Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (621)

Search Parameters:
Keywords = stable carbon isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 119
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 1800 KiB  
Article
Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna
by Marjeta Mencin, Milena Bučar-Miklavčič, Maja Podgornik and Nives Ogrinc
Foods 2025, 14(15), 2667; https://doi.org/10.3390/foods14152667 - 29 Jul 2025
Viewed by 244
Abstract
This study evaluated the authenticity of olive oil in canned tuna products from the Slovenian market using both official methods, including fatty acid (FA) profiling, determination of the equivalent carbon number difference (ΔECN42), and sterol analysis, and an advanced method: stable carbon isotope [...] Read more.
This study evaluated the authenticity of olive oil in canned tuna products from the Slovenian market using both official methods, including fatty acid (FA) profiling, determination of the equivalent carbon number difference (ΔECN42), and sterol analysis, and an advanced method: stable carbon isotope analysis (δ13C) of FAs obtained through compound-specific isotope analysis (CSIA). Results from both methods confirmed that all 10 samples were authentic, as per the limits set by EU Regulation 2022/2104 and supported by the scientific literature. Method performance was further evaluated by adulterating the olive oil from the canned tuna with 5–20% vegetable oil (VO) or hazelnut oil (HO). While FA analysis struggled to differentiate adulterants with similar FA profiles, CSIA of FAs significantly improved detection. However, distinguishing between VO and HO blended samples remained challenging. PLS-DA analysis further supported the potential of using δ13C values of FA for food authentication. Storage of adulterated samples also influenced FA composition, leading to significant changes in MUFA/PUFA ratios and δ13C values, which became less negative, likely due to oxidative degradation. In summary, the combination of official and advanced methods, supported by chemometric analysis, offers a robust approach to ensuring the authenticity of olive oil in canned tuna. Full article
Show Figures

Graphical abstract

15 pages, 650 KiB  
Article
Advanced Isotopic Techniques to Investigate Cultural Heritage: The Research Activities at the iCONa Laboratory
by Noemi Mantile, Simona Altieri, Maria Rosa di Cicco, Valentina Giacometti and Carmine Lubritto
Heritage 2025, 8(8), 296; https://doi.org/10.3390/heritage8080296 - 24 Jul 2025
Viewed by 214
Abstract
Isotopic analyses are useful tools with a wide range of applications, including environmental studies, archaeology and biomedicine. Founded in 2019 at the University of Campania “Luigi Vanvitelli”, the iCONa laboratory specialises in stable isotope mass spectrometry, with a particular focus on cultural heritage. [...] Read more.
Isotopic analyses are useful tools with a wide range of applications, including environmental studies, archaeology and biomedicine. Founded in 2019 at the University of Campania “Luigi Vanvitelli”, the iCONa laboratory specialises in stable isotope mass spectrometry, with a particular focus on cultural heritage. The laboratory performs carbon, nitrogen and oxygen isotopic analyses, including the most recent advances in compound-specific stable isotope analysis of amino acids (CSIA-AAs). In addition to these analytical services, iCONa provides chemical and physical sample preparation for a variety of sample types. This paper focuses on our applications in the field of cultural heritage, exploring how the analysis of stable isotopes performed on archaeological remains can be used to reconstruct past subsistence strategies and human behaviours. We also discuss the challenges inherent in isotopic analysis and recent methodological advances in the field. Full article
Show Figures

Figure 1

17 pages, 4524 KiB  
Article
Growth and Water-Use Efficiency of European Beech and Turkey Oak at Low-Elevation Site
by Negar Rezaie, Ettore D’Andrea, Marco Ciolfi, Enrico Brugnoli and Silvia Portarena
Forests 2025, 16(8), 1210; https://doi.org/10.3390/f16081210 - 23 Jul 2025
Viewed by 754
Abstract
In Italy, beech and Turkey oak are among the most widespread tree species, thriving across various climatic zones. However, rising temperatures and prolonged droughts significantly affect their physiological performance and growth dynamics. To assess their long-term responses to climate change, mature beech and [...] Read more.
In Italy, beech and Turkey oak are among the most widespread tree species, thriving across various climatic zones. However, rising temperatures and prolonged droughts significantly affect their physiological performance and growth dynamics. To assess their long-term responses to climate change, mature beech and Turkey oak trees were studied in Central Italy at an elevation of 450 m. Using dendrochronological and stable isotope analyses (1981–2020), their growth patterns and physiological adaptations were evaluated. Beech exhibited a higher growth rate, with a basal area increment (BAI) of 17.1 ± 1.1 cm2 year−1, compared to Turkey oak, showing a BAI of 12.7 ± 0.96 cm2 year−1. Both species actively responded to increasing atmospheric CO2 levels. Additionally, spring and the previous summer’s climatic conditions played a key role in growth, while summer temperature and precipitation influenced carbon discrimination. For beech, correlations between BAI and iWUE (intrinsic water efficiency, defined as the ratio between photosynthesis and stomatal conductance) were initially weak and not statistically significant. However, the correlation became significant, strengthening steadily into the early 2000s, likely related to thinning of the beech trees. For Turkey oak, the correlation was already significant and strong from the beginning of the analysis period (1981), persisting until the late 1990s. Our findings suggest that both species actively adjust their iWUE in response to an increasing atmospheric CO2 concentration. However, while Turkey oak’s iWUE and BAI relationship remains unaffected by the likely thinning, beech benefits from reduced competition for light, nutrients, and water. Despite climate change’s impact on marginal populations, microclimatic conditions allow beech to outperform Turkey oak, a species typically better suited to drier climates. Full article
Show Figures

Figure 1

17 pages, 2126 KiB  
Article
Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland
by Zofia Wrosz, Krzysztof Banaś, Marek Merdalski and Eugeniusz Pronin
Plants 2025, 14(15), 2261; https://doi.org/10.3390/plants14152261 - 22 Jul 2025
Viewed by 194
Abstract
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation [...] Read more.
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation of the Water Framework Directive (WFD), biotic elements, including macrophytes, have played an increasingly important role in water monitoring. Moreover, running waters, due to their dynamic nature, are susceptible to episodic pollution inputs that may be difficult to detect during isolated, point-in-time sampling campaigns. The analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope signatures in macrophytes enables the identification of elemental sources, including potential pollutants. Research conducted between 2008 and 2011 encompassed 38 sites along 15 rivers and 108 sites across 21 lakes in northern Poland. This study focused on the isotope signatures of three pondweed species: Stuckenia pectinata, Potamogeton perfoliatus, and Potamogeton crispus. The results revealed statistically significant differences in the δ13C and δ15N values of plant organic matter between river and lake environments. Higher δ15N values were observed in rivers, whereas higher δ13C values were recorded in lakes. Spearman correlation analysis showed a negative relationship between δ13C and δ15N, as well as correlations between δ15N and the concentrations of Ca2+ and HCO3. A positive correlation was also found between δ13C and dissolved oxygen levels. These findings confirm the utility of δ13C and, in particular, δ15N as indicators of anthropogenic eutrophication, including potentially domestic sewage input and its impact on aquatic ecosystems. Full article
Show Figures

Figure 1

19 pages, 8399 KiB  
Article
Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China
by Liang Guo, Yuanyuan Ding, Haisong Fang, Chunxue An, Wanjun Jiang and Nuan Yang
Water 2025, 17(14), 2074; https://doi.org/10.3390/w17142074 - 11 Jul 2025
Viewed by 275
Abstract
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid [...] Read more.
The hydrochemical characteristics and evolution mechanisms of groundwater are critical for accurately understanding the input–output budget of hydrochemical constituents in pristine groundwater. However, few studies have analyzed the changes in mineral precipitation and dissolution equilibrium along the groundwater flow path, especially in arid regions. This study integrated hydrochemical analysis, stable isotopes, and inverse hydrochemical modeling to identify groundwater recharge sources, hydrochemical evolution, and controlling mechanisms in an arid endorheic watershed, northwestern China. A stable isotope signature indicated that groundwater is primarily recharged by high-altitude meteoric precipitation and glacial snowmelt. The regional hydrochemical type evolved from HCO3·Cl-Ca·Mg·Na types in phreatic aquifers to more complex HCO3·Cl-Ca·Mg Na and HCO3·Cl-Na Mg types in confined aquifers and a Cl-Mg·Na type in high-salinity groundwater. The dissolution of halite, gypsum, calcite, K-feldspar, and albite was identified as the primary source of dissolved substances and a key factor controlling the hydrochemical characteristics. Meanwhile, hydrochemical evolution is influenced by cation exchange, mineral dissolution–precipitation, and carbonate equilibrium mechanisms. Inverse hydrochemical modeling demonstrated that high-salinity groundwater has experienced intensive evaporation and quantified the transfer amounts of associated minerals. This study offers deeper insight into hydrochemical evolution in the Golmud River watershed and elucidates mineral transport and enrichment mechanisms, providing a theoretical basis for investigating hydrochemical metallogenic processes. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

26 pages, 3270 KiB  
Review
Carbon Isotopes in Magmatic Systems: Measurements, Interpretations, and the Carbon Isotopic Signature of the Earth’s Mantle
by Yves Moussallam
Geosciences 2025, 15(7), 266; https://doi.org/10.3390/geosciences15070266 - 9 Jul 2025
Viewed by 332
Abstract
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological [...] Read more.
Carbon isotopes in magmatic systems serve as powerful tracers for understanding magma evolution, mantle processes, the deep carbon cycle, and the origin of Earth’s carbon. This review provides a comprehensive overview of carbon isotope measurements and behavior in magmatic systems, highlighting recent technological advancements and scientific insights. We begin by examining methods for measuring δ13C in volcanic gases, vesicles, glasses, melt, and fluid inclusions. We then explore the behavior of carbon isotopes in magmatic systems, especially during magmatic degassing. Finally, we evaluate what recent advances mean for our understanding of the carbon isotope signature of the Earth’s upper mantle. Full article
Show Figures

Figure 1

24 pages, 17095 KiB  
Article
Origin of Dolomite in the Majiagou Formation (Ordovician) of the Liujiang Basin, China: Evidence from Crystal Structure, Isotope and Element Geochemistry
by Huaiyu Xue, Jianping Qian and Wentan Xu
Minerals 2025, 15(7), 717; https://doi.org/10.3390/min15070717 - 8 Jul 2025
Viewed by 316
Abstract
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes [...] Read more.
Research on dolomite has long been central in geoscience, yet understanding the origin of Middle Ordovician dolomite in the northeast of the North China Platform remains limited. Based on this, this study focuses on dolomite of Majiagou Formation in Liujiang Basin, and analyzes its genetic process. The research is based on the measured geological section and conducts high-precision analysis and testing, encompassing major and trace elements, rare earth elements, stable carbon and oxygen isotopes, strontium isotopes, crystal structure parameters, and micro-area elements of dolomite. Analysis of V/(V + Ni), Th/U, Sr/Ba, Mn/Sr, (Eu/Eu*) N, (Ce/Ce*) N, and the dolomite crystal parameters indicates that the formation of dolomite is related to evaporation. Furthermore, REE and micro-area characteristics of dolomite, as well as the significant negative deviation of δ13C and δ18O, in conjunction with 87Sr/86Sr deviating from the standard values of Ordovician seawater, suggest an origin of the dolomite in this formation with mixed-water dolomitization and burial dolomitization. A comprehensive assessment of dolomite formation suggests three distinct stages: early-stage evaporation dolomitization, subsequent mixed-water dolomitization, and later-stage burial dolomitization. The research further corroborated that dolomite formation is a complex outcome resulting from the interplay of various geological processes over space and time. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Vertebrate Skeletal Remains as Paleohydrologic Proxies: Complex Hydrologic Setting in the Upper Cretaceous Kaiparowits Formation
by Daigo Yamamura and Celina Suarez
Geosciences 2025, 15(7), 262; https://doi.org/10.3390/geosciences15070262 - 8 Jul 2025
Viewed by 775
Abstract
The Kaiparowits Formation preserves one of the best fossil records of Cretaceous North America, which provides great insight into the paleoecology. In an effort to investigate the paleohydrology of the Kaiparowits Formation, stable isotope compositions (δ13C, δ18O-carbonate, δ18 [...] Read more.
The Kaiparowits Formation preserves one of the best fossil records of Cretaceous North America, which provides great insight into the paleoecology. In an effort to investigate the paleohydrology of the Kaiparowits Formation, stable isotope compositions (δ13C, δ18O-carbonate, δ18O-phosphate) of 41 hadrosaur teeth, 27 crocodile teeth, and 35 turtle shell fragments were analyzed. The mean O-isotope compositions of drinking water (δ18Ow) calculated from the O-isotope of bioapatite (phosphate-δ18Op) are −13.76 ± 2.08‰ (SMOW) for hadrosaur, −8.88 ± 2.76‰ (SMOW) for crocodile, and −10.14 ± 2.62‰ (SMOW) for turtle, which strongly reflect niche partitioning. The Kaiparowits formation does not fit the global trend in isotopic compositions of vertebrate skeletal remains from previous studies, which suggests a unique hydrological setting of the Kaiparowits basin. High-elevation runoff from the Mogollon Highlands and sea level fluctuation may have contributed to such a unique paleohydrology. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

16 pages, 1636 KiB  
Article
Lithological Controls on Chemical Weathering and CO2 Consumption at Small Watershed Scale: Insights from Hydrochemistry and Stable Carbon Isotope
by Yuanzheng Zhang, Wenlong Huang, Zhuohan Zhuang, Jing Hua, Litong Bai, Yi Ding, Ling Zheng, Cheng Wang, Chuang Zhao and Yunde Liu
Water 2025, 17(13), 2008; https://doi.org/10.3390/w17132008 - 4 Jul 2025
Viewed by 329
Abstract
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. [...] Read more.
Previous investigations into lithology-driven weathering processes have largely emphasized large-scale spatial assessments, while studies targeting small watershed scales remain scarce. This study investigated two adjacent watersheds (Chengjia: CJ; Datan: DT) under comparable climatic conditions in Guangdong, China, using hydrochemistry and stable carbon isotopes. The CJ watershed exhibited low-TDS (20–66 mg/L) HCO3-Na·Ca-type waters dominated by silicate weathering, whereas the DT watershed displayed high-TDS (70–278 mg/L) HCO3-Ca-type waters, indicative of mixed carbonate–silicate weathering. Results of carbon isotope composition of dissolved inorganic carbon confirmed that H2CO3-driven weathering was the dominant mechanism in both watersheds. In the CJ watershed, 79.5% of dissolved cations in surface water originated from silicate weathering, yielding a CO2 consumption rate (CCR) of 0.28 × 106 mol/km2/yr, while carbonate weathering was negligible. Conversely, in the DT watershed, 86.4% of dissolved cations were derived from carbonate weathering, yielding a CCR of 1.94 × 106 mol/km2/yr, whereas silicate weathering contributed only 10.3% of cations with a CCR of 0.23 × 106 mol/km2/yr. The chemical weathering rate of carbonate can be up to 10 times that of silicate, resulting in a larger CCR. This study demonstrated the key impact of lithology on hydrochemical characteristics and CO2 consumption at small watershed scales. Full article
(This article belongs to the Special Issue Water–Rock Interaction)
Show Figures

Figure 1

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 338
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(7), 1082; https://doi.org/10.3390/f16071082 - 29 Jun 2025
Viewed by 319
Abstract
In the context of China’s ecosystem facing a high intensity of nitrogen loads, carbon–nitrogen interactions are receiving increasing attention. Physical protection by soil aggregates is critical for soil carbon and nitrogen sequestration in terrestrial ecosystems; however, there is currently limited information on how [...] Read more.
In the context of China’s ecosystem facing a high intensity of nitrogen loads, carbon–nitrogen interactions are receiving increasing attention. Physical protection by soil aggregates is critical for soil carbon and nitrogen sequestration in terrestrial ecosystems; however, there is currently limited information on how nitrogen addition influences carbon and nitrogen dynamics across different stages of forest ageing. Herein, a field nitrogen manipulation experiment over 6 years was established in subtropical forests (46, 78, and about 200 years old) in China. Aggregate fractions and stable isotope analyses were used to assess the effects of nitrogen addition. The results show that forest soil was dominated by macroaggregates, and these increased with forest ageing (p > 0.05). The macroaggregates’ carbon content decreased with forest ageing (p > 0.05), while the macroaggregates’ nitrogen content was highest in the 200-year-old forest. Nitrogen addition increased the aggregates’ carbon and nitrogen concentrations in the 46- and 200-year-old forests. The macroaggregates, under nitrogen addition in the 78- and 200-year-old forests, were relatively weak, while forest age and nitrogen addition mainly affected macroaggregate carbon and nitrogen concentrations to promote their carbon and nitrogen storage, and the macroaggregates were the main storage unit for fixing and protecting new carbon in soils. Nitrogen addition increased the macroaggregates’ δ13C abundance in the 78- and 200-year-old forests and decreased it in the 46-year-old forest (p > 0.05); significantly increased the macroaggregates’ δ15N in the 46-year-old forest (p < 0.05), and decreased the macroaggregates’ δ15N in the 200-year-old forest (p > 0.05). Considering the distribution of δ13C and δ15N in the aggregates, the effect of nitrogen addition on the dynamic mechanism of soil aggregate carbon and nitrogen fractions varied based on forest age and aggregate size. Correlation analysis further revealed that soil total phosphorus, NH4+-N, NO3-N, dissolved organic nitrogen, pH, texture, etc., were the primary predictors explaining most of the variation in aggregate fractions and their δ13C distribution. In summary, the effect of nitrogen deposition on the carbon and nitrogen stability of soil aggregates in broad-leaved forests depends on forest age. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 2391 KiB  
Article
Stable Carbon Isotope Fractionation of Trichloroethylene Oxidized by Potassium Permanganate Under Different Environmental Conditions
by Yaqiong Dong, Yufeng Wang, Lantian Xing, Ghufran Uddin, Yuanxiao Guan, Zhengyang E, Jianjun Liang, Ping Li, Changjie Liu and Qiaohui Fan
Appl. Sci. 2025, 15(13), 7142; https://doi.org/10.3390/app15137142 - 25 Jun 2025
Viewed by 268
Abstract
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for [...] Read more.
Stable isotope analysis is a powerful tool for inferring and quantifying transformation processes, but its effectiveness relies on understanding the magnitude and variability of isotopic fractionation associated with specific reactions. Potassium permanganate (KMnO4) is widely used as an efficient oxidant for the degradation of trichloroethylene (TCE); however, the influence of environmental factors on the isotope fractionation during this process remains unclear. In this study, compound-specific isotope analysis (CSIA) was conducted to investigate the variability in carbon isotope effects during the KMnO4-mediated degradation of TCE under varying conditions, including initial concentrations of KMnO4 and TCE, the presence of humic acid (HA), pH levels, and inorganic ions. The results showed that the overall carbon isotope enrichment factors (ε) of TCE ranged from −26.5 ± 0.5‰ to −22.8 ± 0.9‰, indicating relatively small variations across conditions. At low KMnO4/TCE molar ratio (n(KMnO4)/n(TCE)), incomplete oxidation and/or MnO2-mediated oxidation of TCE likely resulted in smaller ε. For dense, non-aqueous phase liquid (DNAPL) TCE, which represents extremely high concentrations, the ε value was −13.0 ± 1.7‰ during KMnO4 oxidation. This may be attributed to the slow dissolution of isotopically light TCE from the DNAPL phase, altering the δ13C signature of the reacted TCE and resulting in a significantly larger ε value than observed for dissolved-phase TCE oxidation. The ε values increased with rising pH, probably due to the decrease in oxidation potential (E0) of KMnO4 from pH ~2 to ~12, as well as the emergence of different degradation pathways and intermediates under varying pH conditions. Both SO42− and NO3 slightly influenced the ε values, potentially due to the formation of H2SO4 and HNO3 at lower pH, which may act as auxiliary oxidants and contribute to TCE degradation. A high concentration (50 mM) of HA led to a decrease in ε values, likely due to competitive interactions between HA and TCE for KMnO4, which reduced the effective oxidation of TCE. Overall, the carbon isotope enrichment factors for KMnO4-mediated TCE degradation are relatively stable, although certain environmental conditions can exert minor influences. These findings highlight the need for caution when applying quantitative assessment based on CSIA for KMnO4 oxidation of TCE. Full article
Show Figures

Figure 1

16 pages, 3653 KiB  
Article
The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition
by Sizhe Deng, Dujie Hou and Wenli Ma
Appl. Sci. 2025, 15(13), 7130; https://doi.org/10.3390/app15137130 - 25 Jun 2025
Viewed by 219
Abstract
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, [...] Read more.
The Dixi area of the Junggar Basin has favorable petroleum geological conditions, with the Cretaceous system representing one of the principal hydrocarbon-bearing strata. However, the genetic origin and mixing characteristics of natural gas across different tectonic zones remain insufficiently understood. In this study, a total of 65 natural gas samples were analyzed using molecular composition and stable carbon isotopic data to determine gas origins and quantify the contributions of different source rocks. A novel multivariate mathematical analysis method was developed and applied to convert compositional and isotopic data into quantitative parameters, enabling the accurate estimation of end-member mixing ratios in natural gas. This methodological innovation addresses the challenge of interpreting multi-source gas systems under complex geological conditions. The results show that the Cretaceous natural gas in the Dixi area is derived from three main sources, comprising both oil-type gas from Permian lacustrine source rocks and coal-type gas from Carboniferous coal-measure source rocks. The calculated mixing proportions exhibit significant spatial variation: in the northern Dixi area, coal-type gas dominates (67.8–84.3%), while the southern zone presents a broader mixture (25.6–68.4% coal-type gas). In the Dongdaohaizi Depression, oil-type gas is predominant, accounting for 89.4–97.7%. This study not only clarifies the genetic classification and mixing dynamics of natural gas in the Dixi area but also provides a quantitative framework for evaluating accumulation processes and source contributions in multi-source gas reservoirs. The proposed method offers valuable guidance for assessing resources and optimizing exploration strategies in the Junggar Basin and other similar basins. Full article
Show Figures

Figure 1

18 pages, 4318 KiB  
Article
The Genesis and Hydrochemical Formation Mechanism of Karst Springs in the Central Region of Shandong Province, China
by Yuanqing Liu, Le Zhou, Xuejun Ma, Dongguang Wen, Wei Li and Zheming Shi
Water 2025, 17(12), 1805; https://doi.org/10.3390/w17121805 - 17 Jun 2025
Viewed by 343
Abstract
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the [...] Read more.
With the intensification of human activities, the water resource environment in the karst mountainous area of central Shandong has undergone significant changes, directly manifested in the cessation of karst spring flows and the occurrence of karst collapses within the spring basin in the Laiwu Basin. To support the scientific development and management of karst water, this study utilizes comprehensive analysis and deuterium-oxygen isotope test data from surveys and sampling of 20 typical karst springs conducted between 2016 and 2018. By integrating mathematical statistics, correlation analysis, and ion component ratio methods, the study analyzes the genesis, hydrochemical ion component sources, and controlling factors of typical karst springs in the Laiwu Basin. The results indicate that the genesis of karst springs in the Laiwu Basin is controlled by three factors: faults, rock masses, and lithology, and can be classified into four types: water resistance controlled by lithology, by faults, by basement, and by rock mass. The karst springs are generally weakly alkaline freshwater, with the main ion components being HCO3 and Ca2+, accounting for approximately 55.02% and 71.52% of the anion and cation components, respectively; about 50% of the sampling points have a hydrochemical type of HCO3·SO4-Ca·Mg. Stable isotope (δ18O and δD) results show that atmospheric precipitation is the primary recharge source for karst springs in the Laiwu Basin. There are varying degrees of evaporative fractionation and water–rock interaction during the groundwater flow process, resulting in significantly higher deuterium excess (d-excess) in the sampling points on the southern side of the basin compared to the northern side, indicating clear differentiation. The hydrochemical composition of the karst groundwater system is predominantly governed by water–rock interactions during flow processes and anthropogenic influences. Carbonate dissolution (primarily calcite) serves as the principal source of HCO3, SO42−, Ca2+, and Mg2+, while evaporite dissolution and reverse cation exchange contribute to the slight enrichment of Ca2+ and Mg2+ alongside depletion of Na+ and K+ in spring waters. Saturation indices (SI) reveal that spring waters are saturated with respect to gypsum, aragonite, calcite, and dolomite, but undersaturated for halite. The mixing of urban domestic sewage, agricultural planting activities, and the use of manure also contributes to the formation of Cl and NO3 ions in karst springs. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

Back to TopTop