The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition
Abstract
1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
3.2.1. Gas Chromatographic Analysis of Natural Gas
3.2.2. Stable Carbon Isotope Analysis of Natural Gas
3.2.3. Multivariate Mathematical Analysis Method
4. Results
4.1. Compositional Characteristics of Natural Gas
4.2. Stable Carbon Isotope Characteristics of Natural Gas
5. Discussion
5.1. Type of Multi-Origin Natural Gas
5.2. Origin of Multi-Origin Natural Gas
5.3. Quantitative Calculation of Mixed-Sources of Natural Gas
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Tang, Y.; He, W.; Gong, D.; Yan, Q.; Chen, G.; Shan, X.; Liu, C.; Liu, G.; Qin, Z. New fields, new types and exploration potentials of oil-gas exploration in Junggar Basin. Acta Pet. Sin. 2024, 45, 52. [Google Scholar]
- Vidavskiy, V.; Rezaee, R. Natural deep-seated hydrogen resources exploration and development: Structural features, governing factors, and controls. J. Energy Nat. Resour. 2022, 11, 60–81. [Google Scholar]
- Wang, S.; Shan, X.; Yang, Q.; Wang, P.; He, W.; Xiao, M.; Liu, C.; Ma, X. Tight Gas Accumulation in Middle to Deep Successions of Fault Depression Slopes: Northern Slope of the Lishu Depression, Songliao Basin. Mar. Petrol. Geol. 2025, 174, 107302. [Google Scholar] [CrossRef]
- Li, J.; Tao, X.; Bai, B.; Huang, S.; Jiang, Q.; Zhao, Z.; Chen, Y.; Ma, D.; Zhang, L.; Li, N. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Petrol. Explor. Dev. 2021, 48, 60–79. [Google Scholar] [CrossRef]
- Tian, J.; Li, J.; Kong, H.; Zeng, X.; Wang, X.; Guo, Z. Genesis and accumulation process of deep natural gas in the Altun foreland on the northern margin of the Qaidam Basin. J. Petrol. Sci. Eng. 2021, 200, 108147. [Google Scholar] [CrossRef]
- Zou, C.; Zhao, Z.; Pan, S.; Yin, J.; Lu, G.; Fu, F.; Yuan, M.; Liu, H.; Zhang, G.; Luo, C. Unveiling the Oldest Industrial Shale Gas Reservoir: Insights for the Enrichment Pattern and Exploration Direction of Lower Cambrian Shale Gas in the Sichuan Basin. Engineering 2024, 42, 278–294. [Google Scholar] [CrossRef]
- Qiao, R.; Li, M.; Zhang, D.; Xiao, H. Geochemistry and accumulation of the ultra-deep ordovician oils in the Shunbei oilfield, Tarim Basin: Coupling of reservoir secondary processes and filling events. Mar. Petrol. Geol. 2024, 167, 106959. [Google Scholar] [CrossRef]
- Pang, X.; Chen, Z.; Jia, C.; Wang, E.; Shi, H.; Wu, Z.; Hu, T.; Liu, K.; Zhao, Z.; Pang, B. Evaluation and re-understanding of the global natural gas hydrate resources. Petrol. Sci. 2021, 18, 323–338. [Google Scholar] [CrossRef]
- Abrams, M.A.; Greb, M.D.; Collister, J.W.; Thompson, M. Egypt far Western Desert basins petroleum charge system as defined by oil chemistry and unmixing analysis. Mar. Petrol. Geol. 2016, 77, 54–74. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, X.; Wang, X.; Jin, Z.; Zhu, D.; Meng, Q.; Huang, S.; Liu, J.; Fu, Q. Carbon and hydrogen isotopes of methane, ethane, and propane: A review of genetic identification of natural gas. Earth-Sci. Rev. 2019, 190, 247–272. [Google Scholar] [CrossRef]
- Burruss, R.C.; Laughrey, C.D. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Org. Geochem. 2010, 41, 1285–1296. [Google Scholar] [CrossRef]
- Liu, Q.; Wei, Y.; Li, P.; Huang, X.; Meng, Q.; Wu, X.; Zhu, D.; Xu, H.; Fu, Y.; Zhu, D. Natural hydrogen in the volcanic-bearing sedimentary basin: Origin, conversion, and production rates. Sci. Adv. 2025, 11, eadr6771. [Google Scholar] [CrossRef]
- Stahl, W.J.; Carey, B.D., Jr. Source-rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas. Chem. Geol. 1975, 16, 257–267. [Google Scholar] [CrossRef]
- Milkov, A.V. New approaches to distinguish shale-sourced and coal-sourced gases in petroleum systems. Org. Geochem. 2021, 158, 104271. [Google Scholar] [CrossRef]
- Jenden, P.D.; Kaplan, I.R.; Poreda, R.; Craig, H. Origin of nitrogen-rich natural gases in the California Great Valley: Evidence from helium, carbon and nitrogen isotope ratios. Geochim. Cosmochim. Acta 1988, 52, 851–861. [Google Scholar] [CrossRef]
- Tian, H.; Xiao, X.; Wilkins, R.W.; Tang, Y. New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs: Implications for the in-situ accumulation of gas cracked from oils. Aapg Bull. 2008, 92, 181–200. [Google Scholar] [CrossRef]
- Faramawy, S.; Zaki, T.; Sakr, A. Natural gas origin, composition, and processing: A review. J. Nat. Gas. Sci. Eng. 2016, 34, 34–54. [Google Scholar] [CrossRef]
- Dai, J.; Qin, S.; Hu, G.; Ni, Y.; Gan, L.; Hong, F. Major progress in the natural gas exploration and development in the past seven decades in China. Petrol. Explor. Dev. 2019, 46, 1100–1110. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Duan, Z.; Zhang, Y.; Duan, X.; Liu, B.; Yuan, Z.; Wu, Y.; Jiang, Y.; Tai, H. Local dynamic neural network for quantitative analysis of mixed gases. Sens. Actuators B Chem. 2024, 404, 135230. [Google Scholar] [CrossRef]
- Gao, Y.; Dai, L.; Zhu, H.; Chen, Y.; Zhou, L. Quantitative analysis of main components of natural gas based on Raman spectroscopy. Chin. J. Anal. Chem. 2019, 47, 67–76. [Google Scholar] [CrossRef]
- Chen, Z.; Cao, Y.; Ma, Z.; Zhen, Y. Geochemistry and origins of natural gases in the Zhongguai area of Junggar Basin, China. J. Petrol. Sci. Eng. 2014, 119, 17–27. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Z.; Zou, H.; Li, Y.; Hu, Z.; Zhou, Z.; Zhu, J.; Han, M.; Zhao, L.; Lin, Z. Geochemical characteristics, origin, and mechanism of differential accumulation of natural gas in the carboniferous kelameili gas field in Junggar basin, China. J. Petrol. Sci. Eng. 2021, 203, 108658. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.; Yang, D. Hydrocarbon generation capacity analysis of Carboniferous source rocks in Dishuiquan sag of Junggar Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2013, 37, 52–58. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, X.; Da, J.; Xiang, B.; Song, Y.; Qin, S. Genetic origin of natural gas and its filling history in Dinan uplift-Wucaiwan of Junggar Basin. Nat. Gas. Geosci. 2011, 22, 595–601. [Google Scholar]
- Gong, D.; Song, Y.; Wei, Y.; Liu, C.; Wu, Y.; Zhang, L.; Cui, H. Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the Southeastern Junggar Basin, NW China: Implications for new hydrocarbon explorations. Int. J. Coal Geol. 2019, 202, 171–189. [Google Scholar] [CrossRef]
- Yang, D.; Chen, S.; Li, L. Hydrocarbon origins and their pooling characteristics of the Kelameili gas field. Nat. Gas. Ind. 2012, 32, 27–31. [Google Scholar]
- Fu, H.; Tang, D.; Pan, Z.; Yan, D.; Yang, S.; Zhuang, X.; Li, G.; Chen, X.; Wang, G. A study of hydrogeology and its effect on coalbed methane enrichment in the southern Junggar Basin, China. Aapg Bull. 2019, 103, 189–213. [Google Scholar] [CrossRef]
- Li, C.; Chang, J.; Qiu, N.; Guo, H.; Shan, X.; Peng, B.; Xu, J.; Zhang, Z. Present-day geothermal regime of the Junggar Basin, northwest China: Implication for hydrocarbon distribution and geothermal resources. J. Asian Earth Sci. 2025, 284, 106540. [Google Scholar] [CrossRef]
- Yu, K.; Duan, X.; Cao, Y.; Du, S. Origin of reedmergnerite in sodium carbonate successions and environmental implications in a Late Paleozoic alkaline saline lake, NW Junggar Basin, China. Mar. Petrol. Geol. 2025, 174, 107323. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, W.; Yang, S.; Kang, X.; Zhu, N. Differences and constraints of varying gas dryness coefficients in the Cainan oil-gas field, Junggar Basin, NW China. Mar. Petrol. Geol. 2022, 139, 105582. [Google Scholar] [CrossRef]
- Sun, P.; Wang, Y.; Leng, K.; Li, H.; Ma, W.; Cao, J. Geochemistry and origin of natural gas in the eastern Junggar Basin, NW China. Mar. Petrol. Geol. 2016, 75, 240–251. [Google Scholar] [CrossRef]
- Jin, J.; Luo, X.; Liao, J.; Yu, Q.; Wang, D.; Zhao, W. Geochemical characteristics of permian Pingdiquan Formation hydrocarbon source rocks in Dongdaohaizi sag, Junggar Basin. China. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2015, 42, 196–202. [Google Scholar]
- He, H.; Zhi, D.; Tang, Y.; Liu, C.; Chen, H.; Guo, X.; Wang, Z. A great discovery of Well Kangtan 1 in Fukang Sag in the Junggar Basin and its significance# br. China Pet. Explor. 2021, 26, 1. [Google Scholar]
- Lu, M.; Li, X.; Mi, J.; Zhai, J.; Luo, D. Simulation of characteristics of oil/gas produced by in-situ heating of typical low-mature shale. Acta Pet. Sin. 2023, 44, 765. [Google Scholar]
- Dai, J.; Zou, C.; Li, J.; Ni, Y.; Hu, G.; Zhang, X.; Liu, Q.; Yang, C.; Hu, A. Carbon isotopes of Middle–Lower Jurassic coal-derived alkane gases from the major basins of northwestern China. Int. J. Coal Geol. 2009, 80, 124–134. [Google Scholar] [CrossRef]
- Anderson, J.S.; Romanak, K.D.; Yang, C.; Lu, J.; Hovorka, S.D.; Young, M.H. Gas source attribution techniques for assessing leakage at geologic CO2 storage sites: Evaluating a CO2 and CH4 soil gas anomaly at the Cranfield CO2-EOR site. Chem. Geol. 2017, 454, 93–104. [Google Scholar] [CrossRef]
- Yan, K.; Zuo, Y.; Zhang, Y.; Yang, L.; Pang, X.; Wang, S.; Li, W.; Song, X.; Yao, Y. A study on the accumulation model of the Santos basin in Brazil utilizing the source–reservoir dynamic evaluation method. Sci. Rep.-Uk 2024, 14, 19296. [Google Scholar] [CrossRef]
- Dai, J.X.; Qin, S.F.; Tao, S.Z.; Zhu, G.Y.; Mi, J.K. Developing trends of natural gas industry and the significant progress on natural gas geological theories in China. Nat. Gas. Geosci. 2005, 16, 127–142. [Google Scholar]
- Hu, G.; Zhang, S.; Li, J.; Li, J.; Han, Z. The origin of natural gas in the Hutubi gas field, Southern Junggar Foreland Sub-basin, NW China. Int. J. Coal Geol. 2010, 84, 301–310. [Google Scholar]
- Milkov, A.V.; Etiope, G. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Org. Geochem. 2018, 125, 109–120. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, Y.; Yao, X.; Feng, X.; Li, Z.; Wu, G.; Guangyou, Z. The mercury isotope signatures of coalbed gas and oil-type gas: Implications for the origins of the gases. Appl. Geochem. 2019, 109, 104415. [Google Scholar] [CrossRef]
- Li, L.; Bao, Z.; Li, L.; Li, Z.; Ban, S.; Li, Z.; Wang, T.; Li, Y.; Zheng, N.; Zhao, C.; et al. The source and preservation of lacustrine shale organic matter: Insights from the Qingshankou Formation in the Changling Sag, Southern Songliao Basin, China. Sediment. Geol. 2024, 466, 106649. [Google Scholar] [CrossRef]
- Han, S.; Xiang, C.; Du, X.; Xie, L.; Huang, J.; Wang, C. Geochemistry and origins of hydrogen-containing natural gases in deep Songliao Basin, China: Insights from continental scientific drilling. Petrol. Sci. 2024, 21, 741–751. [Google Scholar] [CrossRef]
- Lorant, F.; Prinzhofer, A.; Behar, F.; Huc, A. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chem. Geol. 1998, 147, 249–264. [Google Scholar] [CrossRef]
- Rooney, M.A.; Claypool, G.E.; Chung, H.M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol. 1995, 126, 219–232. [Google Scholar] [CrossRef]
- Du, J.; Jin, Z.; Xie, H.; Bai, H.; Liu, W. Stable carbon isotope compositions of gaseous hydrocarbons produced from high pressure and high temperature pyrolysis of lignite. Org. Geochem. 2003, 34, 97–104. [Google Scholar] [CrossRef]
- Prinzhofer, A.; Rocha Mello, M.; Takaki, T. Geochemical characterization of natural gas: A physical multivariable approach and its applications in maturity and migration estimates. Aapg Bull. 2000, 84, 1152–1172. [Google Scholar]
- Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J. De-convoluting mixed crude oil in Prudhoe Bay field, North Slope, Alaska. Org. Geochem. 2008, 39, 623–645. [Google Scholar] [CrossRef]
Area | Well | Depth (m) | Formation | Composition of Natural Gas | |||||
---|---|---|---|---|---|---|---|---|---|
C1% | C2% | C3% | C1/(C1–5) | N2% | CO2% | ||||
Northern | Dx18 | 3998.5 | T1S | 90.46 | 2.15 | 0.24 | 0.98 | 7.90 | 0.41 |
Dx18 | 3906 | T1S | 89.13 | 3.20 | 0.26 | 0.97 | 8.21 | 0.14 | |
Dx10 | 2192 | T1S | 89.05 | 4.29 | 0.23 | 0.95 | 6.22 | 0.18 | |
Southern | Dx9 | 2242–2234 | K1tg | 89.87 | 5.68 | 0.24 | 0.94 | 4.28 | 0.19 |
Dx9 | 2109.8 | K1tg | 89.85 | 6.05 | 0.25 | 0.94 | 4.10 | 0.00 | |
Dx12 | 1707 | K1tg | 90.43 | 3.78 | 0.26 | 0.96 | 5.56 | 0.07 | |
Dx12 | 2205 | K1tg | 84.25 | 7.36 | 0.14 | 0.92 | 5.00 | 0.21 | |
Dx12 | 2287 | K1tg | 89.40 | 5.45 | 0.13 | 0.94 | 4.47 | 0.35 | |
D201 | 1880 | K1tg | 80.76 | 9.20 | 0.14 | 0.90 | 8.11 | 0.03 | |
D205 | 2293.5 | K1tg | 84.04 | 8.75 | 0.26 | 0.91 | 6.52 | 0.04 | |
D210 | 1815.5 | K1tg | 88.40 | 5.22 | 0.25 | 0.94 | 6.19 | 0.06 | |
Dx15 | 2657 | J2t | 92.00 | 3.90 | 0.42 | 0.96 | 3.10 | / | |
Dx15 | 2190 | K1tg | 85.05 | 2.80 | 0.24 | 0.97 | 11.41 | 0.34 | |
Dx15 | 2451 | J2t | 85.13 | 6.67 | 0.24 | 0.93 | 7.02 | 0.40 | |
Dx15 | 2657 | J2t | 90.56 | 3.86 | 0.42 | 0.96 | 4.63 | 0.18 | |
Dx15 | 2144 | K1tg | 85.11 | 2.2 | 0.43 | 0.97 | 11.58 | 0.27 | |
Dongdaohaizi | Dn8 | 3070–3084 | C2b | 93.35 | 5.15 | 0.74 | 0.96 | 1.37 | 0.14 |
Dn8 | 3132 | C2b | 84.71 | 10.54 | 0.68 | 0.89 | 2.91 | 0.12 | |
Dn8 | 3650–3665 | C2b | 90.36 | 5.2 | 0.75 | 0.95 | 4.34 | 0.00 | |
Dn8 | 3363 | P3w | 89.42 | 6.19 | 0.65 | 0.94 | 4.19 | 0.15 | |
Dn8 | 3510 | P3w | 88.66 | 7.9 | 0.75 | 0.92 | 3.01 | 0.11 | |
Dn1 | 3345 | P3w | 87.56 | 8.76 | 0.45 | 0.91 | 2.51 | 0.07 | |
Dn1 | 3625 | P3w | 88.4 | 8.34 | 0.42 | 0.91 | 3.06 | 0.03 | |
Dn1 | 3830 | P3w | 88.03 | 9.15 | 0.41 | 0.91 | 2.73 | 0.02 | |
C31 | 3635 | J2t | 84.41 | 11.35 | 0.55 | 0.88 | 3.97 | 0.05 | |
C341 | 3502 | J2t | 85.72 | 11.21 | 0.45 | 0.88 | 2.38 | 0.08 | |
C34 | 2906 | J2t | 82.20 | 9.30 | 0.41 | 0.90 | 6.60 | / | |
C34 | 3652 | J2t | 87.24 | 7.78 | 0.54 | 0.92 | 3.16 | 0.06 |
Area | Formation | δ13C1/% | δ13C2/% | δ13C3/% | 13C1 | 12C1 | 13C2 | 12C2 | 13C3 | 12C3 | Coal Type Gas /% | Oil Type Gas/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Northern | P | −31.61 | −29.56 | −28.79 | 8629 | 821,441 | 471 | 19,068 | 210 | 19,298 | 62.2 | 37.8 |
P | −31.14 | −29.54 | −28.45 | 8603 | 819,653 | 290 | 16,551 | 182 | 16,782 | 84.3 | 15.7 | |
T | −32.94 | −31 | −30.11 | 8657 | 824,569 | 414 | 18,427 | 203 | 18,659 | 67.8 | 32.2 | |
Southern | J1b | −37.98 | −27.88 | −24.77 | 8724 | 830,938 | 372 | 17,842 | 196 | 18,075 | 68.4 | 31.6 |
J2x | −39.03 | −27.97 | −25.94 | 8647 | 822,918 | 532 | 19,864 | 219 | 20,098 | 45.2 | 54.8 | |
J1s | −39.04 | −27.68 | −25.3 | 8567 | 815,091 | 650 | 21,525 | 237 | 21,760 | 25.6 | 74.4 | |
Dongdaohaizi | J1b | −43.61 | −25.1 | −18.89 | 8613 | 819,303 | 694 | 22,033 | 243 | 22,269 | 10.6 | 89.4 |
K1s | −44.93 | −25.67 | −22.9 | 8584 | 816,329 | 749 | 22,892 | 253 | 23,129 | 2.3 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Hou, D.; Ma, W. The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition. Appl. Sci. 2025, 15, 7130. https://doi.org/10.3390/app15137130
Deng S, Hou D, Ma W. The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition. Applied Sciences. 2025; 15(13):7130. https://doi.org/10.3390/app15137130
Chicago/Turabian StyleDeng, Sizhe, Dujie Hou, and Wenli Ma. 2025. "The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition" Applied Sciences 15, no. 13: 7130. https://doi.org/10.3390/app15137130
APA StyleDeng, S., Hou, D., & Ma, W. (2025). The Origin and Mixed-Source Proportion of Natural Gas in the Dixin Area of the Junggar Basin: Geochemical Insights from Molecular and Isotopic Composition. Applied Sciences, 15(13), 7130. https://doi.org/10.3390/app15137130