Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,579)

Search Parameters:
Keywords = stable gene expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 20542 KiB  
Article
Establishment of Agrobacterium-Mediated Transient Transformation System in Sunflower
by Fangyuan Chen, Lai Wang, Qixiu Huang, Run Jiang, Wenhui Li, Xianfei Hou, Zihan Tan, Zhonghua Lei, Qiang Li and Youling Zeng
Plants 2025, 14(15), 2412; https://doi.org/10.3390/plants14152412 - 4 Aug 2025
Abstract
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient [...] Read more.
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient transformation system, which can rapidly validate gene function, shows promising prospects in research. In this study, we established an efficient transient expression transformation system for sunflower using three methods: Agrobacterium-mediated infiltration, injection, and ultrasonic-vacuum. The detailed procedures were as follows: Agrobacterium GV3101 carrying a GUS reporter gene on the pBI121 vector with an OD600 of 0.8 as the bacterial suspension and 0.02% Silwet L-77 as the surfactant were utilized in all three approaches. For the infiltration method, seedlings grown hydroponically for 3 days were immersed in a bacterial suspension containing 0.02% Silwet L-77 for 2 h; for the injection method, the same solution was injected into the cotyledons of seedlings grown in soil for 4 to 6 days. Subsequently, the seedlings were cultured in the dark at room temperature for three days; for the ultrasonic-vacuum method, seedlings cultured in Petri dishes for 3 days were first subjected to ultrasonication at 40 kHz for 1 min, followed by vacuum infiltration at 0.05 kPa for 5–10 min. Agrobacterium-mediated transient transformation efficiency achieved by the three methods exceeded 90%, with gene expression being sustained for at least 6 days. Next, we employed the infiltration-based sunflower transient transformation technology with the Arabidopsis stable transformation platform to confirm salt and drought stress tolerance of candidate gene HaNAC76 from sunflower responding to various abiotic stresses. Altogether, this study successfully established an Agrobacterium-mediated transient transformation system for sunflower using these three methods, which can rapidly identify gene function and explore the molecular mechanisms underlying sunflower’s resistance traits. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 206
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

33 pages, 7206 KiB  
Article
From Development to Regeneration: Insights into Flight Muscle Adaptations from Bat Muscle Cell Lines
by Fengyan Deng, Valentina Peña, Pedro Morales-Sosa, Andrea Bernal-Rivera, Bowen Yang, Shengping Huang, Sonia Ghosh, Maria Katt, Luciana Andrea Castellano, Lucinda Maddera, Zulin Yu, Nicolas Rohner, Chongbei Zhao and Jasmin Camacho
Cells 2025, 14(15), 1190; https://doi.org/10.3390/cells14151190 - 1 Aug 2025
Viewed by 205
Abstract
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular [...] Read more.
Skeletal muscle regeneration depends on muscle stem cells, which give rise to myoblasts that drive muscle growth, repair, and maintenance. In bats—the only mammals capable of powered flight—these processes must also sustain contractile performance under extreme mechanical and metabolic stress. However, the cellular and molecular mechanisms underlying bat muscle physiology remain largely unknown. To enable mechanistic investigation of these traits, we established the first myoblast cell lines from the pectoralis muscle of Pteronotus mesoamericanus, a highly maneuverable aerial insectivore. Using both spontaneous immortalization and exogenous hTERT/CDK4 gene overexpression, we generated two stable cell lines that retain proliferative capacity and differentiate into contractile myotubes. These cells exhibit frequent spontaneous contractions, suggesting robust functional integrity at the neuromuscular junction. In parallel, we performed transcriptomic and metabolic profiling of native pectoralis tissue in the closely related Pteronotus parnellii to define molecular programs supporting muscle specialization. Gene expression analyses revealed enriched pathways for muscle metabolism, development, and regeneration, highlighting supporting roles in tissue maintenance and repair. Consistent with this profile, the flight muscle is triglyceride-rich, which serves as an important fuel source for energetically demanding processes, including muscle contraction and cellular recovery. Integration of transcriptomic and metabolic data identified three key metabolic modules—glucose utilization, lipid handling, and nutrient signaling—that likely coordinate ATP production and support metabolic flexibility. Together, these complementary tools and datasets provide the first in vitro platform for investigating bat muscle research, enabling direct exploration of muscle regeneration, metabolic resilience, and evolutionary physiology. Full article
Show Figures

Graphical abstract

15 pages, 7649 KiB  
Article
S100A14 as a Potential Biomarker of the Colorectal Serrated Neoplasia Pathway
by Pierre Adam, Catherine Salée, Florence Quesada Calvo, Arnaud Lavergne, Angela-Maria Merli, Charlotte Massot, Noëlla Blétard, Joan Somja, Dominique Baiwir, Gabriel Mazzucchelli, Carla Coimbra Marques, Philippe Delvenne, Edouard Louis and Marie-Alice Meuwis
Int. J. Mol. Sci. 2025, 26(15), 7401; https://doi.org/10.3390/ijms26157401 - 31 Jul 2025
Viewed by 222
Abstract
Accounting for 15–30% of colorectal cancer cases, the serrated pathway remains poorly characterized compared to the adenoma–carcinoma sequence. It involves sessile serrated lesions as precursors and is characterized by BRAF mutations (BRAFV600E), CpG island hypermethylation, and microsatellite instability (MSI). Using label-free [...] Read more.
Accounting for 15–30% of colorectal cancer cases, the serrated pathway remains poorly characterized compared to the adenoma–carcinoma sequence. It involves sessile serrated lesions as precursors and is characterized by BRAF mutations (BRAFV600E), CpG island hypermethylation, and microsatellite instability (MSI). Using label-free proteomics, we compared normal tissue margins from patients with diverticular disease, sessile serrated lesions, low-grade adenomas, and high-grade adenomas. We identified S100A14 as significantly overexpressed in sessile serrated lesions compared to low-grade adenomas, high-grade adenomas, and normal tissues. This overexpression was confirmed by immunohistochemical scoring in an independent cohort. Gene expression analyses of public datasets showed higher S100A14 expression in BRAFV600E-mutated and MSI-H colorectal cancers compared to microsatellite stable BRAFwt tumors. This finding was confirmed by immunohistochemical scoring in an independent colorectal cancer cohort. Furthermore, single-cell RNA sequencing analysis from the Human Colon Cancer Atlas revealed that S100A14 expression in tumor cells positively correlated with the abundance of tumoral CD8+ cytotoxic T cells, particularly the CD8+ CXCL13+ subset, known for its association with a favorable response to immunotherapy. Collectively, our results demonstrate for the first time that S100A14 is a potential biomarker of serrated neoplasia and further suggests its potential role in predicting immunotherapy responses in colorectal cancer. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Colorectal Cancer)
Show Figures

Figure 1

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 - 31 Jul 2025
Viewed by 257
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

24 pages, 7353 KiB  
Article
Characterization and Application of Synergistically Degraded Chitosan in Aquafeeds to Promote Immunity, Antioxidative Status, and Disease Resistance in Nile Tilapia (Oreochromis niloticus)
by Thitirat Rattanawongwiboon, Natthapong Paankhao, Wararut Buncharoen, Nantipa Pansawat, Benchawan Kumwan, Pakapon Meachasompop, Phunsin Kantha, Tanavan Pansiri, Theeranan Tangthong, Sakchai Laksee, Suwinai Paankhao, Kittipong Promsee, Mongkhon Jaroenkittaweewong, Pattra Lertsarawut, Prapansak Srisapoome, Kasinee Hemvichian and Anurak Uchuwittayakul
Polymers 2025, 17(15), 2101; https://doi.org/10.3390/polym17152101 - 31 Jul 2025
Viewed by 298
Abstract
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/ [...] Read more.
This study investigated the immunonutritional potential of high-molecular-weight (Mw~85 kDa), non-degraded chitosan (NCS) and gamma-radiation-degraded, low-molecular-weight chitosan (RCS) incorporated into aquafeeds for Nile tilapia (Oreochromis niloticus). RCS was produced by γ-irradiation (10 kGy) in the presence of 0.25% (w/v) H2O2, yielding low-viscosity, colloidally stable nanoparticles with Mw ranging from 10 to 13 kDa. Five diets were formulated: a control, NCS at 0.50%, and RCS at 0.025%, 0.050%, and 0.075%. No adverse effects on growth were observed, confirming safety. Immune gene expression (e.g., ifng1, nfκb, tnf), antioxidant markers (e.g., reduced MDA, increased GSH and GR), and nonspecific humoral responses (lysozyme, IgM, and bactericidal activity) were significantly enhanced in the NCS-0.50, RCS-0.050, and RCS-0.075 groups. Notably, these benefits were achieved with RCS at 10-fold lower concentrations than NCS. Following challenge with Edwardsiella tarda, fish fed RCS-0.050 and RCS-0.075 diets exhibited the highest survival rates and relative percent survival, highlighting robust activation of innate and adaptive immunity alongside redox defense. These results support the use of low-Mw RCS as a biologically potent, cost-effective alternative to traditional high-Mw chitosan in functional aquafeeds. RCS-0.050 and RCS-0.075 show strong potential as immunonutritional agents to enhance fish health and disease resistance in aquaculture. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Figure 1

11 pages, 711 KiB  
Article
Cadmium Accumulation and Regulation in the Freshwater Mussel Anodonta woodiana
by Xiubao Chen, Chao Song, Jiazhen Jiang, Tao Jiang, Junren Xue, Ibrahim Bah, Mengying Gu, Meiyi Wang and Shunlong Meng
Toxics 2025, 13(8), 646; https://doi.org/10.3390/toxics13080646 - 30 Jul 2025
Viewed by 151
Abstract
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular [...] Read more.
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular regulatory mechanisms underlying Cd accumulation are poorly understood. To address these gaps, this study employed a novel stable isotope dual-tracer technique to trace Cd from water (waterborne 112Cd) and the green alga Chlorella vulgaris (dietary 113Cd) during the simultaneous exposure experiment. Comparative transcriptomic analysis was then conducted to characterize molecular responses in A. woodiana following Cd exposure. The results showed that although newly accumulated 112Cd and 113Cd increased with exposure concentration and duration, the relative importance of 112Cd (91.6 ± 2.8%) was significantly higher than that of 113Cd (8.4 ± 2.8%) (p < 0.05). Cd exposure induced differentially expressed genes primarily enriched in the metabolic processes, cellular processes, and/or the ubiquitin-mediated proteolysis pathway. Within the ubiquitin-mediated proteolysis pathway, TRIP12 (E3 ubiquitin-protein ligase TRIP12) and Cul5 (cullin-5) were significantly upregulated. The findings will provide critical insights for interpreting Cd biomonitoring data in freshwater environments using mussels as bioindicators. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

31 pages, 19845 KiB  
Article
In Silico Approaches for the Discovery of Novel Pyrazoline Benzenesulfonamide Derivatives as Anti-Breast Cancer Agents Against Estrogen Receptor Alpha (ERα)
by Dadang Muhammad Hasyim, Ida Musfiroh, Rudi Hendra, Taufik Muhammad Fakih, Nur Kusaira Khairul Ikram and Muchtaridi Muchtaridi
Appl. Sci. 2025, 15(15), 8444; https://doi.org/10.3390/app15158444 - 30 Jul 2025
Viewed by 336
Abstract
Estrogen receptor alpha (ERα) plays a vital role in the development and progression of breast cancer by regulating the expression of genes associated with cell proliferation in breast tissue. ERα inhibition is a key strategy in the prevention and treatment of breast cancer. [...] Read more.
Estrogen receptor alpha (ERα) plays a vital role in the development and progression of breast cancer by regulating the expression of genes associated with cell proliferation in breast tissue. ERα inhibition is a key strategy in the prevention and treatment of breast cancer. Previous research modified chalcone compounds into pyrazoline benzenesulfonamide derivatives (Modifina) which show activity as an ERα inhibitor. This study aimed to design novel pyrazoline benzenesulfonamide derivatives (PBDs) as ERα antagonists using in silico approaches. Structure-based and ligand-based drug design approaches were used to create drug target molecules. A total of forty-five target molecules were initially designed and screened for drug likeness (Lipinski’s rule of five), cytotoxicity, pharmacokinetics and toxicity using a web-based prediction tools. Promising candidates were subjected to molecular docking using AutoDock 4.2.6 to evaluate their binding interaction with ERα, followed by molecular dynamics simulations using AMBER20 to assess complex stability. A pharmacophore model was also generated using LigandScout 4.4.3 Advanced. The molecular docking results identified PBD-17 and PBD-20 as the most promising compounds, with binding free energies (ΔG) of −11.21 kcal/mol and −11.15 kcal/mol, respectively. Both formed hydrogen bonds with key ERα residues ARG394, GLU353, and LEU387. MM-PBSA further supported these findings, with binding energies of −58.23 kJ/mol for PDB-17 and −139.46 kJ/mol for PDB-20, compared to −145.31 kJ/mol, for the reference compound, 4-OHT. Although slightly less favorable than 4-OHT, PBD-20 demonstrated a more stable interaction with ERα than PBD-17. Furthermore, pharmacophore screening showed that both PBD-17 and PBD-20 aligned well with the generated model, each achieving a match score of 45.20. These findings suggest that PBD-17 and PBD-20 are promising lead compounds for the development of a potent ERα inhibitor in breast cancer therapy. Full article
(This article belongs to the Special Issue Drug Discovery and Delivery in Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 3026 KiB  
Article
Gallic, Aconitic, and Crocetin Acids as Potential TNF Modulators: An Integrated Study Combining Molecular Docking, Dynamics Simulations, ADMET Profiling, and Gene Expression Analysis
by Adolat Manakbayeva, Andrey Bogoyavlenskiy, Timur Kerimov, Igor Yershov, Pavel Alexyuk, Madina Alexyuk, Vladimir Berezin and Vyacheslav Dushenkov
Molecules 2025, 30(15), 3175; https://doi.org/10.3390/molecules30153175 - 29 Jul 2025
Viewed by 211
Abstract
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, [...] Read more.
Organic acids, as natural metabolites, play crucial roles in human metabolism and health. Tumor Necrosis Factor (TNF), a pivotal mediator in immune regulation and inflammation, is a key therapeutic target. We evaluated ten organic acids as TNF modulators using in silico molecular docking, followed by detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiling and molecular dynamics (MD) simulations for three lead candidates: gallic, aconitic, and crocetin acids. Their effects on TNF gene expression were then assessed in vivo using a mouse leukocyte model. The in silico results indicated that crocetin had the highest TNF binding affinity (−5.6 to −4.6 kcal/mol), while gallic acid formed the most stable protein-ligand complex during MD simulations, and aconitic acid established hydrogen bond interactions. ADMET analysis suggested potential pharmacokinetic limitations, including low permeability. Contrasting its high predicted binding affinity, in vivo gene expression analysis revealed that crocetin stimulated TNF synthesis, whereas gallic and aconitic acids acted as inhibitors. This research explores organic acids as potential TNF modulators, highlighting their complex interactions and providing a foundation for developing these compounds as anti-inflammatory agents targeting TNF-mediated diseases. Full article
Show Figures

Figure 1

14 pages, 1333 KiB  
Article
Reliable RT-qPCR Normalization in Polypogon fugax: Reference Gene Selection for Multi-Stress Conditions and ACCase Expression Analysis in Herbicide Resistance
by Yufei Zhao, Xu Yang, Qiang Hu, Jie Zhang, Sumei Wan and Wen Chen
Agronomy 2025, 15(8), 1813; https://doi.org/10.3390/agronomy15081813 - 26 Jul 2025
Viewed by 233
Abstract
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data [...] Read more.
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data from seedling tissues. We assessed the expression stability of these eight RGs across various abiotic stresses and developmental stages using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. A comprehensive stability ranking was generated using RefFinder, with validation performed using the target genes COR413 and P5CS. Results identified EIF4A and TUB as the optimal RG combination for normalizing gene expression during heat stress, cold stress, and growth stages. EIF4A and ACT were most stable under drought stress, EIF4A and 28S under salt stress, and EIF4A and EF-1 under cadmium (Cd) stress. Furthermore, EIF4A and UBQ demonstrated optimal stability under herbicide stress. Additionally, application of validated RGs revealed higher acetyl-CoA carboxylase gene (ACCase) expression in one herbicide-resistant population, suggesting target-site gene overexpression contributes to resistance. This work presents the first systematic evaluation of RGs in P. fugax. The identified stable RGs provide essential tools for future gene expression studies on growth and abiotic stress responses in this species, facilitating deeper insights into the molecular basis of its weediness and adaptability. Full article
(This article belongs to the Special Issue Adaptive Evolution in Weeds: Molecular Basis and Management)
Show Figures

Graphical abstract

22 pages, 1674 KiB  
Article
The Ghrelin Analog GHRP-6, Delivered Through Aquafeeds, Modulates the Endocrine and Immune Responses of Sparus aurata Following IFA Treatment
by Leandro Rodríguez-Viera, Anyell Caderno, Rebeca Martinez, Gonzalo Martinez-Rodríguez, Milagrosa Oliva, Erick Perera, Juan Miguel Mancera and Juan Antonio Martos-Sitcha
Biology 2025, 14(8), 941; https://doi.org/10.3390/biology14080941 - 25 Jul 2025
Viewed by 387
Abstract
The aquaculture industry has experienced considerable growth in recent decades, stimulating research into sustainable and functional feed formulations, mainly related to using high-quality, safe, and environmentally friendly feed ingredients. The employment of immunomodulatory additives is a promising strategy to enhance fish health and [...] Read more.
The aquaculture industry has experienced considerable growth in recent decades, stimulating research into sustainable and functional feed formulations, mainly related to using high-quality, safe, and environmentally friendly feed ingredients. The employment of immunomodulatory additives is a promising strategy to enhance fish health and performance. In this study, the effects of the ghrelin analog GHRP-6 peptide included in the diet (500 µg/kg of feed) on the endocrine and immune responses of Sparus aurata following Incomplete Freund’s adjuvant (IFA) treatment were assessed. After 97 days, fish were intraperitoneally injected with 100 µL of saline solution or IFA/100 g fish and sampled 72 h post-injection. Our results indicated that fish fed GHRP-6 maintained stable plasma levels of lactate, triglycerides, and cortisol after IFA treatment, in contrast to control-fed fish, which showed significant metabolic stress. Circulating immunoglobulin levels enhanced significantly in the GHRP-6/IFA group, suggesting a stimulated humoral immune response. Transcriptomics analysis revealed that the anterior intestine was the most responsive tissue, with upregulation of il10, il15, il34, and mx1, indicating mucosal immune activation. In the spleen, GHRP-6-fed fish increased il8, il10, and ighm expression, highlighting a balanced pro- and anti-inflammatory response and support for adaptive immunity. Multivariate analysis confirmed that dietary GHRP-6 modulates immune gene expression in a tissue- and stimulus-specific manner, without inducing histological alterations in the intestine or spleen. Taken together, these preliminary results indicate that this peptide is a viable and safe dietary supplement to improve immune resilience and increase the production efficiency of S. aurata and suggest a protective effect on the fish’s immune system in this species. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Investigation of the Impact of miRNA-7151 and a Mutation in Its Target Gene lncRNA KCNQ1OT1 on the Pathogenesis of Preeclampsia
by Wuqian Wang, Xiaojia Wu, Jianmei Gu, Luan Chen, Weihua Zhang, Xiaofang Sun, Shengying Qin and Ping Tang
Biomedicines 2025, 13(8), 1813; https://doi.org/10.3390/biomedicines13081813 - 24 Jul 2025
Viewed by 297
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between [...] Read more.
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between miR-7151-5p and the lncRNA KCNQ1OT1 and their functional contributions to PE pathogenesis. Methods: An integrative approach combining RNAhybrid-based bioinformatics, dual-luciferase reporter assays, qRT-PCR, Transwell migration and invasion assays, and RNA sequencing was employed to characterize the binding between miR-7151-5p and KCNQ1OT1 and assess their influence on trophoblast cell function and gene expression. Results: A bioinformatic analysis predicted a stable binding site between miR-7151-5p and KCNQ1OT1 (minimum free energy: –37.3 kcal/mol). The dual-luciferase reporter assay demonstrated that miR-7151-5p directly targets KCNQ1OT1, leading to suppressed transcriptional activity. In HTR8/SVneo cells, miR-7151-5p overexpression significantly downregulated both KCNQ1OT1 and Notch1 mRNA, whereas its inhibition showed no significant changes, suggesting additional regulatory mechanisms of Notch1 expression. Transwell assays indicated that miR-7151-5p overexpression suppressed trophoblast cell migration and invasion, whereas its inhibition enhanced these cellular behaviors. RNA-seq analysis further revealed that miR-7151-5p overexpression altered key signaling pathways, notably the TGF-β pathway, and significantly modulates PE-associated genes, including PLAC1, ANGPTL6, HIRA, GLA, HSF1, and BAG6. Conclusions: The regulatory effect of miR-7151-5p on KCNQ1OT1, along with its influence on trophoblast cell dynamics via Notch1 and TGF-β signaling pathways, highlights its role in PE pathogenesis and supports its potential as a biomarker in early PE screening. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

16 pages, 1068 KiB  
Article
Protective Effects of Regular Physical Activity: Differential Expression of FGF21, GDF15, and Their Receptors in Trained and Untrained Individuals
by Paulina Małkowska, Patrycja Tomasiak, Marta Tkacz, Katarzyna Zgutka, Maciej Tarnowski, Agnieszka Maciejewska-Skrendo, Rafał Buryta, Łukasz Rosiński and Marek Sawczuk
Int. J. Mol. Sci. 2025, 26(15), 7115; https://doi.org/10.3390/ijms26157115 - 23 Jul 2025
Viewed by 188
Abstract
According to the World Health Organization (WHO), a healthy lifestyle is defined as a way of living that lowers the risk of becoming seriously ill or dying prematurely. Physical activity, as a well-known contributor to overall health, plays a vital role in supporting [...] Read more.
According to the World Health Organization (WHO), a healthy lifestyle is defined as a way of living that lowers the risk of becoming seriously ill or dying prematurely. Physical activity, as a well-known contributor to overall health, plays a vital role in supporting such a lifestyle. Exercise induces complex molecular responses that mediate both acute metabolic stress and long-term physiological adaptations. FGF21 (fibroblast growth factor 21) and GDF15 (growth differentiation factor 15) are recognized as metabolic stress markers, while their receptors play critical roles in cellular signaling. However, the differential gene expression patterns of these molecules in trained and untrained individuals following exhaustive exercise remain poorly understood. This study aimed to examine the transcriptional and protein-level responses in trained and untrained individuals performed a treadmill maximal exercise test to voluntary exhaustion. Blood samples were collected at six time points (pre-exercise, immediately post-exercise, and 0.5 h, 6 h, 24 h, and 48 h post-exercise). Gene expression of FGF21, GDF15, FGFR1 (fibroblast growth factor receptors), FGFR3, FGFR4, KLB (β-klotho), and GFRAL (glial cell line-derived neurotrophic factor receptor alpha-like) was analyzed using RT-qPCR, while plasma protein levels of FGF21 and GDF15 were quantified via ELISA. The results obtained were statistically analyzed by using Shapiro–Wilk, Mann–Whitney U, and Wilcoxon tests in Statistica 13 software. Untrained individuals demonstrated significant post-exercise upregulation of FGFR3, FGFR4, KLB, and GFRAL. FGF21 and GDF15 protein levels were consistently lower in trained individuals (p < 0.01), with no significant correlations between gene and protein expression. Trained individuals showed more stable expression of genes, while untrained individuals exhibited transient upregulation of genes after exercise. Full article
(This article belongs to the Special Issue Cytokines in Inflammation and Health)
Show Figures

Figure 1

15 pages, 3942 KiB  
Article
Quantitative Evaluation of Endogenous Reference Genes for RT-qPCR and ddPCR Gene Expression Under Polyextreme Conditions Using Anaerobic Halophilic Alkalithermophile Natranaerobius thermophilus
by Xinyi Tao, Qinghua Xing, Yingjie Zhang, Belsti Atnkut, Haozhuo Wei, Silva Ramirez, Xinwei Mao and Baisuo Zhao
Microorganisms 2025, 13(8), 1721; https://doi.org/10.3390/microorganisms13081721 - 23 Jul 2025
Viewed by 273
Abstract
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability [...] Read more.
Accurate gene expression quantification using reverse transcription quantitative PCR (RT-qPCR) requires stable reference genes (RGs) for reliable normalization. However, few studies have systematically identified RGs suitable for simultaneous high salt, alkaline, and high-temperature conditions. This study addresses this gap by evaluating the stability of eight candidate RGs in the anaerobic halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LFT under combined salt, alkali, and thermal stresses. The stability of these candidate RGs was assessed using five statistical algorithms: Delta CT, geNorm, NormFinder, BestKeeper, and RefFinder. Results indicated that recA exhibited the highest expression stability across all tested conditions and proved adequate as a single RG for normalization in both RT-qPCR and droplet digital PCR (ddPCR) assays. Furthermore, recA alone or combined with other RGs (sigA, rsmH) effectively normalized the expression of seven stress-response genes (proX, opuAC, mnhE, nhaC, trkH, ducA, and pimT). This work represents the first systematic validation of RGs under polyextreme stress conditions, providing essential guidelines for future gene expression studies in extreme environments and aiding research on microbial adaptation mechanisms in halophilic, alkaliphilic, and thermophilic microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

10 pages, 1098 KiB  
Article
Zyxin Gene Expression in Patients with Varying Degrees of Coronary Artery Disease
by Joanna Głogowska-Ligus, Józefa Dąbek, Agata Wypych-Ślusarska, Klaudia Oleksiuk, Karolina Krupa-Kotara, Ewelina Sobecko, Elżbieta Czech and Jerzy Słowiński
Int. J. Mol. Sci. 2025, 26(15), 7072; https://doi.org/10.3390/ijms26157072 - 23 Jul 2025
Viewed by 202
Abstract
Acute coronary syndrome (ACS) remains the leading cause of mortality in developed countries. Although recent advances have improved our understanding of the pathophysiology of ACS and its primary consequence, myocardial infarction, many questions remain regarding the molecular and cellular changes occurring during and [...] Read more.
Acute coronary syndrome (ACS) remains the leading cause of mortality in developed countries. Although recent advances have improved our understanding of the pathophysiology of ACS and its primary consequence, myocardial infarction, many questions remain regarding the molecular and cellular changes occurring during and after an infarction. This study aimed to evaluate the expression levels of the zyxin (ZYX) gene in patients with ACS, stable coronary artery disease (stable CAD), and healthy controls. RNA was extracted from PBMCs and analyzed by quantitative real-time PCR (qRT-PCR). Gene expression was measured using TaqMan Gene Expression Assays and the number of ZYX mRNA molecules was quantified based on qRT-PCR kinetics. Kruskal–Wallis was used to compare gene expression levels among the three groups. A significantly higher number of ZYX gene copies was observed in both the ACS and stable CAD groups than in healthy controls (p < 0.0001 and p < 0.001, respectively). A statistically significant difference was also observed between the ACS and stable CAD groups (p = 0.004). The increased expression of zyxin observed in patients with ACS and stable CAD may reflect cellular repair mechanisms activated in response to myocardial injury. Full article
Show Figures

Figure 1

Back to TopTop