Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,564)

Search Parameters:
Keywords = start-up pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7041 KiB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

19 pages, 1310 KiB  
Review
A Survey of Machine and Deep Learning Techniques in Analog Integrated Circuit Layout Synthesis
by Ricardo M. F. Martins
Microelectronics 2025, 1(1), 2; https://doi.org/10.3390/microelectronics1010002 - 1 Aug 2025
Viewed by 151
Abstract
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact [...] Read more.
Automatic techniques for analog integrated circuit layout design have been proposed in the literature for over four decades. However, as analog design moves into deep nanometer integration nodes, the increasing number of design rules, the influence of layout-dependent effects, congestion, and the impact of parasitic structures constantly challenges existing automatic layout generation techniques and keeps the pressure on for further improvement. At the time of writing, no automatic tool or flow has been established in the industrial environment, resulting in a time-consuming and difficult-to-reuse design process. However, very recently, machine and deep learning techniques started to offer solutions for problems not dealt with in the previous generation of automatic layout tools and are reshaping analog design automation. Therefore, this paper conducts a review of the most recent analog integrated circuit automatic layout techniques powered by machine and deep learning methods, covering placement, routing, and trends on post-layout performance estimation, as well as providing an actual, complete, and comprehensive guide for circuit designers and design automation developers. Full article
Show Figures

Figure 1

15 pages, 5596 KiB  
Article
Effects of Hypertension Induced by 0.3% Saline Loading on Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats
by Rina Takagi, Yoshiaki Tanaka, Tetsuya Hasegawa, Masami Shinohara, Yasushi Kageyama, Tomohiko Sasase, Takeshi Ohta, Shin-ichi Muramatsu, Nobuhiko Ohno, Akihiro Kakehashi and Toshikatsu Kaburaki
Diabetology 2025, 6(8), 73; https://doi.org/10.3390/diabetology6080073 - 1 Aug 2025
Viewed by 202
Abstract
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received [...] Read more.
Objective: This study aimed to determine the possibility of creating a new animal model in which diabetic retinopathy (DR) progresses due to hypertension caused by salt loading. Methods: Male Spontaneously Diabetic Torii (SDT) fatty rats were divided into two groups: one group received 0.3% saline water starting at 8 weeks of age for a duration of 16 weeks (salt SDT fatty group), while the control group was provided with tap water (SDT fatty group). In addition, Sprague-Dawley (SD) rats receiving tap water served as normal controls. Retinal function was assessed by electroretinography (ERG) at 8 and 24 weeks of age. At 24 weeks, following perfusion with fluorescein dextran, the eyes were enucleated, and retinal flat mounts were prepared for vascular evaluation. Retinal thickness and the number of retinal folds were assessed histologically, and ultrastructural changes in the retina were examined using transmission electron microscopy. Results: Saline administration did not lead to significant changes in food consumption or body weight among the groups. In the salt SDT fatty group, blood pressure was significantly elevated, while blood glucose levels showed a slight reduction. ERG analysis showed that the amplitude of oscillatory potential (OP)1 waves was suppressed, and the latencies of OP3, OP4, and OP5 waves were prolonged. Although no significant changes were noted in retinal thickness or the number of retinal folds, thickening of the retinal capillary basement membrane was evident in the salt SDT fatty group. Conclusions: Hypertension induced by 0.3% saline promotes DR progression in SDT fatty rats. This model may help clarify the role of hypertension in DR. Full article
Show Figures

Graphical abstract

21 pages, 4352 KiB  
Article
Research on Startup Characteristics of Parallel Axial-Flow Pump Systems
by Chao Yang, Chao Li, Lingling Deng and You Fu
Water 2025, 17(15), 2285; https://doi.org/10.3390/w17152285 - 31 Jul 2025
Viewed by 161
Abstract
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the [...] Read more.
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the following conclusions are drawn: when all three pumps start simultaneously, the internal pressure exceeds the rated head by 23.43%, and the reverse flow reaches 10.57% of the rated flow. When starting the pumps sequentially with 5 s intervals, the pressure can be reduced to 11.41% above the rated head, but the reverse flow increases to 13.87%. Further extending the startup interval to 15 s results in only minimal improvements compared to 5 s intervals: the maximum internal pressure and maximum reverse flow decrease by just 0.97% and 0.05%, respectively. When valve coordination is added to the 5 s sequential startup strategy (pre-opening the valve to 60% before pump startup), the pressure exceeds the rated head by 10.49%, and the reverse flow exceeds the rated flow by 6.04%. In this scenario, the high-pressure areas and high-turbulence zones on the blade back surfaces are significantly reduced, achieving optimal flow stability. Therefore, the parallel system startup should adopt a coordinated strategy combining moderate time intervals with 60% valve pre-opening. This approach can both avoid excessive pressure impact and effectively control reverse flow phenomena, providing an important basis for optimizing the startup of multi-pump parallel systems. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 6134 KiB  
Article
Research on BPNN-MDSG Hybrid Modeling Method for Full-Cycle Simulation of Surge in Altitude Test Facility Compressor System
by Yang Su, Xuejiang Chen and Xin Wang
Appl. Sci. 2025, 15(15), 8253; https://doi.org/10.3390/app15158253 - 24 Jul 2025
Viewed by 273
Abstract
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and [...] Read more.
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and more energy efficiency in digital ATF systems. Hybrid modeling is a technology that combines many methods and can meet these requirements. The Modular Dynamic System Greitzer (MDSG) compressor model, including mechanistic and data-driven modeling approaches, is combined with a neural network to obtain a BPNN-MDSG hybrid modeling method for the digital turbine system. The digital simulation is linked with the physical sensors of the ATF system to realize real-time simulation and monitoring. The steady and dynamic conditions of the actual system are simulated in virtual space. Compared with the actual results, the average error of steady mass flow is less than 3%, and the error of pressure is less than 1%. The average error of dynamic mass flow is less than 5%, and the error of pressure is less than 3%. The simulation and characteristic predictions are carried out in BPNN-MDSG virtual space. The anti-surge characteristics of the ATF system under start-up conditions are obtained. The full-condition anti-surge operation map of the system is obtained, which provides guidance for the actual operation of the ATF system. Full article
Show Figures

Figure 1

21 pages, 3271 KiB  
Article
Evaluation of the Coupling Coordination Degree Between PM2.5 and Urbanization Level: A Case in Guangdong Province
by Jiwei Shen, Ziwen Zhu, Dakang Wang, Yingpin Yang, Yongru Mo, Hui Xia, Xiankun Yang, Yibo Wang, Zhen Li and Jinnian Wang
Sustainability 2025, 17(15), 6751; https://doi.org/10.3390/su17156751 - 24 Jul 2025
Viewed by 210
Abstract
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. [...] Read more.
PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) pollution is one of the most common problems triggered by the acceleration of urbanization. The coordinated development of cities and the environment has been a topic of significant interest in recent years. Based on the spatiotemporal relationship between the evolution of urbanization levels and PM2.5 concentrations, and starting from multiple factors characterizing urbanization, this study constructs a coupling coordination degree model between PM2.5 and urbanization levels to explore the interaction and degree of coordination between urbanization and PM2.5 in Guangdong Province from 2000 to 2021. The research reveals that the conflict between the urbanization process and PM2.5 pollution in various cities of Guangdong Province is gradually easing. The year 2011 was a turning point as the PM2.5 pollution levels in cities that were in an uncoordinated phase began to improve. The coupling coordination degree between urbanization and PM2.5 pollution in Guangdong Province exhibits significant spatial heterogeneity. The coupling coordination degree in most coastal cities is higher than that in inland cities. Cities in economically underdeveloped regions also face relatively lower pressure from pollution emissions. These regions are characterized by lagging urbanization, and their coupling coordination degree is slowly increasing as urbanization progresses. In economically developed regions, the coupling coordination degree between urbanization levels and PM2.5 pollution has reached a basic level of coordination, although the specific types vary. Full article
Show Figures

Figure 1

10 pages, 480 KiB  
Article
Correlation of Mechanical Thresholds, Glasgow Composite Measure Pain Scale, and Sharp and Wheeler Grading Scale in Dogs with Acute Thoracolumbar Disc Extrusions
by Jacqueline Hölscher, Alexandra Friederike Schütter, Sebastian Meller, Sabine B. R. Kästner and Holger Volk
Animals 2025, 15(15), 2176; https://doi.org/10.3390/ani15152176 - 24 Jul 2025
Viewed by 959
Abstract
In dogs with intervertebral disc extrusion (IVDE), the Glasgow Composite Measure Pain Scale—Short Form (GCMPS) and the Sharp and Wheeler Grading Scale (SWGS) are routinely used in the evaluation of pain (GCMPS) and neurological function (SWGS). Additionally, quantitative sensory tests (QSTs) are increasingly [...] Read more.
In dogs with intervertebral disc extrusion (IVDE), the Glasgow Composite Measure Pain Scale—Short Form (GCMPS) and the Sharp and Wheeler Grading Scale (SWGS) are routinely used in the evaluation of pain (GCMPS) and neurological function (SWGS). Additionally, quantitative sensory tests (QSTs) are increasingly being incorporated into veterinary clinical practice for pain characterisation. The aim was to investigate a possible relationship between the GCMPS, the SWGS, and mechanical thresholds (MTs) in 31 client-owned dogs with thoracolumbar IVDEs. Dogs were always assessed in the same order, starting with pain rating using the GCMPS, followed by classifying neurological severity using the SWGS, before determining MTs using a handheld pressure algometer. Dogs were evaluated over a five-day testing period (before surgery and on days one, two, three, and ten after surgery). The GCMPS and the SWGS data remained consistent across all days of testing. No statistically significant correlation or difference was observed between the scores. MTs showed a significant negative correlation with the GCMPS (r = −0.311; p < 0.001) and a positive one with the SWGS (r = 0.282; p = 0.002). The GCMPS and MTs showed a slight divergence in their progression. MTs might be more sensitive than GCMPS in reflecting clinical improvement and should be considered for clinical practice. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

26 pages, 7439 KiB  
Review
A Review of Marine Dual-Fuel Engine New Combustion Technology: Turbulent Jet-Controlled Premixed-Diffusion Multi-Mode Combustion
by Jianlin Cao, Zebang Liu, Hao Shi, Dongsheng Dong, Shuping Kang and Lingxu Bu
Energies 2025, 18(15), 3903; https://doi.org/10.3390/en18153903 - 22 Jul 2025
Viewed by 316
Abstract
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC [...] Read more.
Driven by stringent emission regulations, advanced combustion modes utilizing turbulent jet ignition technology are pivotal for enhancing the performance of marine low-speed natural gas dual-fuel engines. This review focuses on three novel combustion modes, yielding key conclusions: (1) Compared to the conventional DJCDC mode, the TJCDC mode exhibits a significantly higher swirl ratio and turbulence kinetic energy in the main chamber during initial combustion. This promotes natural gas jet development and combustion acceleration, leading to shorter ignition delay, reduced combustion duration, and a combustion center (CA50) positioned closer to the Top Dead Center (TDC), alongside higher peak cylinder pressure and a faster early heat release rate. Energetically, while TJCDC incurs higher heat transfer losses, it benefits from lower exhaust energy and irreversible exergy loss, indicating greater potential for useful work extraction, albeit with slightly higher indicated specific NOx emissions. (2) In the high-compression ratio TJCPC mode, the Liquid Pressurized Natural Gas (LPNG) injection parameters critically impact performance. Delaying the start of injection (SOI) or extending the injection duration degrades premixing uniformity and increases unburned methane (CH4) slip, with the duration effects showing a load dependency. Optimizing both the injection timing and duration is, therefore, essential for emission control. (3) Increasing the excess air ratio delays the combustion phasing in TJCPC (longer ignition delay, extended combustion duration, and retarded CA50). However, this shift positions the heat release more optimally relative to the TDC, resulting in significantly improved indicated thermal efficiency. This work provides a theoretical foundation for optimizing high-efficiency, low-emission combustion strategies in marine dual-fuel engines. Full article
(This article belongs to the Special Issue Towards Cleaner and More Efficient Combustion)
Show Figures

Figure 1

28 pages, 2012 KiB  
Article
The Convergence of Trafficking and Migrant Smuggling in West Africa: Migration Pressure Factors and Criminal Actors
by Concepción Anguita-Olmedo
Soc. Sci. 2025, 14(8), 447; https://doi.org/10.3390/socsci14080447 - 22 Jul 2025
Viewed by 578
Abstract
In West Africa, there is a very close link between the phenomenon of trafficking and migrant smuggling. This article will analyze the pressure elements and the causes that drive sub-Saharan people to migrate, placing themselves in the hands of criminal networks that end [...] Read more.
In West Africa, there is a very close link between the phenomenon of trafficking and migrant smuggling. This article will analyze the pressure elements and the causes that drive sub-Saharan people to migrate, placing themselves in the hands of criminal networks that end up exploiting them—women and minors sexually, and men through forced labor. The main corridors departing from West Africa and the characteristics of the criminal groups exercising criminal governance will also be addressed. This research has used both primary and secondary sources, as well as empirical fieldwork consisting of interviews with security force officials, international humanitarian aid organizations, and academic experts on migration issues related to trafficking and smuggling. Our research reveals that the origin of migration is multifactorial. The violence experienced in West Africa, but also the misgovernance, the lack of opportunities for a very young population with limited prospects, and the human insecurity affecting the entire region, are the main reasons that compel people to migrate. In these migration processes, the safety of migrants is compromised as they are forced to start their journey through clandestine means, which exposes them to trafficking networks and thus to violence and exploitation. It is along the migration routes where trafficking and migrant smuggling converge. Full article
(This article belongs to the Collection Tackling Organized Crime and Human Trafficking)
Show Figures

Figure 1

16 pages, 1070 KiB  
Article
Validation of the HFA-ICOS Score for Carfilzomib-Induced Cardiotoxicity in Multiple Myeloma: A Real-Life Perspective Study
by Anna Astarita, Giulia Mingrone, Lorenzo Airale, Anna Colomba, Cinzia Catarinella, Marco Cesareo, Fabrizio Vallelonga, Arianna Paladino, Giulia Bruno, Dario Leone, Francesca Gay, Sara Bringhen, Franco Veglio and Alberto Milan
Cancers 2025, 17(14), 2353; https://doi.org/10.3390/cancers17142353 - 15 Jul 2025
Viewed by 299
Abstract
Background: Despite the inference about the cardiotoxicity induced by Carfilzomib, no validated risk prediction models for adverse cardiovascular events in a real-life population are available. Objectives: The aim of this study was to evaluate the performance of the risk stratification score for Carfilzomib-induced [...] Read more.
Background: Despite the inference about the cardiotoxicity induced by Carfilzomib, no validated risk prediction models for adverse cardiovascular events in a real-life population are available. Objectives: The aim of this study was to evaluate the performance of the risk stratification score for Carfilzomib-induced cardiotoxicity of the Heart Failure Association of the European Society of Cardiology and the International Cardio-Oncology Society (HFA-ICOS) in patients with multiple myeloma (MM). Methods: This is a prospective, real-world study including MM patients consecutively enrolled prior to starting Carfilzomib, divided into levels of risk according to the HFA-ICOS proforma. Results: Of 169 patients, 11.8% were classified as ‘low risk’, 38.5% as ‘medium risk’, 45.6% as ‘high risk’ and 4.1% as ‘very high risk’ at baseline. A total of 89 (52.7%) patients experienced one of the following events: 36 (21.3%) had at least one cardiovascular event and 77 (45.6%) had almost one hypertension-related event. No significant differences were observed for the incidence of any cardiovascular events between the different levels of risk (p > 0.05), even considering the HFA-ICOS score as a continuous variable. The integration of the score with the baseline systolic blood pressure and pulse wave velocity enhanced the accuracy of the score (AUC 0.557 vs. 0.736). Conclusions: The HFA-ICOS score did not discriminate between patients at low, medium and high risk, showing a limited discriminatory power in predicting the risk of events in our population. The integration of other parameters in the HFA-ICOS score, such as systolic blood pressure and pulse wave velocity, improved the performance of the score. Full article
(This article belongs to the Special Issue Cardio-Oncology: An Emerging Paradigm in Modern Medicine: 2nd Edition)
Show Figures

Figure 1

58 pages, 38117 KiB  
Article
Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design
by Janani Priyadharshini Veeraperumal Senthil Nathan, Martin Navamani Chellapandian, Vijayanandh Raja, Parvathy Rajendran, It Ee Lee, Naveen Kumar Kulandaiyappan, Beena Stanislaus Arputharaj, Subhav Singh and Deekshant Varshney
Machines 2025, 13(7), 604; https://doi.org/10.3390/machines13070604 - 14 Jul 2025
Viewed by 431
Abstract
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The [...] Read more.
Flying wing Unmanned Aerial Vehicles (UAVs) are an interesting flight configuration, considering its benefits over aerodynamic, structural and added stealth aspects. The existing configurations are thoroughly studied from the literature survey and useful observations with respect to design and analysis are obtained. The proposed design method includes distinct calculations of the UAV and modelling using 3D experience. The created innovative models are simulated with the help of computational fluid dynamics techniques in ANSYS Fluent to obtain the aerodynamic parameters such as forces, pressure and velocity. The optimization process continues to add more desired modifications to the model, to finalize the best design of flying wing frame for the chosen application and mission profile. In total, nine models are developed starting with the base model, then leading to the conventional, advanced and nature inspired configurations such as the falcon and dragonfly models, as it has an added advantage of producing high maneuverability and lift. Following this, fluid structure interaction analysis has been performed for the best performing configurations, resulting in the determination of variations in the structural behavior with the imposition of advanced composite materials, namely, boron, Kevlar, glass and carbon fiber-reinforced polymers. In addition to this, a hybrid material is designed by combining two composites that resulted in superior material performance when imposed. Control dynamic study is performed for the maneuvers planned as per mission profile, to ensure stability during flight. All the resulting parameters obtained are compared with one another to choose the best frame of the flying wing body, along with the optimum material to be utilized for future analysis and development. Full article
(This article belongs to the Special Issue Design and Application of Bionic Robots)
Show Figures

Figure 1

22 pages, 7206 KiB  
Article
The Impact of Diesel Injection Strategy and In-Cylinder Temperature on the Combustion and Emissions of Ammonia/Diesel Dual-Fuel Marine Engine
by Wei Guan, Songchun Luo, Jie Wu, Hua Lou, Lei Wang, Feng Wu, Li Li, Fuchuan Huang and Haibin He
Energies 2025, 18(14), 3631; https://doi.org/10.3390/en18143631 - 9 Jul 2025
Viewed by 303
Abstract
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant [...] Read more.
This study investigates the impact of different combustion control strategies on marine engine combustion and emission characteristics at a high ammonia energy ratio. Compared to the strategy of maintaining a constant fuel injection duration, the strategy of keeping the fuel injection pressure constant allows the kinetic energy of diesel to remain at a higher level. This results in an increase in combustion efficiency and indicated the thermal efficiency of the engine, while also reducing CO2 and soot emissions. However, when the ammonia energy ratio increases to more than 50%, the indicated thermal efficiency starts to decrease along with the increase in the emissions of N2O and unburned ammonia. To address these issues, one of the potential means is to improve the in-cylinder combustion environment by increasing the in-cylinder gas temperature. This can enhance combustion efficiency and ultimately optimize the performance and emission characteristics of dual-fuel engines, which results in an increase in the combustion efficiency to 98% and indicated thermal efficiency to 54.47% at a relatively high ammonia energy ratio of 60%. Emission results indicate that N2O emissions decrease from 1099 ppm to 25 ppm, while unburned ammonia emissions drop from 16016 ppm to 100 ppm. Eventually, the greenhouse gas emissions were reduced by about 85.3% in comparison with the baseline case. Full article
Show Figures

Figure 1

16 pages, 1242 KiB  
Article
Differential HIV-1 Proviral Defects in Children vs. Adults on Antiretroviral Therapy
by Jenna M. Hasson, Mary Grace Katusiime, Adam A. Capoferri, Michael J. Bale, Brian T. Luke, Wei Shao, Mark F. Cotton, Gert van Zyl, Sean C. Patro and Mary F. Kearney
Viruses 2025, 17(7), 961; https://doi.org/10.3390/v17070961 - 9 Jul 2025
Viewed by 540
Abstract
HIV-1 proviral landscapes were investigated using near-full-length HIV single-genome sequencing on blood samples from five children with vertically acquired infection and on ART for ~7–9 years. Proviral structures were compared to published datasets in children prior to ART, children on short-term ART, and [...] Read more.
HIV-1 proviral landscapes were investigated using near-full-length HIV single-genome sequencing on blood samples from five children with vertically acquired infection and on ART for ~7–9 years. Proviral structures were compared to published datasets in children prior to ART, children on short-term ART, and adults on ART. We found a strong selection for large internal proviral deletions in children, especially deletions of the env gene. Only 2.5% of the proviruses were sequence-intact, lower than in the comparative datasets from adults. Of the proviruses that retained the env gene, >80% contained two or more defects, most commonly stop codons and/or gag start mutations. Significantly fewer defects in the major splice donor site (MSD) and packaging signal were found in the children on short or long-term ART compared to the adults, and tat was more frequently defective in children. These results suggest that different selection pressures may shape the proviral landscape in children compared to adults and reveal potentially different genetic regions to target for measuring the intact HIV reservoir and for achieving HIV remission in children. Full article
(This article belongs to the Special Issue Intra-patient Viral Evolution and Diversity)
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 410
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

16 pages, 8362 KiB  
Article
Analysis of Selected Spark Plasma Sintering Parameters on the Mechanical Properties of Sintered X30Cr13 Steel
by Anna Kulakowska, Teresa Bajor and Anna Kawalek
Materials 2025, 18(13), 3084; https://doi.org/10.3390/ma18133084 - 29 Jun 2025
Viewed by 378
Abstract
This paper presents the possibilities of using the reaction sintering method for the production of tool steel used in medicine. The applied method enables the sintering of powders in one technological process. The SPS (spark plasma sintering) process is a technology in which [...] Read more.
This paper presents the possibilities of using the reaction sintering method for the production of tool steel used in medicine. The applied method enables the sintering of powders in one technological process. The SPS (spark plasma sintering) process is a technology in which electric pulses generate heat and pressure, which allows for the quick and effective connection of powder particles into a homogeneous material with high density and good mechanical properties. As a result, a product of small dimensions and a precisely defined chemical composition, established at the stage of preparing the powder mixture, is obtained. The advantages of the applied production process are the sintering time and small amounts of post-production waste compared to conventional methods of producing a finished product from steel. The method of producing a semi-finished product is particularly useful in the case of small-scale and small-sized production. The subject of the research was the analysis of the conditions for obtaining X30Cr13 martensitic steel used for the production of surgical instruments. This paper analyzes the effect of sintering temperature and time on sinterability and on selected physical and mechanical properties of the obtained materials. The sintering parameters of the starting mixture have been optimized to obtain the highest possible sinter properties, such as density and hardness. Based on the analysis of the results, it was found that the powder preparation method for the SPS process and the grain size significantly affect the microstructure and mechanical properties of the final product. The optimal sintering parameters for X30Cr13 steel are a temperature of 950 °C and a sintering time of 12 min. Furthermore, the use of the SPS method allows for a reduction in the manufacturing costs of martensitic steel semi-finished products. Full article
Show Figures

Figure 1

Back to TopTop