Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (760)

Search Parameters:
Keywords = stacked ensemble model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2526 KB  
Article
HSE-GNN-CP: Spatiotemporal Teleconnection Modeling and Conformalized Uncertainty Quantification for Global Crop Yield Forecasting
by Salman Mahmood, Raza Hasan and Shakeel Ahmad
Information 2026, 17(2), 141; https://doi.org/10.3390/info17020141 - 1 Feb 2026
Abstract
Global food security faces escalating threats from climate variability and resource constraints. Accurate crop yield forecasting is essential; however, existing methods frequently overlook complex spatial dependencies driven by climate teleconnections, such as the ENSO, and lacks rigorous uncertainty quantification. This paper presents HSE-GNN-CP, [...] Read more.
Global food security faces escalating threats from climate variability and resource constraints. Accurate crop yield forecasting is essential; however, existing methods frequently overlook complex spatial dependencies driven by climate teleconnections, such as the ENSO, and lacks rigorous uncertainty quantification. This paper presents HSE-GNN-CP, a novel framework integrating heterogeneous stacked ensembles, graph neural networks (GNNs), and conformal prediction (CP). Domain-specific features are engineered, including growing degree days and climate suitability scores, and explicitly model spatial patterns via rainfall correlation graphs. The ensemble combines random forest and gradient boosting learners with bootstrap aggregation, while GNNs encode inter-regional climate dependencies. Conformalized quantile regression ensures statistically valid prediction intervals. Evaluated on a global dataset spanning 15 countries and six major crops from 1990 to 2023, the framework achieves an R2 of 0.9594 and an RMSE of 4882 hg/ha. Crucially, it delivers calibrated 80% prediction intervals with 80.72% empirical coverage, significantly outperforming uncalibrated baselines at 40.03%. SHAP analysis identifies crop type and rainfall as dominant predictors, while the integrated drought classifier achieves perfect accuracy. These contributions advance agricultural AI by merging robust ensemble learning with explicit teleconnection modeling and trustworthy uncertainty quantification. Full article
Show Figures

Graphical abstract

39 pages, 3699 KB  
Article
Enhancing Decision Intelligence Using Hybrid Machine Learning Framework with Linear Programming for Enterprise Project Selection and Portfolio Optimization
by Abdullah, Nida Hafeez, Carlos Guzmán Sánchez-Mejorada, Miguel Jesús Torres Ruiz, Rolando Quintero Téllez, Eponon Anvi Alex, Grigori Sidorov and Alexander Gelbukh
AI 2026, 7(2), 52; https://doi.org/10.3390/ai7020052 - 1 Feb 2026
Abstract
This study presents a hybrid analytical framework that enhances project selection by achieving reasonable predictive accuracy through the integration of expert judgment and modern artificial intelligence (AI) techniques. Using an enterprise-level dataset of 10,000 completed software projects with verified real-world statistical characteristics, we [...] Read more.
This study presents a hybrid analytical framework that enhances project selection by achieving reasonable predictive accuracy through the integration of expert judgment and modern artificial intelligence (AI) techniques. Using an enterprise-level dataset of 10,000 completed software projects with verified real-world statistical characteristics, we develop a three-step architecture for intelligent decision support. First, we introduce an extended Analytic Hierarchy Process (AHP) that incorporates organizational learning patterns to compute expert-validated criteria weights with a consistent level of reliability (CR=0.04), and Linear Programming is used for portfolio optimization. Second, we propose a machine learning architecture that integrates expert knowledge derived from AHP into models such as Transformers, TabNet, and Neural Oblivious Decision Ensembles through mechanisms including attention modulation, split criterion weighting, and differentiable tree regularization. Third, the hybrid AHP-Stacking classifier generates a meta-ensemble that adaptively balances expert-derived information with data-driven patterns. The analysis shows that the model achieves 97.5% accuracy, a 96.9% F1-score, and a 0.989 AUC-ROC, representing a 25% improvement compared to baseline methods. The framework also indicates a projected 68.2% improvement in portfolio value (estimated incremental value of USD 83.5 M) based on post factum financial results from the enterprise’s ventures.This study is evaluated retrospectively using data from a single enterprise, and while the results demonstrate strong robustness, generalizability to other organizational contexts requires further validation. This research contributes a structured approach to hybrid intelligent systems and demonstrates that combining expert knowledge with machine learning can provide reliable, transparent, and high-performing decision-support capabilities for project portfolio management. Full article
Show Figures

Figure 1

28 pages, 15662 KB  
Article
Cable Fire Risk Prediction via Dynamic Q-Learning-Driven Ensemble of Deep Temporal Networks
by Haoxuan Li, Hao Gao, Xuehong Gao and Guozhong Huang
Fire 2026, 9(2), 61; https://doi.org/10.3390/fire9020061 - 29 Jan 2026
Viewed by 182
Abstract
Cables, which are critical for power and signal transmission in complex buildings and underground infrastructure, are exposed to elevated fire risks during operation, making reliable risk prediction essential for building fire safety. This study proposes a multivariate cable fire risk prediction model that [...] Read more.
Cables, which are critical for power and signal transmission in complex buildings and underground infrastructure, are exposed to elevated fire risks during operation, making reliable risk prediction essential for building fire safety. This study proposes a multivariate cable fire risk prediction model that integrates three deep temporal networks (RNN, LSTM, and GRU) through a Q-learning-based ensemble learning (QBEL). The model uses current, voltage, power, temperature, humidity, oxygen concentration, and system risk values acquired from an intelligent fire alarm system as inputs. Using a real-world dataset comprising 3060 seven-dimensional time steps collected from a tobacco logistics center, QBEL achieves a test-set MSE of 1.73, RMSE of 1.31, MAE of 0.84, and MAPE of 2.66%, improving the MAE and MAPE of the best single recurrent network by approximately 10–12%. Comparative experiments against conventional ensemble approaches based on XGBoost (Python package, version 3.0.0) boosting and stacking, as well as recent time-series forecasting models including DLinear, PatchTST, MoLE, and Fredformer, demonstrate that QBEL attains the lowest MAE and MAPE among all methods, while maintaining an MSE close to that of the best linear baseline and a moderate computational cost of approximately 5.5 × 10−3 GFLOPs and 45 MB of memory per inference. These results indicate that QBEL provides a favorable balance between prediction accuracy and computational efficiency, supporting its potential use in edge-oriented monitoring pipelines for timely cable fire risk warnings in building environments. Full article
(This article belongs to the Special Issue Building Fire Prediction and Suppression)
Show Figures

Figure 1

25 pages, 5911 KB  
Article
Soil Moisture Inversion in Alfalfa via UAV with Feature Fusion and Ensemble Learning
by Jinxi Chen, Jianxin Yin, Yuanbo Jiang, Yanxia Kang, Yanlin Ma, Guangping Qi, Chungang Jin, Bojie Xie, Wenjing Yu, Yanbiao Wang, Junxian Chen, Jiapeng Zhu and Boda Li
Plants 2026, 15(3), 404; https://doi.org/10.3390/plants15030404 - 28 Jan 2026
Viewed by 104
Abstract
Timely access to soil moisture conditions in farmland crops is the foundation and key to achieving precise irrigation. Due to their high spatiotemporal resolution, unmanned aerial vehicle (UAV) remote sensing has become an important method for monitoring soil moisture. This study addresses soil [...] Read more.
Timely access to soil moisture conditions in farmland crops is the foundation and key to achieving precise irrigation. Due to their high spatiotemporal resolution, unmanned aerial vehicle (UAV) remote sensing has become an important method for monitoring soil moisture. This study addresses soil moisture retrieval in alfalfa fields across different growth stages. Based on UAV multispectral images, a multi-source feature set was constructed by integrating spectral and texture features. The performance of three machine learning models—random forest regression (RFR), K-nearest neighbors regression (KNN), and XG-Boost—as well as two ensemble learning models, Voting and Stacking, was systematically compared. The results indicate the following: (1) The integrated learning models generally outperform individual machine learning models, with the Voting model performing best across all growth stages, achieving a maximum R2 of 0.874 and an RMSE of 0.005; among the machine learning models, the optimal model varies with growth stage, with XG-Boost being the best during the branching and early flowering stages (maximum R2 of 0.836), while RFR performs better during the budding stage (R2 of 0.790). (2) The fusion of multi-source features significantly improved inversion accuracy. Taking the Voting model as an example, the accuracy of the fused features (R2 = 0.874) increased by 0.065 compared to using single-texture features (R2 = 0.809), and the RMSE decreased from 0.012 to 0.005. (3) In terms of inversion depth, the optimal inversion depth for the branching stage and budding stage is 40–60 cm, while the optimal depth for the early flowering stage is 20–40 cm. In summary, the method that integrates multi-source feature fusion and ensemble learning significantly improves the accuracy and stability of alfalfa soil moisture inversion, providing an effective technical approach for precise water management of artificial grasslands in arid regions. Full article
(This article belongs to the Special Issue Water and Nutrient Management for Sustainable Crop Production)
Show Figures

Figure 1

31 pages, 5186 KB  
Article
Simulating Daily Evapotranspiration of Summer Soybean in the North China Plain Using Four Machine Learning Models
by Liyuan Han, Fukui Gao, Shenghua Dong, Yinping Song, Hao Liu and Ni Song
Agronomy 2026, 16(3), 315; https://doi.org/10.3390/agronomy16030315 - 26 Jan 2026
Viewed by 317
Abstract
Accurate estimation of crop evapotranspiration (ET) is essential for achieving efficient agricultural water use in the North China Plain. Although machine learning techniques have demonstrated considerable potential for ET simulation, a systematic evaluation of model-architecture suitability and hyperparameter optimization strategies specifically for summer [...] Read more.
Accurate estimation of crop evapotranspiration (ET) is essential for achieving efficient agricultural water use in the North China Plain. Although machine learning techniques have demonstrated considerable potential for ET simulation, a systematic evaluation of model-architecture suitability and hyperparameter optimization strategies specifically for summer soybean ET estimation in this region is still lacking. To address this gap, we systematically compared several machine learning architectures and their hyperparameter optimization schemes to develop a high-accuracy daily ET model for summer soybean in the North China Plain. Synchronous observations from a large-scale weighing lysimeter and an automatic weather station were first used to characterize the day-to-day dynamics of soybean ET and to identify the key driving variables. Four algorithms—support vector regression (SVR), Random Forest (RF), extreme gradient boosting (XGBoost), and a stacking ensemble—were then trained for ET simulation, while Particle Swarm Optimization (PSO), Genetic Algorithms (GAs), and Randomized Grid Search (RGS) were employed for hyperparameter tuning. Results show that solar radiation (RS), maximum air temperature (Tmax), and leaf area index (LAI) are the dominant drivers of ET. The Stacking-PSO-F3 combination, forced with Rs, Tmax, LAI, maximum relative humidity (RHmax), and minimum relative humidity (RHmin), achieved the highest accuracy, yielding R2 values of 0.948 on the test set and 0.900 in interannual validation, thereby demonstrating excellent precision, stability, and generalizability. The proposed model provides a robust technical tool for precision irrigation and regional water resource optimization. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

23 pages, 3554 KB  
Article
Hybrid Mechanism–Data-Driven Modeling for Crystal Quality Prediction in Czochralski Process
by Duqiao Zhao, Junchao Ren, Xiaoyan Du, Yixin Wang and Dong Ding
Crystals 2026, 16(2), 86; https://doi.org/10.3390/cryst16020086 - 25 Jan 2026
Viewed by 160
Abstract
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. [...] Read more.
The V/G criterion is a critical indicator for monitoring dynamic changes during Czochralski silicon single crystal (Cz-SSC) growth. However, the inability to measure it in real time forces reliance on offline feedback for process regulation, leading to imprecise control and compromised crystal quality. To overcome this limitation, this paper proposes a novel soft sensor modeling framework that integrates both mechanism-based knowledge and data-driven learning for the real-time prediction of the crystal quality parameter, specifically the V/G value (the ratio of growth rate to axial temperature gradient). The proposed approach constructs a hybrid prediction model by combining a data-driven sub-model with a physics-informed mechanism sub-model. The data-driven component is developed using an attention-based dynamic stacked enhanced autoencoder (AD-SEAE) network, where the SEAE structure introduces layer-wise reconstruction operations to mitigate information loss during hierarchical feature extraction. Furthermore, an attention mechanism is incorporated to dynamically weigh historical and current samples, thereby enhancing the temporal representation of process dynamics. In addition, a robust ensemble approach is achieved by fusing the outputs of two subsidiary models using an adaptive weighting strategy based on prediction accuracy, thereby enabling more reliable V/G predictions under varying operational conditions. Experimental validation using actual industrial Cz-SSC production data demonstrates that the proposed method achieves high-prediction accuracy and effectively supports real-time process optimization and quality monitoring. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

36 pages, 39268 KB  
Article
Spectral Feature Integration and Ensemble Learning Optimization for Regional-Scale Landslide Susceptibility Mapping in Mountainous Areas
by Yun Tian, Taorui Zeng, Linfeng Wang, Gang Chen, Sihang Yang, Hao Chen and Ligang Wang
Remote Sens. 2026, 18(3), 382; https://doi.org/10.3390/rs18030382 - 23 Jan 2026
Viewed by 268
Abstract
Current research on landslide susceptibility modeling is often constrained by reliance on conventional topographic and geological features, potentially overlooking the discriminative power of surface material properties derived from multi-source remote sensing. This study aims to enhance the accuracy and reliability of susceptibility assessment [...] Read more.
Current research on landslide susceptibility modeling is often constrained by reliance on conventional topographic and geological features, potentially overlooking the discriminative power of surface material properties derived from multi-source remote sensing. This study aims to enhance the accuracy and reliability of susceptibility assessment by innovatively integrating spectral information and advanced machine learning techniques. Focusing on Chongqing, a landslide-prone mountainous region in China, this work conducted three innovative investigations: it (i) introduced 12 spectral features into the feature set; (ii) systematically evaluated spectral features contribution, redundancy, and set completeness through feature engineering; and (iii) implemented a comprehensive Stacking ensemble framework with multiple meta-learners and enhancement strategies (Bagging and Cross-Training) to identify the optimal integration scheme. The key results show that spectral features provided a significant positive impact, boosting the AUC of tree-based ensemble models by up to 4.52%. The optimal model, a Stacking ensemble with Bagging_XGBoost as the meta-learner, achieved a superior test AUC of 0.8611, outperforming all individual base learners. Furthermore, the spatial analysis revealed a concentration of high and very high susceptibility areas in Engineering Geological Zone I, which represents approximately 38% of such areas. This study provides a replicable framework for enhancing landslide susceptibility mapping through the integration of spectral features and ensemble learning, offering a scientific basis for targeted risk management and mitigation planning in complex mountainous terrains. Full article
Show Figures

Figure 1

30 pages, 3115 KB  
Article
HST–MB–CREH: A Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN for Rare-Event-Aware PV Power Forecasting
by Guldana Taganova, Jamalbek Tussupov, Assel Abdildayeva, Mira Kaldarova, Alfiya Kazi, Ronald Cowie Simpson, Alma Zakirova and Bakhyt Nurbekov
Algorithms 2026, 19(2), 94; https://doi.org/10.3390/a19020094 - 23 Jan 2026
Viewed by 167
Abstract
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The [...] Read more.
We propose the Hybrid Spatio-Temporal Transformer with Multi-Branch CNN/RNN and Extreme-Event Head (HST–MB–CREH), a hybrid spatio-temporal deep learning architecture for joint short-term photovoltaic (PV) power forecasting and the detection of rare extreme events, to support the reliable operation of renewable-rich power systems. The model combines a spatio-temporal transformer encoder with three convolutional neural network (CNN)/recurrent neural network (RNN) branches (CNN → long short-term memory (LSTM), LSTM → gated recurrent unit (GRU), CNN → GRU) and a dense pathway for tabular meteorological and calendar features. A multitask output head simultaneously performs the regression of PV power and binary classification of extremes defined above the 95th percentile. We evaluate HST–MB–CREH on the publicly available Renewable Power Generation and Weather Conditions dataset with hourly resolutions from 2017 to 2022, using a 5-fold TimeSeriesSplit protocol to avoid temporal leakage and to cover multiple seasons. Compared with tree ensembles (RandomForest, XGBoost), recurrent baselines (Stacked GRU, LSTM), and advanced hybrid/transformer models (Hybrid Multi-Branch CNN–LSTM/GRU with Dense Path and Extreme-Event Head (HMB–CLED) and Spatio-Temporal Multitask Transformer with Extreme-Event Head (STM–EEH)), the proposed architecture achieves the best overall trade-off between accuracy and rare-event sensitivity, with normalized performance of RMSE_z = 0.2159 ± 0.0167, MAE_z = 0.1100 ± 0.0085, mean absolute percentage error (MAPE) = 9.17 ± 0.45%, R2 = 0.9534 ± 0.0072, and AUC_ext = 0.9851 ± 0.0051 across folds. Knowledge extraction is supported via attention-based analysis and permutation feature importance, which highlight the dominant role of global horizontal irradiance, diurnal harmonics, and solar geometry features. The results indicate that hybrid spatio-temporal multitask architectures can substantially improve both the forecast accuracy and robustness to extremes, making HST–MB–CREH a promising building block for intelligent decision-support tools in smart grids with a high share of PV generation. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

32 pages, 16166 KB  
Article
A Multimodal Ensemble-Based Framework for Detecting Fake News Using Visual and Textual Features
by Muhammad Abdullah, Hongying Zan, Arifa Javed, Muhammad Sohail, Orken Mamyrbayev, Zhanibek Turysbek, Hassan Eshkiki and Fabio Caraffini
Mathematics 2026, 14(2), 360; https://doi.org/10.3390/math14020360 - 21 Jan 2026
Viewed by 203
Abstract
Detecting fake news is essential in natural language processing to verify news authenticity and prevent misinformation-driven social, political, and economic disruptions targeting specific groups. A major challenge in multimodal fake news detection is effectively integrating textual and visual modalities, as semantic gaps and [...] Read more.
Detecting fake news is essential in natural language processing to verify news authenticity and prevent misinformation-driven social, political, and economic disruptions targeting specific groups. A major challenge in multimodal fake news detection is effectively integrating textual and visual modalities, as semantic gaps and contextual variations between images and text complicate alignment, interpretation, and the detection of subtle or blatant inconsistencies. To enhance accuracy in fake news detection, this article introduces an ensemble-based framework that integrates textual and visual data using ViLBERT’s two-stream architecture, incorporates VADER sentiment analysis to detect emotional language, and uses Image–Text Contextual Similarity to identify mismatches between visual and textual elements. These features are processed through the Bi-GRU classifier, Transformer-XL, DistilBERT, and XLNet, combined via a stacked ensemble method with soft voting, culminating in a T5 metaclassifier that predicts the outcome for robustness. Results on the Fakeddit and Weibo benchmarking datasets show that our method outperforms state-of-the-art models, achieving up to 96% and 94% accuracy in fake news detection, respectively. This study highlights the necessity for advanced multimodal fake news detection systems to address the increasing complexity of misinformation and offers a promising solution. Full article
Show Figures

Figure 1

16 pages, 3176 KB  
Article
Stacking Ensemble Learning for Genomic Prediction Under Complex Genetic Architectures
by Maurício de Oliveira Celeri, Moyses Nascimento, Ana Carolina Campana Nascimento, Filipe Ribeiro Formiga Teixeira, Camila Ferreira Azevedo, Cosme Damião Cruz and Laís Mayara Azevedo Barroso
Agronomy 2026, 16(2), 241; https://doi.org/10.3390/agronomy16020241 - 20 Jan 2026
Viewed by 129
Abstract
Genomic selection (GS) estimates the GEBV from genome-wide markers to reduce generation intervals and optimize germplasm selection, which is particularly advantageous for high-cost or late-expressed traits. While models like GBLUP are popular, they assume a polygenic architecture. In contrast, the Bayesian alphabet and [...] Read more.
Genomic selection (GS) estimates the GEBV from genome-wide markers to reduce generation intervals and optimize germplasm selection, which is particularly advantageous for high-cost or late-expressed traits. While models like GBLUP are popular, they assume a polygenic architecture. In contrast, the Bayesian alphabet and machine learning (ML) can accommodate other types of genetic architectures. Given that no single model is universally optimal, stacking ensembles, which train a meta-model using predictions from diverse base learners, emerge as a compelling solution. However, the application of stacking in GS often overlooks non-additive effects. This study evaluated different stacking configurations for genomic prediction across 10 simulated traits, covering additive, dominance, and epistatic genetic architectures. A 5-fold cross-validation scheme was used to assess predictive ability and other evaluation metrics. The stacking approach demonstrated superior predictive ability in all scenarios. Gains were especially pronounced in complex architectures (100 QTLs, h2 = 0.3), reaching an 83% increment over the best individual model (BayesA with dominance), and also in oligogenic scenarios with epistasis (10 QTLs, h2 = 0.6), with a 27.59% gain. The success of stacking was attributed to two key strategies: base learner selection and the use of robust meta-learners (such as principal component or penalized regression) that effectively handled multicollinearity. Full article
Show Figures

Figure 1

24 pages, 3303 KB  
Article
Deep Learning-Based Human Activity Recognition Using Binary Ambient Sensors
by Qixuan Zhao, Alireza Ghasemi, Ahmed Saif and Lila Bossard
Electronics 2026, 15(2), 428; https://doi.org/10.3390/electronics15020428 - 19 Jan 2026
Viewed by 232
Abstract
Human Activity Recognition (HAR) has become crucial across various domains, including healthcare, smart homes, and security systems, owing to the proliferation of Internet of Things (IoT) devices. Several Machine Learning (ML) techniques, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), have [...] Read more.
Human Activity Recognition (HAR) has become crucial across various domains, including healthcare, smart homes, and security systems, owing to the proliferation of Internet of Things (IoT) devices. Several Machine Learning (ML) techniques, including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM), have been proposed for HAR. However, they are still deficient in addressing the challenges of noisy features and insufficient data. This paper introduces a novel approach to tackle these two challenges, employing a Deep Learning (DL) Ensemble-Based Stacking Neural Network (SNN) combined with Generative Adversarial Networks (GANs) for HAR based on ambient sensors. Our proposed deep learning ensemble-based approach outperforms traditional ML techniques and enables robust and reliable recognition of activities in real-world scenarios. Comprehensive experiments conducted on six benchmark datasets from the CASAS smart home project demonstrate that the proposed stacking framework achieves superior accuracy on five out of six datasets when compared to literature-reported state-of-the-art baselines, with improvements ranging from 3.36 to 39.21 percentage points and an average gain of 13.28 percentage points. Although the baseline marginally outperforms the proposed models on one dataset (Aruba) in terms of accuracy, this exception does not alter the overall trend of consistent performance gains across diverse environments. Statistical significance of these improvements is further confirmed using the Wilcoxon signed-rank test. Moreover, the ASGAN-augmented models consistently improve macro-F1 performance over the corresponding baselines on five out of six datasets, while achieving comparable performance on the Milan dataset. The proposed GAN-based method further improves the activity recognition accuracy by a maximum of 4.77 percentage points, and an average of 1.28 percentage points compared to baseline models. By combining ensemble-based DL with GAN-generated synthetic data, a more robust and effective solution for ambient HAR addressing both accuracy and data imbalance challenges in real-world smart home settings is achieved. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

45 pages, 14932 KB  
Article
An Intelligent Predictive Maintenance Architecture for Substation Automation: Real-World Validation of a Digital Twin and AI Framework of the Badra Oil Field Project
by Sarmad Alabbad and Hüseyin Altınkaya
Electronics 2026, 15(2), 416; https://doi.org/10.3390/electronics15020416 - 17 Jan 2026
Viewed by 228
Abstract
The increasing complexity of modern electrical substations—driven by renewable integration, advanced automation, and asset aging—necessitates a transition from reactive maintenance toward intelligent, data-driven strategies. Predictive maintenance (PdM), supported by artificial intelligence, enables early fault detection and remaining useful life (RUL) estimation, while Digital [...] Read more.
The increasing complexity of modern electrical substations—driven by renewable integration, advanced automation, and asset aging—necessitates a transition from reactive maintenance toward intelligent, data-driven strategies. Predictive maintenance (PdM), supported by artificial intelligence, enables early fault detection and remaining useful life (RUL) estimation, while Digital Twin (DT) technology provides synchronized cyber–physical representations for situational awareness and risk-free validation of maintenance decisions. This study proposes a five-layer DT-enabled PdM architecture integrating standards-based data acquisition, semantic interoperability (IEC 61850, CIM, and OPC UA Part 17), hybrid AI analytics, and cyber-secure decision support aligned with IEC 62443. The framework is validated using utility-grade operational data from the SS1 substation of the Badra Oil Field, comprising approximately one million multivariate time-stamped measurements and 139 confirmed fault events across transformer, feeder, and environmental monitoring systems. Fault detection is formulated as a binary classification task using event-window alignment to the 1 min SCADA timeline, preserving realistic operational class imbalance. Five supervised learning models—a Random Forest, Gradient Boosting, a Support Vector Machine, a Deep Neural Network, and a stacked ensemble—were benchmarked, with the ensemble embedded within the DT core representing the operational predictive model. Experimental results demonstrate strong performance, achieving an F1-score of 0.98 and an AUC of 0.995. The results confirm that the proposed DT–AI framework provides a scalable, interoperable, and cyber-resilient foundation for deployment-ready predictive maintenance in modern substation automation systems. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

31 pages, 1485 KB  
Article
Explainable Multi-Modal Medical Image Analysis Through Dual-Stream Multi-Feature Fusion and Class-Specific Selection
by Naeem Ullah, Ivanoe De Falco and Giovanna Sannino
AI 2026, 7(1), 30; https://doi.org/10.3390/ai7010030 - 16 Jan 2026
Viewed by 399
Abstract
Effective and transparent medical diagnosis relies on accurate and interpretable classification of medical images across multiple modalities. This paper introduces an explainable multi-modal image analysis framework based on a dual-stream architecture that fuses handcrafted descriptors with deep features extracted from a custom MobileNet. [...] Read more.
Effective and transparent medical diagnosis relies on accurate and interpretable classification of medical images across multiple modalities. This paper introduces an explainable multi-modal image analysis framework based on a dual-stream architecture that fuses handcrafted descriptors with deep features extracted from a custom MobileNet. Handcrafted descriptors include frequency-domain and texture features, while deep features are summarized using 26 statistical metrics to enhance interpretability. In the fusion stage, complementary features are combined at both the feature and decision levels. Decision-level integration combines calibrated soft voting, weighted voting, and stacking ensembles with optimized classifiers, including decision trees, random forests, gradient boosting, and logistic regression. To further refine performance, a hybrid class-specific feature selection strategy is proposed, combining mutual information, recursive elimination, and random forest importance to select the most discriminative features for each class. This hybrid selection approach eliminates redundancy, improves computational efficiency, and ensures robust classification. Explainability is provided through Local Interpretable Model-Agnostic Explanations, which offer transparent details about the ensemble model’s predictions and link influential handcrafted features to clinically meaningful image characteristics. The framework is validated on three benchmark datasets, i.e., BTTypes (brain MRI), Ultrasound Breast Images, and ACRIMA Retinal Fundus Images, demonstrating generalizability across modalities (MRI, ultrasound, retinal fundus) and disease categories (brain tumor, breast cancer, glaucoma). Full article
(This article belongs to the Special Issue Digital Health: AI-Driven Personalized Healthcare and Applications)
Show Figures

Figure 1

41 pages, 5624 KB  
Article
Tackling Imbalanced Data in Chronic Obstructive Pulmonary Disease Diagnosis: An Ensemble Learning Approach with Synthetic Data Generation
by Yi-Hsin Ko, Chuan-Sheng Hung, Chun-Hung Richard Lin, Da-Wei Wu, Chung-Hsuan Huang, Chang-Ting Lin and Jui-Hsiu Tsai
Bioengineering 2026, 13(1), 105; https://doi.org/10.3390/bioengineering13010105 - 15 Jan 2026
Viewed by 424
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health burden worldwide and in Taiwan, ranking as the third leading cause of death globally, and its prevalence in Taiwan continues to rise. Readmission within 14 days is a key indicator of disease instability and [...] Read more.
Chronic obstructive pulmonary disease (COPD) is a major health burden worldwide and in Taiwan, ranking as the third leading cause of death globally, and its prevalence in Taiwan continues to rise. Readmission within 14 days is a key indicator of disease instability and care efficiency, driven jointly by patient-level physiological vulnerability (such as reduced lung function and multiple comorbidities) and healthcare system-level deficiencies in transitional care. To mitigate the growing burden and improve quality of care, it is urgently necessary to develop an AI-based prediction model for 14-day readmission. Such a model could enable early identification of high-risk patients and trigger multidisciplinary interventions, such as pulmonary rehabilitation and remote monitoring, to effectively reduce avoidable early readmissions. However, medical data are commonly characterized by severe class imbalance, which limits the ability of conventional machine learning methods to identify minority-class cases. In this study, we used real-world clinical data from multiple hospitals in Kaohsiung City to construct a prediction framework that integrates data generation and ensemble learning to forecast readmission risk among patients with chronic obstructive pulmonary disease (COPD). CTGAN and kernel density estimation (KDE) were employed to augment the minority class, and the impact of these two generation approaches on model performance was compared across different augmentation ratios. We adopted a stacking architecture composed of six base models as the core framework and conducted systematic comparisons against the baseline models XGBoost, AdaBoost, Random Forest, and LightGBM across multiple recall thresholds, different feature configurations, and alternative data generation strategies. Overall, the results show that, under high-recall targets, KDE combined with stacking achieves the most stable and superior overall performance relative to the baseline models. We further performed ablation experiments by sequentially removing each base model to evaluate and analyze its contribution. The results indicate that removing KNN yields the greatest negative impact on the stacking classifier, particularly under high-recall settings where the declines in precision and F1-score are most pronounced, suggesting that KNN is most sensitive to the distributional changes introduced by KDE-generated data. This configuration simultaneously improves precision, F1-score, and specificity, and is therefore adopted as the final recommended model setting in this study. Full article
Show Figures

Figure 1

21 pages, 1337 KB  
Article
The Health-Wealth Gradient in Labor Markets: Integrating Health, Insurance, and Social Metrics to Predict Employment Density
by Dingyuan Liu, Qiannan Shen and Jiaci Liu
Computation 2026, 14(1), 22; https://doi.org/10.3390/computation14010022 - 15 Jan 2026
Viewed by 207
Abstract
Labor market forecasting relies heavily on economic time-series data, often overlooking the “health–wealth” gradient that links population health to workforce participation. This study develops a machine learning framework integrating non-traditional health and social metrics to predict state-level employment density. Methods: We constructed a [...] Read more.
Labor market forecasting relies heavily on economic time-series data, often overlooking the “health–wealth” gradient that links population health to workforce participation. This study develops a machine learning framework integrating non-traditional health and social metrics to predict state-level employment density. Methods: We constructed a multi-source longitudinal dataset (2014–2024) by aggregating county-level Quarterly Census of Employment and Wages (QCEW) data with County Health Rankings to the state level. Using a time-aware split to evaluate performance across the COVID-19 structural break, we compared LASSO, Random Forest, and regularized XGBoost models, employing SHAP values for interpretability. Results: The tuned, regularized XGBoost model achieved strong out-of-sample performance (Test R2 = 0.800). A leakage-safe stacked Ridge ensemble yielded comparable performance (Test R2 = 0.827), while preserving the interpretability of the underlying tree model used for SHAP analysis. Full article
Show Figures

Figure 1

Back to TopTop