Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design
Abstract
1. Introduction
Literature Survey
2. Methodologies
2.1. Proposed Methodology—Innovative Flying Wing UAV
2.1.1. Payload Weight Estimation
2.1.2. Design of Flying Wing Body
2.1.3. Falcon-Inspired Configuration
2.1.4. Dragonfly-Inspired Configuration
2.1.5. Base Model
2.1.6. Conventional Proposals
2.1.7. Advanced Proposals
2.1.8. Nature Inspired Proposals
2.2. Imposed Methodology—Advanced Computational Simulations
2.2.1. Computational Model and Solver Description
2.2.2. Discretization
2.2.3. Boundary Conditions
2.2.4. Grid Independence Study
2.2.5. Experimental Validation
3. Results and Discussion
3.1. CFD Simulations
3.1.1. Flying Wing UAV Base
3.1.2. Flying Wing UAV-CP-1
3.1.3. Flying Wing UAV-CP-2
3.1.4. Flying Wing UAV-CP-3
3.1.5. Flying Wing UAV-AP-1
3.1.6. Flying Wing UAV-AP-2
3.1.7. Flying Wing UAV-NIP-1
3.1.8. Flying Wing UAV-NIP-2
3.1.9. Flying Wing UAV-NIP-3
3.1.10. Aerodynamic Forces Calculations
3.1.11. Comprehensive Computations for Other AoAs
3.2. FSI Simulations
3.2.1. Flying Wing UAV Base—FSI
3.2.2. Flying Wing UAV-NIP-3—FSI
3.2.3. Material Study—Comparison
3.2.4. Hybrid Material Design
3.3. Computational Development and Its Control Dynamics Study
3.3.1. Estimation of Propeller Parameters
3.3.2. Selection of Electronic Components
3.3.3. Control Dynamic Simulation
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, P.H.; Ma, D.M.; Shiau, J.K. Design, manufacturing, and flight testing of an experimental flying wing UAV. Appl. Sci. 2019, 9, 3043. [Google Scholar] [CrossRef]
- Dagur, R.; Singh, V.; Grover, S.; Sethi, N.; Arora, B.B. Design of flying wing UAV and effect of winglets on its performance. Int. J. Emerg. Technol. Adv. Eng. 2018, 8, 414–428. [Google Scholar]
- Bliamis, C.; Zacharakis, I.; Kaparos, P.; Yakinthos, K. Aerodynamic and stability analysis of a VTOL flying wing UAV. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012039. [Google Scholar] [CrossRef]
- Li, J.-G.; Chen, X.; Li, Y.-J.; Zhang, R. Control system design of flying-wing UAV based on nonlinear methodology. Def. Technol. 2017, 13, 397–405. [Google Scholar] [CrossRef]
- Winter, A.; Hann, R.; Wenz, A.; Gryte, K.; Johansen, T.A. Stability of a Flying Wing UAV in Icing Conditions. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 1–4 July 2019. [Google Scholar] [CrossRef]
- Priyambodo, T.K.; Dhewa, O.A.; Susanto, T. Model of Linear Quadratic Regulator (LQR) control system in Waypoint Flight Mission of Flying Wing UAV. J. Telecommun. Electron. Comput. Eng. (JTEC) 2020, 12, 43–49. [Google Scholar]
- Li, Y.; Chen, C.; Chen, W. Research on Longitudinal Control Algorithm for Flying Wing UAV based on LQR Technology. Int. J. Smart Sens. Intell. Syst. 2013, 6, 2155–2181. [Google Scholar] [CrossRef]
- Carlson, S. A hybrid Tricopter/Flying-Wing VTOL UAV. In Proceedings of the 52nd Aerospace Sciences Meeting, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef]
- Vasile, P. CFD analysis of UAV flying wing. INCAS Bull. 2016, 8, 65–72. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Zhu, X.P.; Zhou, Z. On-ground lateral direction control for an unswept flying-wing UAV. Aeronaut. J. 2019, 123, 416–432. [Google Scholar] [CrossRef]
- Kapsalis, S.; Bliamis, C.; Kaparos, P.; Panagiotou, P.; Yakinthos, K. Parametric investigation of canards on a flying wing UAV using the Taguchi method. Aerospace 2023, 10, 264. [Google Scholar] [CrossRef]
- Mansor, Y.; Sahwee, Z.; Asri, M.H.M. Development of Multiple Configuration Flying Wing UAV. In Proceedings of the 2019 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, 19–21 December 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, Z. An investigation on the aerodynamic performance of a hand-launched solar-powered UAV in flying wing configuration. Aerosp. Sci. Technol. 2022, 129, 107804. [Google Scholar] [CrossRef]
- Kim, K.-J.; Ahn, J.; Kim, S.; Choi, J.-S.; Suk, J.; Lim, H.; Hur, G.-B. Analysis of partial wing damage on flying-wing unmanned air vehicle. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 355–374. [Google Scholar] [CrossRef]
- Espinosa Barcenas, O.U.; Quijada Pioquinto, J.G.; Kurkina, E.; Lukyanov, O. Multidisciplinary Analysis and Optimization Method for Conceptually Designing of Electric Flying-Wing Unmanned Aerial Vehicles. Drones 2022, 6, 307. [Google Scholar] [CrossRef]
- Sai, M.S.; Kumar, K.; Prakash, B. Design, analysis and development of a flying wing UAV for aerial seeding and 3D mapping. In Innovative Product Design and Intelligent Manufacturing Systems; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2020; pp. 1023–1033. [Google Scholar] [CrossRef]
- Alsahlani, A.A.; Johnston, L.J.; Atcliffe, P.A. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle. Prog. Flight Phys. 2017, 9, 3–24. [Google Scholar] [CrossRef]
- Yusoff, N. Airfoil Design For Flying Wing Uav (Unmanned Aerial Vehicle). In Proceedings of the 4th WSEAS International Conference on Applied and Theoretical Mechanics (MECHANICS ’08), Cairo, Egypt, 29–31 December 2008. [Google Scholar]
- Ferrell, P.; Smith, B.; Stark, B.; Chen, Y. Dynamic flight modeling of a multi-mode flying wing quadrotor aircraft. In Proceedings of the 2013 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013. [Google Scholar] [CrossRef]
- Raja, V.; Prabhu, M.; Murugan, K.; Solaiappan, S.K.; Raji, A.P.; Gnanasekaran, R.K.; Ramaiah, M.; Rajapandi, R.; Mathaiyan, V.; Nandhan, A.K.; et al. Design and Multi-Perspective based Computational Analyses of Flying Wing UAV for Rescue Applications at Cryogenic Environments. In Proceedings of the AIAA AVIATION 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022. [Google Scholar] [CrossRef]
- Standridge, Z.D.; Kochersberger, K.B. Design, development, and range optimization of Flying wing UAV. In Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Liersch, C.M.; Schütte, A.; Siggel, M.; Dornwald, J. Design studies and multi-disciplinary assessment of agile and highly swept flying wing configurations. CEAS Aeronaut. J. 2020, 11, 781–802. [Google Scholar] [CrossRef]
- Aleisa, H.; Kontis, K.; Pirlepeli, B.; Nikbay, M. Conceptual design of a nonconstant swept flying wing unmanned combat aerial vehicle. J. Aircr. 2023, 60, 1872–1888. [Google Scholar] [CrossRef]
- Shi, P.; Liu, J.; Gu, Y.; Yang, Z.; Marzocca, P. Full-Span Flying Wing Wind Tunnel Test: A body Freedom flutter study. Fluids 2020, 5, 34. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Kamal, A.; Zakaria, M.Y. Flight testing of a Flying-Wing UAV. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Mitridis, D.; Bliamis, C.; Kaparos, P.; Yakinthos, K. Design of a tilting mechanism for a VTOL flying wing UAV. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012056. [Google Scholar] [CrossRef]
- Raghavan, B.; Patil, M.J. Flight control for flexible, High-Aspect-Ratio flying wings. J. Guid. Control. Dyn. 2010, 33, 64–74. [Google Scholar] [CrossRef]
- Ali, U.; Chadwick, E. Flow Control and High-Lift Performance for Flying-Wing Unmanned Combat Air Vehicle Configurations by inserting slots. Int. J. Multiphysics 2016, 10, 117–138. [Google Scholar] [CrossRef]
- Veeraperumal Senthil Nathan, J.P.; Pisharam, A.A.; Sourirajan, L.; Baskar, S.; Vinayagam, G.; Arputharaj, B.S.; Natrayan, L.; Sakthivel, P.; Raja, V. Operation of Advanced Flying Wing UAV: Examination of Structural Performance Under Aberrant Pressure and Thermal Loading Conditions with Integrated Computational Study; SAE Technical Paper 2025-28-0060; SAE International: Warrendale, PA, USA, 2025. [Google Scholar] [CrossRef]
- Veeraperumal Senthil Nathan, J.P.; Rajendran, M.; Arumugam, M.; Raji, A.P.; Sakthivel, P.; Madasamy, S.K.; Arputharaj, B.S.; Natrayan, L.; Raja, V. Computational Evaluations of Structural Integrity in Unmanned Aquatic Vehicles Utilizing Various Conventional and Hybrid Composites Using Hydro-Structural Analyses; SAE Technical Paper 2025-28-0056; SAE International: Warrendale, PA, USA, 2025. [Google Scholar] [CrossRef]
- Baskar, S.; Vinayagam, G.; Pisharam, A.A.; Gnanasekaran, R.K.; Raji, A.P.; Arputharaj, B.S.; Natrayan, L.; Ganesan, B.; Raja, V. Material Augmentation for Coaxial Propellers of Titan’s Unmanned Airship: Implementation of Advanced Composites for the Propulsive System Under Unconventional Loading Conditions with Incorporation of Structural Integrity Examinations; SAE Technical Paper 2025-28-0167; SAE International: Warrendale, PA, USA, 2025. [Google Scholar] [CrossRef]
S. No. | Payload | Technical Details | Description |
---|---|---|---|
1 | Laser guided Missile | Diameter = 40 mm Length = 50 mm Weight = 1.4 kg Maximum range = 1.000 + m Quantity = 5 Total weight of missiles = 5 × 1.4 = 7 kg | Laser guided missiles, used in both hybrid and conventional operations, this can be launched from manned or unmanned platforms and enables effective destruction power against stationary targets and personnel with superiority of range and precision capability. |
2 | Thermal camera | IR Resolution = 256 × 192 Pixel size = 12 μm Temperature Range = −10 °C to 150 °C, 100 °C to 550 °C Operating Temperature = 0 °C to 40 °C Operating Humidity = 10% to 90% RH, non-condensing Operating Altitude = 2000 m Dimensions = 59 × 32 × 10 mm Weight = 22 g | iSee TC01A Mobile Thermal Camera is a powerful and portable thermal imaging device designed for professionals in various industries. With its crystal-clear display, broad temperature range, and Fluke Connect™ compatibility, it enables you to quickly and accurately identify temperature variations, hotspots, and anomalies. Whether you’re an electrician, HVAC technician, or building inspector |
3 | Missile launching mechanism + Camera holder | Estimated weight = 1 kg + 0.5 kg = 1.5 kg | The missile has to be launched through a launching mechanism. The target focus and locking are established by the camera, which requires a holder along with the camera itself, are the secondary payloads. |
Taper Ratio | Percentage of Span (%) | Chord Length (m) |
---|---|---|
0.5 | 10 | 0.3218 |
20 | 0.30482 | |
30 | ||
1.5 | 40 | |
50 | ||
0.5 | 60 | |
70 | ||
80 | ||
90 |
Taper Ratio | Percentage of Span (%) | Chord Length (m) |
---|---|---|
0.5 | 10 | |
20 | ||
30 | ||
40 | ||
50 | ||
60 | ||
70 | ||
80 | ||
90 |
Payload weight ( | 8.5 kg |
Overall weight ( | 27.532 kg |
Wing area ( | 0.9177 |
Wing loading (W/S) | 30 |
Wingspan ( | 2.7095 m |
Wing Root chord ( | 0.33869 m |
Wing Tip chord ( | 0.16935 m |
Taper ratio ( | 0.5 or 1.5 |
Chosen Airfoil | NACA 1408 |
Model Number | Radius (m) | Frontal Distance (m) | Rear Distance (m) | Maximum Pressure (Pa) | Maximum Induced Velocity (m/s) | L/D Ratio |
---|---|---|---|---|---|---|
1 | 2 | 1 | 3 | 15,654.6 | 202.387 | 11.138 |
2 | 1 | 2 | 4 | 15,525.8 | 200.381 | 11.294 |
3 | 2 | 2 | 4 | 15,337.1 | 200.333 | 11.219 |
4 | 3 | 2 | 4 | 15,916.2 | 199.633 | 11.185 |
5 | 2 | 3 | 6 | 15,864.8 | 204.008 | 10.945 |
6 | 2 | 4 | 8 | 15,770.8 | 202.087 | 10.665 |
7 | 2 | 5 | 10 | 15,476.8 | 202.200 | 10.686 |
Velocity Inlet | 171.5 m/s |
Pressure Outlet | 0 Pa |
Operating Pressure | 94,930 Pa |
Temperature inlet | 297.4 K |
Temperature outlet | 297.4 K |
Density | Ideal gas |
Viscosity | Sutherland |
Wall | Specified shear |
UAV | No Slip |
AoA | Experimental CL | Computational CL | Error % |
---|---|---|---|
0° | 0.00012 | 0.0001269 | 5.737% |
5° | 0.45 | 0.41 | 8.889% |
SI. No. | Material |
---|---|
1 | AS-CFRP |
2 | CFRP-UD-Pg-395-GPa |
3 | CFRP-UD-Pg-230-GPa |
4 | CFRP-UD-Wet-230-GPa |
5 | CFRP-Wn-Pg-230-GPa |
6 | CFRP-Wn-Wet-230-GPa |
7 | CFRP-Wn-Pg-395-GPa |
8 | HMS-CFRP |
9 | GY-70-CFRP |
10 | T-300-CFRP |
11 | E-GFRP-UD |
12 | E-Glass |
13 | E-GFRP-Polyester |
14 | E-GFRP |
15 | E-GFRP-Wet |
16 | S-GFRP-UD |
17 | GFRP-FR-4-FABRIC |
18 | S-GFRP |
19 | BFRP |
20 | K-49-FRP |
Outcomes | BASE | NIP-3 | ||
---|---|---|---|---|
Material | Value | Material | Value | |
Total Deformation—Best | GY-70-CFRP | 0.000287 mm | GY-70-CFRP | 0.00011 mm |
Total Deformation—Worst | GFRP-FR-4-FABRIC | 0.003924 mm | GFRP-FR-4-FABRIC | 0.00150 mm |
Equivalent Stress—Best | HMS-CFRP | 0.0032595 MPa | GFRP-FR-4-FABRIC | 0.0038094 MPa |
Equivalent Stress—Worst | CFRP-UD-Pg-395-GPa | 0.0075491 MPa | CFRP-UD-Pg-395-GPa | 0.0099154 MPa |
Material | Density (kg/m3) | Total Deformation (mm) | Equivalent Stress (MPa) | ||
---|---|---|---|---|---|
Base | NIP-3 | Base | NIP-3 | ||
HMS-CFRP | 1600 | 0.000385 | 0.0001474 | 0.0032595 | 0.0040953 |
GFRP-FR-4-FABRIC | 1850 | 0.003924 | 0.0014967 | 0.0032748 | 0.0038094 |
HMS-FR-4 Hybrid | 1412.7 | 0.0040318 | 0.0015669 | 0.0032968 | 0.0034986 |
Moment of Inertia (kg/m2) | Motor (kg/m2) | Propeller (kg/m2) | Motor—Propeller (kg/m2) |
---|---|---|---|
1.85 × 10−6 | 2.054 × 10−6 | 3.601 × 10−6 | |
1.708 × 10−6 | 2.056 × 10−6 | 2.884 × 10−6 | |
1.708 × 10−6 | 5.082 × 10−8 | 4.06 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veeraperumal Senthil Nathan, J.P.; Navamani Chellapandian, M.; Raja, V.; Rajendran, P.; Lee, I.E.; Kulandaiyappan, N.K.; Stanislaus Arputharaj, B.; Singh, S.; Varshney, D. Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design. Machines 2025, 13, 604. https://doi.org/10.3390/machines13070604
Veeraperumal Senthil Nathan JP, Navamani Chellapandian M, Raja V, Rajendran P, Lee IE, Kulandaiyappan NK, Stanislaus Arputharaj B, Singh S, Varshney D. Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design. Machines. 2025; 13(7):604. https://doi.org/10.3390/machines13070604
Chicago/Turabian StyleVeeraperumal Senthil Nathan, Janani Priyadharshini, Martin Navamani Chellapandian, Vijayanandh Raja, Parvathy Rajendran, It Ee Lee, Naveen Kumar Kulandaiyappan, Beena Stanislaus Arputharaj, Subhav Singh, and Deekshant Varshney. 2025. "Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design" Machines 13, no. 7: 604. https://doi.org/10.3390/machines13070604
APA StyleVeeraperumal Senthil Nathan, J. P., Navamani Chellapandian, M., Raja, V., Rajendran, P., Lee, I. E., Kulandaiyappan, N. K., Stanislaus Arputharaj, B., Singh, S., & Varshney, D. (2025). Multi-Disciplinary Investigations on the Best Flying Wing Configuration for Hybrid Unmanned Aerial Vehicles: A New Approach to Design. Machines, 13(7), 604. https://doi.org/10.3390/machines13070604