Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Treatments
2.3. Soil Sampling and Soil Properties
2.4. Separation of Soil Aggregates
2.5. Stable Isotope Analyses
2.6. Statistical Analysis
3. Results
3.1. Effects of Forest Age and N Addition on Soil Aggregate Fractions and Stability
3.2. Effects of Forest Age and N Addition on Carbon, Nitrogen, and SOC/STN Distribution Within Soil Aggregate Fractions
3.3. Effects of Forest Age and N Addition on Stable Isotopes Within Soil and Aggregates Fractions
3.4. Relationship Between Abiotic/Biotic Factors and Soil Aggregate Fractions
4. Discussion
4.1. The Effects of Nutrient Addition on the Distribution and Stability of Soil Aggregates
4.2. The Effects of Nutrient Addition on the Distribution of Carbon and Nitrogen in Soil Aggregates
4.3. The Effects of Nutrient Addition on the Distribution of Stable Isotope in Soil Aggregates
4.4. Environmental Factors Affecting Soil Aggregate Dynamics Under Nutrient Addition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., et al., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Gao, Y.; Jia, Y.L.; Yu, G.R.; He, N.P.; Zhang, L.; Zhu, B.; Wang, Y.F. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. J. Clean. Prod. 2019, 208, 530–540. [Google Scholar] [CrossRef]
- Du, Z.G.; Wang, J.W.; Zhou, G.Y.; Bai, S.H.; Zhou, L.Y.; Fu, Y.L.; Wang, C.K.; Wang, H.M.; Yu, G.R.; Zhou, X. Differential effects of nitrogen vs. phosphorus limitation on terrestrial carbon storage in two subtropical forests: A Bayesian approach. Sci. Total Environ. 2021, 795, 148485. [Google Scholar] [CrossRef]
- Liu, X.J.; Lei, D.; Mo, J.M.; Du, E.Z.; Shen, J.L.; Lu, X.K.; Zhang, Y.; Zhou, X.B.; He, C.N.; Zhang, F.S. Nitrogen deposition and its ecological impact in China: An overview. Environ. Pollut. 2011, 159, 2251–2264. [Google Scholar] [CrossRef]
- Yu, G.; Jia, Y.; He, N.; Zhu, J.; Chen, Z.; Wang, Q.; Piao, S.; Liu, X.; He, H.; Guo, X.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–433. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Wang, Q.; Xu, L.; He, N.; Jia, Y.; Zhang, Q.; Yu, G. Potential transition in the effects of atmospheric nitrogen deposition in China. Environ. Pollut. 2019, 258, 113739. [Google Scholar] [CrossRef]
- Zheng, M.H.; Huang, J.; Chen, H.; Wang, H.; Mo, J.M. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China. Eur. J. Soil Biol. 2015, 68, 77–84. [Google Scholar] [CrossRef]
- Ma, H.L.; Tecimen, H.B.; Wu, Y.; Gao, R.; Yin, Y.F. Influence of litter and nitrogen addition on carbon and nitrogen levels in soil aggregates under a subtropical forest. J. Soil Sci. Plant Nut. 2024, 24, 5029–5042. [Google Scholar] [CrossRef]
- Fang, X.M.; Zhang, X.L.; Chen, F.S.; Zong, Y.Y.; Bu, W.S.; Wan, S.Z.; Luo, Y.; Wang, H. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest. Soil Biol. Biochem. 2019, 133, 119–128. [Google Scholar] [CrossRef]
- Song, Y.C.; Chen, X.Y. Degradation Mechanism and Ecological Restoration of Evergreen Broadleaved Forest Ecosystem in East China; Science Press: Beijing, China, 2007. [Google Scholar]
- Riggs, C.E.; Hobbie, S.E.; Bach, E.M.; Hofmockel, K.S.; Kazanski, C.E.J.B. Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry 2015, 125, 203–219. [Google Scholar] [CrossRef]
- Barman, S.; Bhattacharyya, R.; Singh, C.; Rathore, A.C.; Singhal, V.; Muruganandan, M.; Patel, A.; Das, A.; Jat, S.L.; Jha, P.; et al. Soil organic carbon stabilization inside microaggregates within macroaggregates is the major mechanism of carbon sequestration under a long-term agroforestry system in the foot hills of the Indian Himalayas. Soil Till. Res. 2025, 253, 106649. [Google Scholar] [CrossRef]
- Zhang, W.; Munkholm, L.J.; Heck, R.J.; Watts, C.W.; Jensen, J.L. Aggregate pore and shape properties were more strongly correlated to soil organic carbon in large aggregates: Evidence from a long-term management-induced soil carbon gradient. Geoderma 2025, 459, 117357. [Google Scholar] [CrossRef]
- Smith, A.P.; Marin-Spiotta, E.; de Graaff, M.A.; Balser, T.C. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol. Biochem. 2014, 77, 292–303. [Google Scholar] [CrossRef]
- Lu, X.; Hou, E.; Guo, J.; Gilliam, F.S.; Li, J.; Tang, S.; Kuang, Y. Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Glob. Change Biol. 2021, 27, 2780–2792. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Lu, X.F.; Ren, W.D.; Hou, E.Q.; Zhang, L.L.; Wen, D.Z.; Liu, Z.F.; Lin, Y.B.; Wang, J.; Kuang, Y.W. Negative effects of canopy N addition on soil organic carbon in wet season are primarily detected in uppermost soils of a subtropical forest. Glob. Ecol. Conserv. 2019, 17, e00543. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Luo, R.; Kuzyakov, Y.; Liu, D.; Fan, J.; Luo, J.; Lindsey, S.; He, J.S.; Ding, W. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil Biol. Biochem. 2020, 144, 107764. [Google Scholar] [CrossRef]
- Tan, W.B.; Wang, G.A.; Huang, C.H.; Gao, R.T.; Xi, B.D.; Zhu, B. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Sci. Total Environ. 2017, 598, 282–288. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Feng, W.; Niu, S.; Plante, A.; Luo, Y.; Wang, K. Different responses of soil organic carbon fractions to nitrogen additions. Eur. J. Soil Sci. 2018, 69, 1098–1104. [Google Scholar] [CrossRef]
- Chaplot, V.; Cooper, M.J.G. Soil aggregate stability to predict organic carbon outputs from soils. Geoderma 2015, 243, 205–213. [Google Scholar] [CrossRef]
- Chang, R.Y.; Zhou, W.J.; Fang, Y.T.; Bing, H.J.; Sun, X.Y.; Wang, G.X. Anthropogenic nitrogen deposition increases soil carbon by enhancing new carbon of the soil aggregate formation. J. Geophys. Res. Biogeo. 2019, 124, 572–584. [Google Scholar] [CrossRef]
- Gao, H.L.; Qiu, L.Q.; Zhang, Y.J.; Wang, L.H.; Zhang, X.C.; Cheng, J.M. Distribution of organic carbon and nitrogen in soil aggregates of aspen (Populus simonii Carr.) woodlands in the semi-arid Loess Plateau of China. Soil Res. 2013, 51, 406–414. [Google Scholar] [CrossRef]
- Chen, Z.J.; Geng, S.C.; Zhang, J.H.; Setälä, H.; Gu, Y.; Wang, F.; Zhang, X.; Wang, X.X.; Han, S.J. Addition of nitrogen enhances stability of soil organic matter in a temperate forest. Eur. J. Soil Sci. 2017, 68, 189–199. [Google Scholar] [CrossRef]
- Zhong, X.L.; Li, J.T.; Li, X.J.; Ye, Y.C.; Liu, S.S.; Hallett, P.D.; Ogden, M.R.; Naveed, M. Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 2017, 285, 323–332. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Pathways of litter C by formation of aggregates and SOM density fractions: Implications from 13C natural abundance. Soil Biol. Biochem. 2014, 71, 95–104. [Google Scholar] [CrossRef]
- Mao, L.; Tang, L.; Ye, S.; Wang, S. Soil organic C and total N as well as microbial biomass C and N affect aggregate stability in a chronosequence of Chinese fir plantations. Eur. J. Soil Biol. 2021, 106, 103347. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, N.; Liao, X.; Wang, Z.; Wei, X.; Jia, X. Long-term afforestation accelerated soil organic carbon accumulation but decreased its mineralization loss and temperature sensitivity in the bulk soils and aggregates. CATENA 2021, 204, 105405. [Google Scholar] [CrossRef]
- Qiu, T.; Aravena, M.C.; Andrus, R.; Ascoli, D.; Bergeron, Y.; Berretti, R.; Bogdziewicz, M.; Boivin, T.; Bonal, R.; Caignard, T.; et al. Is there tree senescence? The fecundity evidence. Proc. Natl. Acad. Sci. USA 2021, 118, e2106130118. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.H.; Piovesan, G.; Munne-Bosch, S. Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity. Nat. Plants 2022, 8, 136–145. [Google Scholar] [CrossRef]
- Qiu, L.P.; Wei, X.R.; Gao, J.L.; Zhang, X.C. Dynamics of soil aggregate-associated organic carbon along an afforestation chronosequence. Plant Soil 2014, 391, 237–251. [Google Scholar] [CrossRef]
- Chen, F.S.; Zeng, D.H.; Fahey, T.J.; Liao, P.F. Organic carbon in soil physical fractions under different-aged plantations of mongolian pine in semi-arid region of northeast China. Appl. Soil Ecol. 2010, 44, 42–48. [Google Scholar] [CrossRef]
- Chen, Z.J.; Zhou, X.Y.; Geng, S.C.; Miao, Y.; Cao, Y.H.; Chen, Z.J.; Zhang, J.H.; Han, S.J. Interactive effect of nitrogen addition and throughfall reduction decreases soil aggregate stability through reducing biological binding agents. Forest Ecol. Manag. 2019, 445, 13–19. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Mou, Z.; Kuang, L.; Wu, W.; Zhang, J.; Wang, F.; Hui, D.; Penuelas, J.; Sardans, J.; et al. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. Glob. Change Biol. 2021, 27, 454–466. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Bol, R.; Hu, Y.L. Stable isotopic signatures of carbon and nitrogen in soil aggregates following the conversion of natural forests to managed plantations in eastern China. Plant Soil 2021, 459, 371–385. [Google Scholar] [CrossRef]
- Skadell, L.E.; Schneider, F.; Bauke, S.L.; Amelung, W.; Don, A. Long-term management effects on depth gradients of 13C, 15N and C/N ratio in agricultural soils. Geoderma 2025, 458, 117341. [Google Scholar] [CrossRef]
- Gunnarsen, K.C.; Magid, J.; Ambus, P.; Christensen, B.T.; Bruun, S.; Malghani, S. Stable carbon isotope fractionation during microbial turnover of sucrose in different media: Soils, carbon-free quartz and liquid media. Appl. Soil Ecol. 2025, 212, 106200. [Google Scholar] [CrossRef]
- Dai, Y.Z.; Wang, H.; Chen, M.; Wang, D.; Cao, X.; Chu, B.; Xu, X.X. Response of soil bacterial communities to nitrogen and phosphorus additions in an age-sequence of subtropical forests. iForest Biogeosci. For. 2021, 14, 71–79. [Google Scholar] [CrossRef]
- Hunt, N.; Gilkes, R. Farm Monitoring Handbook–A Practical Down-to-Earth Manual for Farmers and Other Land Users; University of Western Australia: Nedlands, WA, Australia; Land Management Society: Como, WA, Australia, 1992. [Google Scholar]
- Cambardella, C.A.; Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland Soils. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef]
- Xiao, J.; Dong, S.; Zhao, Z.; Han, Y.; Li, S.; Shen, H.; Ding, C. Stabilization of soil organic carbon in the alpine meadow is dependent on the nitrogen deposition level on the Qinghai-Tibetan Plateau. Ecol. Eng. 2021, 170, 106348. [Google Scholar] [CrossRef]
- Zhong, Z.; Wu, S.; Lu, X.; Ren, Z.; Wu, Q.; Xu, M.; Ren, C.; Yang, G.; Han, X. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. CATENA 2021, 196, 104867. [Google Scholar] [CrossRef]
- Jiménez, J.J.; Klaus, L.; Rattan, L. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica—Implications for within-site soil organic carbon stabilization. CATENA 2011, 86, 178–191. [Google Scholar] [CrossRef]
- Cheng, S.L.; Fang, H.J.; Yu, G.R. Threshold responses of soil organic carbon concentration and composition to multi-level nitrogen addition in a temperate needle-broadleaved forest. Biogeochemistry 2018, 137, 219–233. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Glatzel, G. The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 1990, 128, 67–74. [Google Scholar] [CrossRef]
- Wang, R.; Wu, H.; Sardans, J.; Li, T.; Liu, H.; Penuelas, J.; Dijkstra, F.A.; Jiang, Y. Carbon storage and plant-soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland. Plant Soil 2020, 457, 407–420. [Google Scholar] [CrossRef]
- Jiang, R.; Gunina, A.; Qu, D.; Kuzyakov, Y.; Yu, Y.J.; Hatano, R.; Frimpong, K.A.; Li, M. Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. CATENA 2019, 177, 49–56. [Google Scholar] [CrossRef]
- Jiang, C.M.; Yu, W.T.; Ma, Q.; Xu, Y.G.; Zhou, H. Nitrogen addition alters carbon and nitrogen dynamics during decay of different quality residues. Ecol. Eng. 2015, 82, 252–257. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, L.; Zhang, J.; Li, D.; Han, X.; Zhu, B.; Li, Y.; Zhao, B.; Huang, P. Long-term fertilisation reveals close associations between soil organic carbon composition and microbial traits at aggregate scales. Agr. Ecosyst. Environ. 2021, 306, 107169. [Google Scholar] [CrossRef]
Characteristic | Age | Treatment | Age × Treatment | |||
---|---|---|---|---|---|---|
F-Value | p | F-Value | P | F-Value | p | |
Macroaggregate percentage | 2.19 | 0.119 | 0.24 | 0.780 | 3.73 | 0.008 |
Microaggregate percentage | 7.58 | 0.001 | 1.40 | 0.252 | 3.38 | 0.014 |
Silt–clay percentage | 16.96 | 0.001 | 0.19 | 0.826 | 2.07 | 0.94 |
MWD | 2.27 | 0.110 | 0.23 | 0.795 | 3.72 | 0.008 |
MGD | 4.61 | 0.013 | 0.08 | 0.923 | 3.33 | 0.014 |
Macroaggregate SOC/STN | 35.79 | 0.001 | 0.39 | 0.677 | 2.60 | 0.043 |
Microaggregate SOC/STN | 18.34 | 0.001 | 2.02 | 0.141 | 2.28 | 0.068 |
Silt–clay SOC/STN | 10.65 | 0.001 | 1.29 | 0.282 | 0.57 | 0.69 |
Macroaggregate carbon concentration | 25.22 | 0.001 | 4.81 | 0.011 | 1.75 | 0.148 |
Microaggregate carbon concentration | 31.22 | 0.001 | 3.32 | 0.042 | 3.37 | 0.014 |
Silt–clay carbon concentration | 24.96 | 0.001 | 2.07 | 0.133 | 2.21 | 0.075 |
Macroaggregate nitrogen concentration | 33.76 | 0.001 | 2.50 | 0.089 | 1.51 | 0.206 |
Microaggregate nitrogen concentration | 33.95 | 0.001 | 1.15 | 0.321 | 1.81 | 0.137 |
Silt–clay nitrogen concentration | 24.28 | 0.001 | 0.83 | 0.44 | 1.74 | 0.151 |
Macroaggregate carbon percentage | 0.56 | 0.572 | 0.08 | 0.919 | 7.53 | 0.001 |
Microaggregate carbon percentage | 4.30 | 0.017 | 1.54 | 0.221 | 3.47 | 0.011 |
Silt–clay carbon percentage | 5.29 | 0.007 | 1.11 | 0.337 | 2.29 | 0.068 |
Macroaggregate nitrogen percentage | 8.98 | 0.001 | 0.21 | 0.814 | 3.59 | 0.010 |
Microaggregate nitrogen percentage | 7.19 | 0.001 | 1.30 | 0.278 | 2.41 | 0.057 |
Silt–clay nitrogen percentage | 1.49 | 0.231 | 0.95 | 0.391 | 3.50 | 0.011 |
Macroaggregate carbon content | 52.51 | 0.001 | 1.17 | 0.315 | 2.71 | 0.036 |
Microaggregate carbon content | 36.51 | 0.001 | 1.89 | 0.159 | 4.28 | 0.004 |
Silt–clay carbon content | 0.96 | 0.387 | 0.25 | 0.776 | 2.76 | 0.034 |
Macroaggregate nitrogen content | 38.83 | 0.001 | 0.28 | 0.759 | 3.04 | 0.022 |
Microaggregate nitrogen content | 28.91 | 0.001 | 1.18 | 0.312 | 2.72 | 0.036 |
Silt–clay nitrogen content | 2.32 | 0.105 | 0.38 | 0.682 | 2.53 | 0.047 |
Macroaggregate δ13C | 1.59 | 0.230 | 0.63 | 0.545 | 0.43 | 0.786 |
Microaggregate δ13C | 4.53 | 0.025 | 0.015 | 0.985 | 1.37 | 0.283 |
Silt–clay δ13C | 23.60 | 0.001 | 0.02 | 0.978 | 0.64 | 0.639 |
Macroaggregate δ15N | 11.95 | 0.001 | 0.72 | 0.500 | 4.39 | 0.011 |
Microaggregate δ15N | 8.89 | 0.002 | 1.36 | 0.282 | 0.586 | 0.677 |
Silt–clay δ15N | 39.31 | 0.001 | 1.12 | 0.348 | 0.81 | 0.533 |
Soil δ13C | 14.53 | 0.001 | 0.61 | 0.553 | 1.87 | 0.160 |
Soil δ15N | 35.43 | 0.001 | 0.30 | 0.74 | 0.99 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Xu, X.; Cuong, L. Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests. Forests 2025, 16, 1082. https://doi.org/10.3390/f16071082
Dai Y, Xu X, Cuong L. Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests. Forests. 2025; 16(7):1082. https://doi.org/10.3390/f16071082
Chicago/Turabian StyleDai, Yunze, Xiaoniu Xu, and LeVan Cuong. 2025. "Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests" Forests 16, no. 7: 1082. https://doi.org/10.3390/f16071082
APA StyleDai, Y., Xu, X., & Cuong, L. (2025). Age-Specific Effects of Nitrogen Addition on Soil Aggregate Dynamics in Chinese Evergreen Forests. Forests, 16(7), 1082. https://doi.org/10.3390/f16071082