsistency, and low correlation of data with specific locations and technologies. The insights presented contribute to improving the robustness of carbon footprint calculations. Full article
Show Figures

Figure 1

22 pages, 6348 KiB  
Article
The Development of a MATLAB/Simulink-SCADA/EMS-Integrated Framework for Microgrid Pre-Validation
by Seonghyeon Kim, Young-Jin Kim and Sungyun Choi
Energies 2025, 18(11), 2739; https://doi.org/10.3390/en18112739 - 25 May 2025
Viewed by 720
Abstract
To validate microgrid systems, precise simulations are necessary beforehand. Traditional Hardware-in-the-Loop Simulation (HILS) is used to validate systems by creating a digital twin environment that integrates software and hardware to mimic reality. However, HILS requires high investment costs for hardware, posing a significant [...] Read more.
To validate microgrid systems, precise simulations are necessary beforehand. Traditional Hardware-in-the-Loop Simulation (HILS) is used to validate systems by creating a digital twin environment that integrates software and hardware to mimic reality. However, HILS requires high investment costs for hardware, posing a significant hurdle for companies. To address this issue, this study proposes a Software-in-the-Loop Simulation (SILS) framework using SCADA/EMS and MATLAB/Simulink(R2024a). The proposed SILS framework is highly compatible with Energy Management Systems (EMSs) and Supervisory Control and Data Acquisition (SCADA), allowing near real-time data exchange and scenario-based analysis without relying on physical hardware. According to the simulation results, SILS effectively replicates the dynamic behavior of microgrid components such as solar power generation systems, energy storage systems (ESSs), and diesel generators. Solution providers can quickly conduct feasibility tests through systems that simulate actual power systems. They can test the operation of SCADA/EMS at a lower cost and reduce on-site time, thereby reducing business costs and preemptively addressing potential issues in the field. This paper demonstrates how SILS can contribute to establishing optimal operation strategies and power supply stability through case studies, including daily operation optimization and autonomous operation scenarios for microgrids. This research provides a foundation for the feasibility of microgrid solution construction by enabling software performance evaluations and the verification of economic expected returns in the early stages of a project. Full article
Show Figures

Figure 1

Review

Jump to: Research

37 pages, 727 KiB  
Review
Next-Generation CSP: The Synergy of Nanofluids and Industry 4.0 for Sustainable Solar Energy Management
by Mohamed Shameer Peer, Tsega Y. Melesse, Pier Francesco Orrù, Mattia Braggio and Mario Petrollese
Energies 2025, 18(8), 2083; https://doi.org/10.3390/en18082083 - 17 Apr 2025
Cited by 1 | Viewed by 795
Abstract
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption [...] Read more.
The growing demand for efficient and sustainable energy solutions underscores the importance of advancing solar energy technologies, particularly Concentrated Solar Power (CSP) systems. This review presents a structured evaluation of two key innovation domains in CSP: the application of nanofluids and the adoption of Industry 4.0 technologies. The first part analyzes experimental and simulation-based studies on nanofluid-enhanced CSP systems, covering four major collector types—parabolic trough, solar power tower, solar dish, and Fresnel reflectors. Nanofluids have been shown to significantly enhance thermal efficiency, with hybrid formulations offering the greatest improvements. The second part examines the role of Industry 4.0 technologies—including artificial intelligence (AI), machine learning (ML), and digital twins (DT)—in improving CSP system monitoring, performance prediction, and operational reliability. Although a few recent studies explore the combined use of nanofluids and Industry 4.0 tools in CSP systems, most research addresses these areas independently. This review identifies this lack of integration as a gap in the current literature. By presenting separate yet complementary analyses, the study offers a comprehensive overview of emerging pathways for CSP optimization. Key research challenges and future directions are highlighted, particularly in nanofluid stability, system cost-efficiency, and digital implementation at scale. Full article
Show Figures

Figure 1

Back to TopTop