Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Official Methods for Determining Olive Oil Authenticity
2.3.1. Fatty Acid Composition and Determination of the Difference Between Actual and Theoretical Content of Triacylglycerols (TAGs) with ECN 42 (ΔECN42)
2.3.2. Determination of Sterol Composition
2.4. Olive Oil Authenticity Using δ13C in Individual Fatty Acids
2.5. Statistical Analysis
3. Results and Discussion
3.1. Authenticity of Olive Oil in Canned Tuna from the Slovenian Market
3.1.1. Fatty Acid Composition and ΔECN42
3.1.2. Sterol Composition
3.1.3. Stable Carbon Isotope Composition of Fatty Acids
3.2. Comparing Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna
3.2.1. Fatty Acid Composition Analysis as an Official Method
3.2.2. Stable Carbon Isotope Analysis of Fatty Acids as an Advanced Method
3.2.3. Partial Least Squares Discriminant Analysis (PLS-DA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miklavčič, A.; Stibilj, V.; Heath, E.; Polak, T.; Tratnik, J.S.; Klavž, J.; Mazej, D.; Horvat, M. Mercury, Selenium, PCBs and Fatty Acids in Fresh and Canned Fish Available on the Slovenian Market. Food Chem. 2011, 124, 711–720. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Nabipour, I.; Tajbakhsh, S.; Darabi, A.H.; Spitz, J. Abundance, Composition, and Potential Intake of Microplastics in Canned Fish. Mar. Pollut. Bull. 2020, 160, 111633. [Google Scholar] [CrossRef]
- Caponio, F.; Summo, C.; Pasqualone, A.; Gomes, T. Fatty Acid Composition and Degradation Level of the Oils Used in Canned Fish as a Function of the Different Types of Fish. J. Food Compos. Anal. 2011, 24, 1117–1122. [Google Scholar] [CrossRef]
- European Union. Council Regulation (EEC) No 1536/92 of 9 June 1992 Laying down Common Marketing Standards for Preserved Tuna and Bonito; European Union: Brussels, Belgium, 1992; Volume 163, pp. 1–4. Available online: http://data.europa.eu/eli/reg/1992/1536/oj (accessed on 3 April 2024).
- Miklavčič, V.A.; Butinar, B.; Schwarzkopf, M.; Miklavčič, B.M. Characterization of Olive Oils Used as Medium in Canned Fish. Sch. J. Food Nutr. 2020, 3, 302–306. [Google Scholar] [CrossRef]
- European Union. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union 2022, L284, 1–22. Available online: https://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 24 June 2025).
- European Union. Commission Implementing Regulation (EU) 2022/2105 of 29 July 2022 Laying down Rules on Conformity Checks of Marketing Standards for Olive Oil and Methods of Analysis of the Characteristics of Olive Oil. Off. J. Eur. Union 2022, L284, 23–48. Available online: https://data.europa.eu/eli/reg_impl/2022/2105/oj (accessed on 24 June 2025).
- IOC STANDARDS, METHODS AND GUIDES. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 3 September 2024).
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; Domínguez-López, I.; Siscart-Serra, A.; Fraga, N.; Sámano, S.; López-Sabater, C.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Pérez, M. Extra Virgin Olive Oil: A Comprehensive Review of Efforts to Ensure Its Authenticity, Traceability, and Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2639–2664. [Google Scholar] [CrossRef]
- Vittucci, V.; Pierri, P.; Maffei, F. Olive Oil Used for Covering Canned Fish [Sardines]. Study for a Chemiometric Pattern Based on the Triglycerides Analysis. Ind. Aliment. 1999, 38, 926–929. [Google Scholar]
- Karacan, E.; Özdikicierler, O.; Yemişçioğlu, F. Comparative Investigation Of The Use Of Sterol Composition, ECN42 Difference And FTIR Spectroscopy In The Determination Of Virgin Olive Oil Adulteration. J. Food 2023, 48, 510–525. [Google Scholar] [CrossRef]
- Rossell, J.B. Stable Carbon Isotope Ratios in Establishing Maize Oil Purity. Lipid Fett 1994, 96, 304–308. [Google Scholar] [CrossRef]
- Potočnik, T.; Ogrinc, N.; Potočnik, D.; Košir, I.J. Fatty Acid Composition and δ13C Isotopic Ratio Characterisation of Pumpkin Seed Oil. J. Food Compos. Anal. 2016, 53, 85–90. [Google Scholar] [CrossRef]
- Karalis, P.; Poutouki, A.E.; Nikou, T.; Halabalaki, M.; Proestos, C.; Tsakalidou, E.; Gougoura, S.; Diamantopoulos, G.; Tassi, M.; Dotsika, E. Isotopic Traceability (13C and 18O) of Greek Olive Oil. Molecules 2020, 25, 5816. [Google Scholar] [CrossRef]
- Portarena, S.; Leonardi, L.; Scartazza, A.; Lauteri, M.; Baldacchini, C.; Farinelli, D.; Famiani, F.; Ciolfi, M.; Brugnoli, E. Combining Analysis of Fatty Acid Composition and δ13C in Extra-Virgin Olive Oils as Affected by Harvest Period and Cultivar: Possible Use in Traceability Studies. Food Control 2019, 105, 151–158. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Segebarth, N.; Garmón-Lobato, S.; Holland, M.V.; Moreno-Rojas, J.M.; Fernández-Pierna, J.A.; Baeten, V.; Fuselli, S.R.; Gallo, B.; Berrueta, L.A.; et al. 1H-NMR and Isotopic Fingerprinting of Olive Oil and Its Unsaponifiable Fraction: Geographical Origin of Virgin Olive Oils by Pattern Recognition. Eur. J. Lipid Sci. Technol. 2015, 117, 1991–2006. [Google Scholar] [CrossRef]
- Bontempo, L.; Camin, F.; Larcher, R.; Nicolini, G.; Perini, M.; Rossmann, A. Coast and Year Effect on H, O and C Stable Isotope Ratios of Tyrrhenian and Adriatic Italian Olive Oils. Rapid Commun. Mass Spectrom. 2009, 23, 1043–1048. [Google Scholar] [CrossRef]
- Camin, F.; Larcher, R.; Perini, M.; Bontempo, L.; Bertoldi, D.; Gagliano, G.; Nicolini, G.; Versini, G. Characterisation of Authentic Italian Extra-Virgin Olive Oils by Stable Isotope Ratios of C, O and H and Mineral Composition. Food Chem. 2010, 118, 901–909. [Google Scholar] [CrossRef]
- Camin, F.; Pavone, A.; Bontempo, L.; Wehrens, R.; Paolini, M.; Faberi, A.; Marianella, R.M.; Capitani, D.; Vista, S.; Mannina, L. The Use of IRMS, 1H NMR and Chemical Analysis to Characterise Italian and Imported Tunisian Olive Oils. Food Chem. 2016, 196, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, P.; Bernini, L.; Boschetti, T. Climatic Factors Influencing the Isotope Composition of Italian Olive Oils and Geographic Characterisation. Rapid Commun. Mass Spectrom. 2009, 23, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Potočnik, D.; Nečemer, M.; Perišić, I.; Jagodic, M.; Mazej, D.; Camin, F.; Eftimov, T.; Strojnik, L.; Ogrinc, N. Geographical Verification of Slovenian Milk Using Stable Isotope Ratio, Multi-Element and Multivariate Modelling Approaches. Food Chem. 2020, 326, 126958. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.E. Bulk C, H, O, and Fatty Acid C Stable Isotope Analyses for Purity Assessment of Vegetable Oils from the Southern and Northern Hemispheres. Rapid Commun. Mass Spectrom. 2016, 30, 2447–2461. [Google Scholar] [CrossRef]
- Spangenberg, J.E.; Ogrinc, N. Authentication of Vegetable Oils by Bulk and Molecular Carbon Isotope Analyses with Emphasis on Olive Oil and Pumpkin Seed Oil. J. Agric. Food Chem. 2001, 49, 1534–1540. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.E.; Macko, S.A.; Hunziker, J. Characterization of Olive Oil by Carbon Isotope Analysis of Individual Fatty Acids: Implications for Authentication. J. Agric. Food Chem. 1998, 46, 4179–4184. [Google Scholar] [CrossRef]
- Spangenberg, J.E.; Lantos, I. Fingerprinting Olive Oils from Argentina and Uruguay Via Stable Isotope, Fatty Acid Profile, and Chemometric Analyses. Food Chem. 2024, 449, 139194. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Carvelo, A.M.; Lozano, V.A.; Olivieri, A.C. Comparative Chemometric Analysis of Fluorescence and Near Infrared Spectroscopies for Authenticity Confirmation and Geographical Origin of Argentinean Extra Virgin Olive Oils. Food Control 2019, 96, 22–28. [Google Scholar] [CrossRef]
- Bontempo, L.; Paolini, M.; Franceschi, P.; Ziller, L.; García-González, D.L.; Camin, F. Characterisation and Attempted Differentiation of European and Extra-European Olive Oils Using Stable Isotope Ratio Analysis. Food Chem. 2019, 276, 782–789. [Google Scholar] [CrossRef]
- COI/T.20/Doc. No. 33/Rev. 1; Determination of Fatty Acid Methyl Esters by Gas Chromatography. International Olive Council: Madrid, Spain, 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2023/11/COI-T20-33-rev-1-ENG.pdf (accessed on 24 June 2025).
- COI/T.20/Doc. No. 20/Rev. 4; Determination of the Difference Between Actual And Theoretical Content Of Triacyglycerols With ECN42. International Olive Council: Madrid, Spain, 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-20-Rev.-4-2017-.pdf (accessed on 24 June 2025).
- COI/T.20/Doc. No. 26/Rev. 5; Determination of the Composition and Content of Sterols, Triterpenic Dialcohols and Ali-phatic Alcohols by Capillary Column Gas Chromatography. International Olive Council: Madrid, Spain, 2020. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/07/COI-T20-Doc-26-Rev5-EN-.pdf (accessed on 24 June 2025).
- Hrastar, R.; Petrišič, M.G.; Ogrinc, N.; Košir, I.J. Fatty Acid and Stable Carbon Isotope Characterization of Camelina Sativa Oil: Implications for Authentication. J. Agric. Food Chem. 2009, 57, 579–585. [Google Scholar] [CrossRef]
- Al-Bachir, M.; Sahloul, H. Fatty Acid Profile of Olive Oil Extracted from Irradiated and Non-Irradiated Olive Fruits. Int. J. Food Prop. 2017, 20, 2550–2558. [Google Scholar] [CrossRef]
- Lechhab, T.; Lechhab, W.; Cacciola, F.; Salmoun, F. Sets of Internal and External Factors Influencing Olive Oil (Olea europaea L.) Composition: A Review. Eur. Food Res. Technol. 2022, 248, 1069–1088. [Google Scholar] [CrossRef]
- Domingues, V.F.; Quaresma, M.; Sousa, S.; Rosas, M.; Ventoso, B.; Nunes, M.L.; Delerue-Matos, C. Evaluating the Lipid Quality of Yellowfin Tuna (Thunnus Albacares) Harvested from Different Oceans by Their Fatty Acid Signatures. Foods 2021, 10, 2816. [Google Scholar] [CrossRef]
- Caponio, F.; Gomes, T.; Summo, C. Quality Assessment of Edible Vegetable Oils Used as Liquid Medium in Canned Tuna. Eur. Food Res. Technol. 2003, 216, 104–108. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Oueslati, I.; Martínez-Cañas, M.A.; Zarrouk, M.; Sánchez-Casas, J. Improvement of the Sterol and Triacylglycerol Compositions of Chemlali Virgin Olive Oils through Controlled Crossing with Mediterranean Cultivars. J. Oleo Sci. 2018, 67, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Lukić, M.; Lukić, I.; Moslavac, T. Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. Horticulturae 2021, 7, 493. [Google Scholar] [CrossRef]
- Koutsaftakis, A.; Kotsifaki, F.; Stefanoudaki, E. Effect of Extraction System, Stage of Ripeness, and Kneading Temperature on the Sterol Composition of Virgin Olive Oils. J. Am. Oil Chem. Soc. 1999, 76, 1477–1481. [Google Scholar] [CrossRef]
- Morelló, J.-R.; Motilva, M.-J.; Tovar, M.-J.; Romero, M.-P. Changes in Commercial Virgin Olive Oil (Cv Arbequina) during Storage, with Special Emphasis on the Phenolic Fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Royer, A.; Gerard, C.; Naulet, N.; Lees, M.; Martin, G.J. Stable Isotope Characterization of Olive Oils. I—Compositional and Carbon-13 Profiles of Fatty Acids. J. Am. Oil Chem. Soc. 1999, 76, 357–363. [Google Scholar] [CrossRef]
Fatty Acids (%, w/w) | δ13C (‰, VPDB) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | ΔECN42 | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic |
Limits * | ≤0.2 | 7.00–20.0 | 0.3–3.5 | 0.5–5.0 | 55.0–85.0 | 2.5–21.0 | |||||
OL-01 | 0.08 | 12.19 | 1.31 | 2.95 | 71.98 | 9.86 | −29.4 | −29.5 | −30.1 | −28.2 | −29.6 |
OL-02 | 0.01 | 10.48 | 0.91 | 3.85 | 77.8 | 5.34 | −29.4 | −42.4 | −30.0 | −27.7 | −29.0 |
OL-03 | 0.13 | 13.16 | 1.58 | 2.74 | 68.53 | 12.35 | −29.9 | −31.0 | −30.6 | −28.7 | −29.9 |
OL-04 | 0.15 | 11.38 | 1.03 | 3.14 | 74.34 | 8.3 | −28.9 | −28.0 | −29.8 | −27.9 | −29.0 |
OL-05 | 0.13 | 11.40 | 0.97 | 3.19 | 75.14 | 7.55 | −28.8 | −35.3 | −29.9 | −27.5 | −28.4 |
OL-06 | 0.09 | 15.11 | 1.93 | 2.25 | 65.33 | 13.69 | −29.1 | −30.1 | −30.3 | −27.9 | −29.1 |
OL-07 | 0.01 | 11.02 | 0.96 | 3.47 | 77.2 | 5.73 | −28.4 | −28.6 | −29.7 | −27.6 | −28.6 |
OL-08 | 0.01 | 10.72 | 0.86 | 3.69 | 76.74 | 6.29 | −29.2 | −38.3 | −29.3 | −27.5 | −28.3 |
OL-09 | 0.15 | 14.86 | 1.72 | 2.36 | 65.43 | 13.96 | −29.1 | −29.7 | −30.7 | −28.3 | −29.1 |
OL-10 | 0 | 10.78 | 0.94 | 3.39 | 77.34 | 5.88 | −28.3 | −30.2 | −30.0 | −27.4 | −28.2 |
OO-A1 | 6.51 | 3.58 | 31.29 | 57.64 | −29.1 | −29.8 | −28.5 | −28.0 | |||
OO-A2 | 10.00 | 3.91 | 75.47 | 7.75 | −28.7 | −29.9 | −31.0 | −27.7 | |||
OO-A3 | 17.08 | 3.62 | 66.61 | 9.92 | −31.5 | −32.9 | −31.5 | −30.8 |
Sterols (%, w/w) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Cholesterol | Brassicasterol | 24-methylene-cholesterol | Campesterol | Campestanol | Stigmasterol | Δ−7-campesterol | Δ−5,23- stigmastadienol | Clerosterol | β-sitosterol | Sitostanol | Δ−5-avenasterol | Δ−5,24- stigmastadienol | Δ−7-stigmastenol | Δ−7-avenasterol | App. β-sitosterol | Total sterols (mg/kg) |
Limits * | ≤0.5% | ≤0.1% | ≤4.0% | ≤campesterol | <0.5% | <93.0% | ≤0.5% | ≥93% | ≥1000 mg/kg | ||||||||
OL-01 | 0 | 0 | 0.39 | 3.53 | 0.08 | 0.98 | 0 | 0.27 | 1.16 | 84.44 | 0.45 | 6.99 | 0.86 | 0.39 | 0.44 | 94.17 | 1650 |
OL-02 | 0 | 0 | 0.22 | 3.4 | 0.09 | 0.69 | 0 | 0.23 | 1.04 | 86.44 | 0.39 | 6.21 | 0.7 | 0.26 | 0.34 | 95.01 | 1417 |
OL-03 | 0 | 0.1 | 0.65 | 3.45 | 0.08 | 0.84 | 0 | 0.53 | 1.04 | 85.52 | 0.45 | 5.29 | 1.04 | 0.46 | 0.56 | 93.87 | 1681 |
OL-04 | 0 | 0 | 0.30 | 3.38 | 0.10 | 1.47 | 0 | 1.19 | 1.38 | 85.39 | 0.72 | 2.83 | 2.19 | 0.49 | 0.54 | 93.7 | 1240 |
OL-05 | 0 | 0 | 0.19 | 3.46 | 0.09 | 1.46 | 0 | 1.60 | 1.45 | 85.56 | 0.62 | 2.49 | 2.34 | 0.47 | 0.28 | 94.06 | 1261 |
OL-06 | 0 | 0 | 0.65 | 3.52 | 0.12 | 1.83 | 0 | 0.18 | 0.97 | 82.27 | 0.92 | 7.68 | 0.99 | 0.41 | 0.73 | 93.01 | 1687 |
OL-07 | 0 | 0 | 0.39 | 3.22 | 0.17 | 0.82 | 0 | 0.35 | 0.99 | 85.34 | 0.48 | 5.89 | 0.96 | 0.37 | 1.02 | 94.01 | 1484 |
OL-08 | 0 | 0 | 0.18 | 3.21 | 0.12 | 0.75 | 0 | 0.59 | 1.47 | 85.70 | 0.68 | 5.34 | 0.76 | 0.30 | 0.89 | 94.54 | 1380 |
OL-09 | 0 | 0 | 0.27 | 3.53 | 0.14 | 1.46 | 0 | 0.26 | 0.95 | 83.09 | 0.60 | 7.85 | 0.66 | 0.48 | 0.71 | 93.41 | 1667 |
OL-10 | 0 | 0 | 0.13 | 3.23 | 0.09 | 0.89 | 0.15 | 0.65 | 0.51 | 86.99 | 0.43 | 5.22 | 0.62 | 0.36 | 0.73 | 94.42 | 1209 |
Fatty Acids (%, w/w) | δ13C (‰, VPDB) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Palmitic | Palmitoleic | Stearic | Oleic | t-Oleic | Linoleic | Linolenic | Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Linolenic | |
VO | 12.0 | 4.2 | 22.5 | 52.5 | 1.5 | 0.6 | 3.1 | −31.0 | −32.4 | −30.9 | −30.8 | −33.4 | −33.2 | |
HO | 6.5 | 3.1 | 79.7 | 1.4 | 9.3 | −31.7 | −32.1 | −30.6 | −30.3 | |||||
Day 0 | ||||||||||||||
OL-08 | 5% VO + 95% OO | 11.6 | 0.7 | 4.0 | 70.2 | 2.3 | 10.2 | 1.0 | −29.7 | −31.0 | −31.4 | −31.5 | −30.1 | −31.7 |
OL-10 | 10% VO + 90% OO | 11.6 | 0.7 | 3.8 | 63.9 | 2.3 | 16.1 | 1.6 | −29.6 | −30.6 | −31.8 | −30.9 | −30.7 | −31.8 |
OL-02 | 20% VO + 80% OO | 11.7 | 0.5 | 4.2 | 49.0 | 2.0 | 29.6 | 3.1 | −30.1 | −30.9 | −31.9 | −32.1 | −31.3 | −31.7 |
OL-07 | 5% HO + 95% OO | 10.3 | 0.7 | 3.6 | 76.0 | 2.3 | 7.1 | −30.6 | −30.1 | −31.9 | −31.8 | −29.9 | ||
OL-03 | 10% HO + 90% OO | 13.3 | 1.5 | 2.9 | 66.6 | 3.1 | 12.7 | −32.2 | −30.3 | −34.1 | −31.2 | −31.9 | ||
OL-04 | 20% HO + 80% OO | 10.2 | 0.7 | 3.3 | 74.7 | 2.2 | 9.0 | −30.7 | −30.3 | −31.8 | −32.0 | −30.1 | ||
Day 25 | ||||||||||||||
OL-08 | 5% VO + 95% OO | 11.0 | 0.8 | 3.8 | 72.4 | 2.4 | 9.1 | 0.9 | −30.2 | −30.2 | −31.1 | −30.3 | −29.8 | −30.8 |
OL-10 | 10% VO + 90% OO | 11.3 | 0.8 | 3.6 | 70.4 | 2.5 | 10.4 | 1.0 | −29.7 | −29.7 | −31.2 | −31.0 | −28.9 | −31.4 |
OL-02 | 20% VO + 80% OO | 11.1 | 0.7 | 4.1 | 68.2 | 2.4 | 12.3 | 1.3 | −30.3 | −30.4 | −31.1 | −30.9 | −30.1 | −31.4 |
OL-07 | 5% HO + 95% OO | 10.7 | 0.8 | 3.5 | 76.3 | 2.5 | 6.2 | −29.8 | −31.9 | −31.5 | −30.1 | −29.7 | ||
OL-03 | 10% HO + 90% OO | 12.3 | 1.3 | 2.9 | 68.8 | 2.8 | 11.9 | −31.1 | −31.6 | −32.4 | −30.8 | −30.7 | ||
OL-04 | 20% HO + 80% OO | 10.6 | 0.8 | 3.2 | 74.5 | 2.2 | 8.7 | −30.6 | −31.0 | −31.8 | −30.9 | −29.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mencin, M.; Bučar-Miklavčič, M.; Podgornik, M.; Ogrinc, N. Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna. Foods 2025, 14, 2667. https://doi.org/10.3390/foods14152667
Mencin M, Bučar-Miklavčič M, Podgornik M, Ogrinc N. Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna. Foods. 2025; 14(15):2667. https://doi.org/10.3390/foods14152667
Chicago/Turabian StyleMencin, Marjeta, Milena Bučar-Miklavčič, Maja Podgornik, and Nives Ogrinc. 2025. "Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna" Foods 14, no. 15: 2667. https://doi.org/10.3390/foods14152667
APA StyleMencin, M., Bučar-Miklavčič, M., Podgornik, M., & Ogrinc, N. (2025). Chemometric Evaluation of Official and Advanced Methods for Detecting Olive Oil Authenticity in Canned Tuna. Foods, 14(15), 2667. https://doi.org/10.3390/foods14152667