Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Regional Hydrogeological Backgrounds
2.2. Hydrochemical Sampling and Measurement
2.3. Hydrochemical Analyses
2.4. Inverse Hydrochemical Modeling Approach
3. Results and Discussion
3.1. Hydrochemical Characterization in the Golmud River Watershed
3.2. Hydrogen and Oxygen Isotopes
3.3. Hydrochemical Evolution and Its Controlling Mechanisms
3.3.1. Shift from Water–Rock Interaction to Evaporation Dominance
3.3.2. Major Sources of Hydrochemical Constituents
3.3.3. Silicate Mineral Equilibrium Diagram
3.3.4. Cation Exchange in the Groundwater Flow System
3.4. Inverse Hydrochemical Modeling
3.4.1. Possible Mineral Phases and Constraints
3.4.2. Results of Inverse Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The Changing Nature of Groundwater in the Global Water Cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global Water Resources and the Role of Groundwater in a Resilient Water Future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–Water Interaction and Its Control on Chemical Composition of Groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar]
- Yuan, R.; Li, Z.; Guo, S. Hydrochemical evolution of groundwater in a river corridor: The compounded impacts of various environmental factors. Discov. Water 2024, 4, 32. [Google Scholar] [CrossRef]
- Hou, Z.; Huang, L.; Zhang, S.; Han, X.; Xu, J.; Li, Y. Identification of Groundwater Hydrogeochemistry and the Hydraulic Connections of Aquifers in a Complex Coal Mine. J. Hydrol. 2024, 628, 130496. [Google Scholar] [CrossRef]
- Li, P.; Qian, H.; Wu, J.; Zhang, Y.; Zhang, H. Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China. Int. J. Mine Water 2013, 32, 195–206. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Wang, G. Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water 2020, 12, 836. [Google Scholar] [CrossRef]
- Ma, B.; Jin, M.; Liang, X.; Li, J. Groundwater Mixing and Mineralization Processes in a Mountain–Oasis–Desert Basin, Northwest China: Hydrogeochemistry and Environmental Tracer Indicators. Hydrogeol. J. 2018, 26, 233–250. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, P.; Wang, G.; Zhang, B.; Shi, Z.; Liao, F.; Li, B.; Chen, X.; Guo, L.; Dang, X.; et al. Hydrochemical and Isotopic Interpretation of Interactions between Surface Water and Groundwater in Delingha, Northwest China. J. Hydrol. 2021, 598, 126243. [Google Scholar] [CrossRef]
- Mao, H.; Wang, C.; Shen, Q.; Fu, L.; Wang, G.; Shi, Z. Source and Evolution of Sulfate in the Multi-Layer Groundwater System in an Abandoned Mine—Insight from Stable Isotopes and Bayesian Isotope Mixing Model. Sci. Total Environ. 2023, 859, 160368. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of Multivariate Statistical Methods and Inverse Geochemical Modeling for Characterization of Groundwater—A Case Study: Ain Azel Plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar] [CrossRef]
- Plummer, L.N.; Parkhurst, D.L. Application of the Pitzer Equations to the PHREEQE Geochemical Model. In Chemical Modeling of Aqueous Systems II; Chapter 10; ACS: Washington, DC, USA, 1990; pp. 128–137. [Google Scholar]
- Sun, Y.; Wang, Y.; Zhang, W.; Ye, S. Regional water resources carrying capacity in China based on analytic hierarchy process and system dynamics model: A case study of Golmud City. Front. Environ. Sci. 2024, 12, 1450747. [Google Scholar] [CrossRef]
- Xiao, Y.; Shao, J.; Frare, S.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater Origin, Flow Regime and Geochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, K.; Yan, H.; Zhou, B.; Huang, X.; Hao, Q.; Zhang, Y.; Zhang, Y.; Liao, X.; Yin, S. Hydrogeochemical Constraints on Groundwater Resource Sustainable Development in the Arid Golmud Alluvial Fan Plain on Tibetan Plateau. Environ. Earth Sci. 2021, 80, 750. [Google Scholar] [CrossRef]
- Guo, L.; Wang, G.; Sheng, Y.; Shi, Z.; Sun, X. Groundwater Microbial Communities and Their Connection to Hydrochemical Environment in Golmud, Northwest China. Sci. Total Environ. 2019, 695, 133848. [Google Scholar] [CrossRef]
- Yang, N.; Wang, G.; Hou, E.; Guo, L.; Xiong, L.; Song, X. Triple Isotopes (δD, δ18O, δ17O) Characteristic of River Water and Groundwater in an Arid Watershed from Qaidam Basin, Northwestern China: Implications for Hydrological Cycle. Sci. Total Environ. 2024, 927, 172229. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, K.; Zhang, Y.; Yang, H.; Wang, S.; Qi, Z.; Hao, Q.; Wang, L.; Luo, Y.; Yin, S. Numerical Investigation of Groundwater Flow Systems and Their Evolution Due to Climate Change in the Arid Golmud River Watershed on the Tibetan Plateau. Front. Earth Sci. 2022, 10, 943075. [Google Scholar] [CrossRef]
- Yi, L.; Chen, F.; Han, J.; Liu, X.; Yang, J.; Zhou, Z.; Lu, X.; Ma, Z.; Wei, H.; Han, F. SWAT-based Distributed Hydrologic Simulation and Runoff Prediction in the Upper Golmud River Watershed. Int. J. Sediment Res. 2024, 32, 509. [Google Scholar] [CrossRef]
- Hou, W.; Li, X.; Yang, L.; Ta, W.; Jia, X. Carrying Capacity of Water Resources for Renewable Energy Development in Arid Regions in Northwest China: A Case Study of Golmud, Qinghai. Front. Environ. Sci. 2022, 10, 892414. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Shi, Z.; Guo, H.; Chen, X.; Mao, H.; Liu, F.; Ning, H.; Liu, N.; Wang, G. Hydrogeochemical Characteristics and Evolution of Formation Water in the Continental Sedimentary Basin: A Case Study in the Qaidam Basin, China. Sci. Total Environ. 2024, 957, 177672. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Fang, T.; Song, G.; Sun, F. Relationship of Underground Water Level and Climate in Northwest China’s Inland Basins under the Global Climate Change: Taking the Golmud River Catchment as an Example. China Geol. 2021, 4, 402–409. [Google Scholar] [CrossRef]
- Hu, X.; Sun, Q.; Huang, J.; Geng, J.; Wang, J. Pore Structure and Radon Emission Characteristics of Shallow Soil in the Golmud River Basin of the Qinghai–Tibet Plateau. Phys. Chem. Earth Parts A/B/C 2025, 139, 103911. [Google Scholar] [CrossRef]
- Guo, L.; Ding, Y.; Fang, H.; An, C.; Wang, G.; Mao, H.; Yang, N. Regional Variations and Hydrochemical Evolution in Golmud River Watershed (Qaidam Basin, China): An Integration of Self-Organizing Maps and Multi-Statistic Approaches. Environ. Earth Sci. 2025, 84, 143. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of Groundwater Salinity and Hydrogeochemical Processes in the Confined Quaternary Aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438–439, 112–124. [Google Scholar] [CrossRef]
- Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-analyses. Neurochem. Int. 1984, 6, 27–39. [Google Scholar]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Huang, X.; Wang, G.; Liang, X.; Cui, L.; Ma, L.; Xu, Q. Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China. Mine Water Environ. 2018, 37, 119–136. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Wan, X.; Jia, S.; Mao, B. Evolution Origin Analysis and Health Risk Assessment of Groundwater Environment in a Typical Mining Area: Insights from Water-Rock Interaction and Anthropogenic Activities. Environ. Res. 2024, 252, 118792. [Google Scholar] [CrossRef]
- Yu, F.; Zhou, D.; Li, Z.; Li, X. Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section). Water 2022, 14, 1461. [Google Scholar] [CrossRef]
- Dong, F.; Yin, H.; Cheng, W.; Li, Y.; Qiu, M.; Zhang, C.; Tang, R.; Xu, G.; Zhang, L. Study on Water Inrush Pattern of Ordovician Limestone in North China Coalfield Based on Hydrochemical Characteristics and Evolution Processes: A Case Study in Binhu and Wangchao Coal Mine of Shandong Province, China. J. Clean. Prod. 2022, 380, 134954. [Google Scholar] [CrossRef]
- Liu, J.; Hao, Y.; Gao, Z.; Wang, M.; Liu, M.; Wang, Z.; Wang, S. Determining the Factors Controlling the Chemical Composition of Groundwater Using Multivariate Statistics and Geochemical Methods in the Xiqu Coal Mine, North China. Environ. Earth Sci. 2019, 78, 364. [Google Scholar] [CrossRef]
- Lecomte, K.L.; Pasquini, A.I.; Depetris, P.J. Mineral Weathering in a Semiarid Mountain River: Its Assessment through PHREEQC Inverse Modeling. Aquat. Geochem. 2005, 11, 173–194. [Google Scholar] [CrossRef]
- Jia, Z.; Zang, H.; Hobbs, P.; Zheng, X.; Xu, Y.; Wang, K. Application of Inverse Modeling in a Study of the Hydrogeochemical Evolution of Karst Groundwater in the Jinci Spring Region, Northern China. Environ. Earth Sci. 2017, 76, 312. [Google Scholar] [CrossRef]
- Li, D.; Gan, S.; Li, J.; Dong, Z.; Long, Q.; Qiu, S.; Zhou, Y.; Lu, C. Hydrochemical Characteristics and Formation Mechanism of Strontium-Rich Groundwater in Shijiazhuang, North China Plain. J. Chem. 2021, 2021, 5547924. [Google Scholar] [CrossRef]
- Lindsey, B.D.; Belitz, K.; Cravotta, C.A.; Toccalino, P.L.; Dubrovsky, N.M. Lithium in Groundwater Used for Drinking-Water Supply in the United States. Sci. Total Environ. 2021, 767, 144691. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, A.; Gao, L.; Wang, Z.; Hu, X.; Li, Y.; Zhang, F.; Ma, C. Cation Exchange and Leakage as Dominant Processes in Controlling Salinity and Strontium in Sandy and Argillaceous Coastal Aquifer: Insights from Hydrochemistry and Multi-Isotopes. J. Hydrol. 2024, 638, 131529. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, D.; Zhang, W.; Li, S.; Pan, K.; Jiang, H.; Zhang, Q. Anthropogenic Impacts on the Nitrate Pollution in an Urban River: Insights from a Combination of Natural-Abundance and Paired Isotopes. J. Environ. Manag. 2023, 333, 117458. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; You, C.F.; Yeh, Y.L. Strontium Isotopes and Rare Earth Elements as Tracers of Water–Rock Interactions in Taiwan Hot Springs. Water 2024, 17, 71. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, H.; Gong, G. Hydrogen and Oxygen Isotopic Compositions of Precipitation and Its Water Vapor Sources in Eastern Qaidam Basin. Huan Jing Ke Xue 2015, 36, 2784–2790. [Google Scholar]
- Yang, Y.; Wu, Q.; Jin, H. Evolutions of Water Stable Isotopes and the Contributions of Cryosphere to the Alpine River on the Tibetan Plateau. Environ. Earth Sci. 2016, 75, 49. [Google Scholar] [CrossRef]
- Rao, W.; Li, Y. Stable Hydrogen-Oxygen Isotope Composition and Atmospheric Moisture Sources of Precipitation in an Arid-Alpine Region: A Case Study of the Golmud River Watershed on the North Slope of the Kunlun. J. Hydraul. Eng. 2021, 52, 1116–1125. [Google Scholar]
- Xu, J.; Gui, H.; Chen, J.; Li, C.; Li, Y.; Zhao, C.; Guo, Y. Hydrogeochemical Characteristics and Formation Mechanisms of the Geothermal Water in the Qingdong Coal Mine, Northern Anhui Province, China. Mine Water Environ. 2022, 41, 1015–1026. [Google Scholar] [CrossRef]
- Hao, Q.; Li, Y.; Xiao, Y.; Yang, H.; Zhang, Y.; Wang, L.; Liu, K.; Liu, G.; Wang, J.; Hu, W.; et al. Hydrogeochemical Fingerprint, Driving Forces and Spatial Availability of Groundwater in a Coastal Plain, Southeast China. Urban Clim. 2023, 51, 101611. [Google Scholar] [CrossRef]
- Luo, A.; Wang, G.; Dong, S.; Wang, H.; Shi, Z.; Ji, Z.; Xue, J. Effect of Large-Scale Mining Drainage on Groundwater Hydrogeochemical Evolution in Semi-Arid and Arid Regions. Front. Environ. Sci. 2022, 10, 926866. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.; Qian, H. Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical Evolution Mechanisms in Pengyang County, China. Environ. Earth Sci. 2013, 69, 2211–2225. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, X.; Du, J.; Xie, C.; Liu, L.; Li, Y.; Yi, L.; Liu, H.; Cui, Y. Hydrochemical Characteristics of Hot Spring Waters in the Kangding District Related to the Lushan MS Combining Double Low Line 7.0 Earthquake in Sichuan, China. Nat. Hazards Earth Syst. Sci. 2015, 15, 1149–1156. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Rao, Z.; Liao, F.; Shi, Z.; Huang, X.; Chen, X.; Yang, Y. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (Eastern China) using self-organizing map and multivariate statistics. J. Clean. Prod. 2021, 329, 129697. [Google Scholar] [CrossRef]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater Hydrochemical Characteristics and Processes along Flow Paths in the North China Plain. J. Asian Earth Sci. 2013, 70, 250–264. [Google Scholar] [CrossRef]
- Raju, N.J.; Patel, P.; Reddy, B.C.S.R.; Suresh, U.; Reddy, T.V.K. Identifying Source and Evaluation of Hydrogeochemical Processes in the Hard Rock Aquifer System: Geostatistical Analysis and Geochemical Modeling Techniques. Environ. Earth Sci. 2016, 75, 1157. [Google Scholar] [CrossRef]
- Werner, S.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Xiao, L.; Wang, J.; Dang, Y.; Cheng, Z.; Huang, T.; Zhao, J.; Xu, Y.; Huang, J.; Xiao, Z.; Komatsu, G. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth Sci. Rev. 2017, 164, 84–101. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: A review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Stober, I.; Zhong, J.; Bucher, K. From freshwater inflows to salt lakes and salt deposits in the Qaidam Basin, W China. Swiss J. Geosci. 2023, 116, 5. [Google Scholar] [CrossRef]
- Möller, P.; De Lucia, M. The impact of Mg2+ ions on equilibration of Mg-Ca carbonates in groundwater and brines. Geochemistry 2020, 80, 125611. [Google Scholar] [CrossRef]
Variables | Phreatic Water | Confined Water | High-Salinity Water | Surface Water | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | Maximum | Minimum | Average | |
pH | 8.37 | 7.61 | 8.05 | 8.57 | 7.44 | 8.05 | 6.66 | 6.55 | 6.60 | 9.35 | 8.19 | 8.48 |
DO | 56.80 | 33.30 | 43.42 | 63.30 | 6.00 | 26.94 | / | / | / | 77.50 | 44.70 | 53.17 |
ORP | 245.00 | 207.00 | 208.00 | 201.00 | −234 | −3.76 | / | / | / | 249.00 | 149.00 | 209.92 |
Alkalinity | 198.00 | 168.00 | 185.17 | 311.90 | 173.00 | 211.70 | 263.00 | 178.00 | 217.75 | 217.00 | 97.10 | 159.57 |
TDS | 755.03 | 420.59 | 522.99 | 1048.00 | 391.36 | 500.34 | 302,909.31 | 290,478.31 | 295,928.85 | 14,247.12 | 230.19 | 1201.58 |
Na | 122.00 | 54.50 | 86.28 | 374.08 | 64.80 | 105.00 | 61,385.00 | 51,087.00 | 53,878.50 | 3338.00 | 14.20 | 250.56 |
K | 5.38 | 3.01 | 4.32 | 6.99 | 2.68 | 5.51 | 16,739.00 | 2969.00 | 7238.75 | 200.00 | 1.80 | 15.66 |
Ca | 68.30 | 38.70 | 51.97 | 73.00 | 4.93 | 36.80 | 2804.00 | 1052.00 | 1619.25 | 196.00 | 33.90 | 50.79 |
Mg | 54.70 | 30.60 | 37.67 | 42.20 | 7.77 | 32.43 | 39,785.00 | 34,250.00 | 36,763.50 | 1186.00 | 15.80 | 97.84 |
Cl | 209.00 | 77.20 | 123.77 | 200.56 | 79.70 | 102.63 | 194,240.00 | 189,970.00 | 192,451.25 | 8573.00 | 13.70 | 594.19 |
SO4 | 188.00 | 73.30 | 102.27 | 139.96 | 62.60 | 78.97 | 4655.00 | 3336.00 | 3840.25 | 641.00 | 21.30 | 92.76 |
CO3 | 0.00 | 0.00 | 0.00 | 9.36 | 0.00 | 1.07 | 0.00 | 0.00 | 0.00 | 58.60 | 0.00 | 4.71 |
HCO3 | 241.00 | 205.00 | 225.50 | 404.77 | 211.00 | 258.46 | 320.00 | 218.00 | 265.75 | 264.00 | 108.00 | 184.94 |
NO3 | 4.87 | 3.56 | 4.33 | 4.77 | 0.00 | 2.72 | 47.10 | 30.90 | 40.90 | 4.29 | 1.47 | 2.92 |
F | 0.39 | 0.28 | 0.32 | 2.34 | 0.44 | 0.79 | 5.31 | 3.85 | 4.48 | 0.52 | 0.10 | 0.24 |
Li | 0.07 | 0.04 | 0.06 | 0.06 | 0.02 | 0.04 | 66.48 | 1.76 | 45.04 | 59.71 | 0.02 | 4.02 |
Si | 3.85 | 3.24 | 3.46 | 7.10 | 4.09 | 5.58 | 0.56 | 0.43 | 0.51 | 2.83 | 0.39 | 2.09 |
Sr | 1.24 | 0.69 | 0.90 | 1.06 | 0.43 | 0.85 | 33.92 | 3.04 | 21.10 | 36.13 | 0.28 | 3.10 |
HSiO3 | 9.58 | 9.46 | 9.53 | 20.10 | 11.50 | 15.30 | 9.93 | 7.44 | 8.86 | 8.71 | 6.61 | 7.32 |
Mineral Phase | Chemical Formula | Chemical Reaction |
---|---|---|
Calcite | CaCO3 | CaCO3 ⇌ Ca2+ + CO32− |
Gypsum | CaSO4·2H2O | CaSO4·2H2O ⇌ Ca2+ + SO42− + 2H2O |
Quartz | SiO2 | SiO2 + 2H2O ⇌ H4SiO4 |
Dolomite | CaMg (CO3)2 | CaMg (CO3)2 ⇌ Ca2+ + Mg2+ + 2CO32− |
Halite | NaCl | NaCl → Na+ + Cl |
Sylvite | KCl | KCl → K+ + Cl- |
Albite | NaAlSi3O8 | NaAlSi3O8 + 8H2O ⇌ Na+ + Al (OH)4− + 3H4SiO4 |
K-feldspar | 2KAlSi3O8 | 2KAlSi3O8 + 11H2O + 2CO2 ⇌ 2K+ + 2HCO3− + 4H4SiO4 + Al2Si2O5(OH)4 |
Cation exchange | CaX2 | Ca2+ + 2NaX ⇌ 2Na+ + CaX2 |
MgX2 | Mg2+ + 2NaX ⇌ 2Na+ + MgX |
Modeling Path | Q3-Q5 | C1-C3 | C5-C11 | C11-G3 |
---|---|---|---|---|
Gypsum | / | 0.0595 | 0.4149 | 16.81 |
Calcite | 0.3478 | 0.4783 | 2.508 | / |
Quartz | / | / | / | / |
Dolomite | −0.1852 | −0.7159 | ||
Halite | 0.6455 | 0.1441 | 0.5851 | 7268 |
Sylvite | 0.0038 | 0.0311 | / | 188.6 |
Albite | / | / | 0.0096 | / |
K-Feldspar | / | 0.0152 | −0.0053 | / |
Fluorite | −0.0023 | −0.0023 | / | / |
kaolinite | / | −0.0076 | −0.0021 | / |
CaX2 | −0.3949 | −0.7426 | −2.864 | 73.53 |
NaX | 0.7899 | 1.197 | 5.727 | −4400 |
MgX2 | / | 0.1442 | / | 2127 |
CO2 (g) | 0.0228 | 0.5226 | 2.09 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Ding, Y.; Fang, H.; An, C.; Jiang, W.; Yang, N. Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China. Water 2025, 17, 2074. https://doi.org/10.3390/w17142074
Guo L, Ding Y, Fang H, An C, Jiang W, Yang N. Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China. Water. 2025; 17(14):2074. https://doi.org/10.3390/w17142074
Chicago/Turabian StyleGuo, Liang, Yuanyuan Ding, Haisong Fang, Chunxue An, Wanjun Jiang, and Nuan Yang. 2025. "Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China" Water 17, no. 14: 2074. https://doi.org/10.3390/w17142074
APA StyleGuo, L., Ding, Y., Fang, H., An, C., Jiang, W., & Yang, N. (2025). Integrating Inverse Modeling to Investigate Hydrochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China. Water, 17(14), 2074. https://doi.org/10.3390/w17142074