Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = stable (Z)-isomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10160 KiB  
Article
Structural and Electronic Properties of Novel Azothiophene Dyes: A Multilevel Study Incorporating Explicit Solvation Effects
by Laura Vautrin, Alexandrine Lambert, Faouzi Mahdhaoui, Riad El Abed, Taoufik Boubaker and Francesca Ingrosso
Molecules 2024, 29(17), 4053; https://doi.org/10.3390/molecules29174053 - 27 Aug 2024
Cited by 1 | Viewed by 1448
Abstract
Among azobenzene derivatives, azothiophenes represent a relatively recent family of compounds that exhibit similar characteristics as dyes and photoreactive systems. Their technological applications are extensive thanks to the additional design flexibility conferred by the heteroaromatic ring. In this study, we present a comprehensive [...] Read more.
Among azobenzene derivatives, azothiophenes represent a relatively recent family of compounds that exhibit similar characteristics as dyes and photoreactive systems. Their technological applications are extensive thanks to the additional design flexibility conferred by the heteroaromatic ring. In this study, we present a comprehensive investigation of the structural and electronic properties of novel dyes derived from 3-thiophenamine, utilizing a multilevel approach. We thoroughly examined the potential energy surfaces of the E and Z isomers for three molecules, each bearing different substituents on the phenyl ring at the para position relative to the diazo group. This exploration was conducted through quantum chemistry calculations at various levels of theory, employing a continuum solvent model. Subsequently, we incorporated an explicit solvent (a dimethyl sulfoxide–water mixture) to simulate the most stable isomers using classical molecular dynamics, delivering a clear picture of the local solvation structure and intermolecular interactions. Finally, a hybrid quantum mechanics/molecular mechanics (QM/MM) approach was employed to accurately describe the evolution of the solutes’ properties within their environment, accounting for finite temperature effects. Full article
(This article belongs to the Special Issue Study on Synthesis and Photochemistry of Dyes)
Show Figures

Figure 1

17 pages, 3499 KiB  
Article
New Insights into Acylhydrazones E/Z Isomerization: An Experimental and Theoretical Approach
by Sara Fernández-Palacios, Esther Matamoros, Isabel Morato Rojas, Juan T. López Navarrete, M. Carmen Ruiz Delgado, Yolanda Vida and Ezequiel Perez-Inestrosa
Int. J. Mol. Sci. 2023, 24(19), 14739; https://doi.org/10.3390/ijms241914739 - 29 Sep 2023
Cited by 6 | Viewed by 2941
Abstract
A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. [...] Read more.
A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. In addition, DFT and TD-DFT calculations have been performed to gain more insights into the structural, energetic and photophysical properties of the E/Z isomers. Our results reveal that E/Z configurational isomerization upon irradiation is highly dependent on the stabilization of the E or Z isomers due to the formation of intramolecular H bonds and the electronic/steric effects intrinsically related to their structures. In addition, Raman spectroscopy is also used to confirm the molecular structural changes after the formation of hydrogen bonds in the isomers. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Figure 1

21 pages, 5413 KiB  
Article
Investigation on Novel E/Z 2-Benzylideneindan-1-One-Based Photoswitches with AChE and MAO-B Dual Inhibitory Activity
by Marco Paolino, Modesto de Candia, Rosa Purgatorio, Marco Catto, Mario Saletti, Anna Rita Tondo, Orazio Nicolotti, Andrea Cappelli, Antonella Brizzi, Claudia Mugnaini, Federico Corelli and Cosimo D. Altomare
Molecules 2023, 28(15), 5857; https://doi.org/10.3390/molecules28155857 - 3 Aug 2023
Cited by 10 | Viewed by 2298
Abstract
The multitarget therapeutic strategy, as opposed to the more traditional ‘one disease-one target-one drug’, may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer’s disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we [...] Read more.
The multitarget therapeutic strategy, as opposed to the more traditional ‘one disease-one target-one drug’, may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer’s disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1bh with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes. Full article
Show Figures

Figure 1

13 pages, 8754 KiB  
Article
Azobenzene/Tetraethyl Ammonium Photochromic Potassium Channel Blockers: Scope and Limitations for Design of Para-Substituted Derivatives with Specific Absorption Band Maxima and Thermal Isomerization Rate
by Daniil M. Strashkov, Vladimir N. Mironov, Dmitrii M. Nikolaev, Maxim S. Panov, Stanislav A. Linnik, Andrey S. Mereshchenko, Vladimir A. Kochemirovsky, Andrey V. Vasin and Mikhail N. Ryazantsev
Int. J. Mol. Sci. 2021, 22(23), 13171; https://doi.org/10.3390/ijms222313171 - 6 Dec 2021
Cited by 3 | Viewed by 3552
Abstract
Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow [...] Read more.
Azobenzene/tetraethyl ammonium photochromic ligands (ATPLs) are photoactive compounds with a large variety of photopharmacological applications such as nociception control or vision restoration. Absorption band maximum and lifetime of the less stable isomer are important characteristics that determine the applicability of ATPLs. Substituents allow to adjust these characteristics in a range limited by the azobenzene/tetraethyl ammonium scaffold. The aim of the current study is to find the scope and limitations for the design of ATPLs with specific spectral and kinetic properties by introducing para substituents with different electronic effects. To perform this task we synthesized ATPLs with various electron acceptor and electron donor functional groups and studied their spectral and kinetic properties using flash photolysis and conventional spectroscopy techniques as well as quantum chemical modeling. As a result, we obtained diagrams that describe correlations between spectral and kinetic properties of ATPLs (absorption maxima of E and Z isomers of ATPLs, the thermal lifetime of their Z form) and both the electronic effect of substituents described by Hammett constants and structural parameters obtained from quantum chemical calculations. The provided results can be used for the design of ATPLs with properties that are optimal for photopharmacological applications. Full article
(This article belongs to the Special Issue Advances in Photopharmacology)
Show Figures

Figure 1

14 pages, 3843 KiB  
Article
Photosensitive Bent-Core Liquid Crystals with Laterally Substituted Azobenzene Unit
by Diana Jágerová, Michal Šmahel, Anna Poryvai, Jan Macháček, Vladimíra Novotná and Michal Kohout
Crystals 2021, 11(10), 1265; https://doi.org/10.3390/cryst11101265 - 18 Oct 2021
Cited by 7 | Viewed by 3345
Abstract
Photosensitive liquid crystals represent an important class of functional materials that experience rapid development. Hereby, we present novel bent-core liquid crystals bearing a lateral substitution on the central core and in the vicinity of the photosensitive unit—an azo group. The azo group enables [...] Read more.
Photosensitive liquid crystals represent an important class of functional materials that experience rapid development. Hereby, we present novel bent-core liquid crystals bearing a lateral substitution on the central core and in the vicinity of the photosensitive unit—an azo group. The azo group enables fast (E)-to-(Z)-isomerization upon irradiation with UV-light and visible light, while the substitution facilitates the high stability of the photochemically formed (Z)-isomer. The effectiveness of the irradiation and the composition of photostationary states was determined by UV/Vis and 1H NMR spectroscopy. A nematic phase formed by the materials was characterized by differential scanning calorimetry and optical polarizing microscopy. We show that the materials easily change their relative configuration of the N=N double bond not only in solution, but also in the mesophase, which leads to fast isothermal phase transition from the nematic phase to isotropic liquid. Full article
(This article belongs to the Special Issue Photosensitive Liquid Crystals)
Show Figures

Graphical abstract

12 pages, 1469 KiB  
Article
Optimization of Hydroperoxide Lyase Production for Recombinant Lipoxygenase Pathway Cascade Application
by Veronika Kazimírová, Viktória Zezulová, Vladimír Krasňan, Vladimír Štefuca and Martin Rebroš
Catalysts 2021, 11(10), 1201; https://doi.org/10.3390/catal11101201 - 1 Oct 2021
Cited by 5 | Viewed by 3450
Abstract
Cis-3-hexenal and its more stable isomer, trans-2-hexenal, are highly valued chemicals used in the food and perfume industries. They are produced by the plant lipoxygenase pathway, where two enzymes, lipoxygenase (LOX) and hydroperoxide lyase (HPL), are involved. However, the application of [...] Read more.
Cis-3-hexenal and its more stable isomer, trans-2-hexenal, are highly valued chemicals used in the food and perfume industries. They are produced by the plant lipoxygenase pathway, where two enzymes, lipoxygenase (LOX) and hydroperoxide lyase (HPL), are involved. However, the application of this pathway is limited, especially due to the instability of HPL. This enzyme belongs to the cytochrome P450 enzyme family and needs heme as a prosthetic group. Its synthesis must be effectively performed by a host organism in order to produce an active protein. In this work, Pseudomonas aeruginosa LOX was expressed in Escherichia coli BL21(DE3), and whole cells were used for the synthesis of 13(S)-hydroperoxy-(Z,E,Z)-9,11,15-octadecatrienoic acid (13-HPOT) as a substrate for HPL. Expression of Psidium guajava HPL was carried out by recombinant E. coli JM109(DE3) in autoinduction media, and the influence of the addition of heme precursors δ-ALA and FeII+ was studied. Specific activity of whole cells expressing HPL was measured by the direct use of a synthesized 13-HPOT solution (2.94 mM of total hydroperoxides, 75.35% of 13-HPOT (2.22 mM)) and increased 2.6-fold (from 61.78 U·mg−1 to 159.95 U·mg−1) with the addition of 1 mM FeII+ to the autoinduction media. Productivity and activity were further enhanced by an increase in the expression temperature, and a total of 3.30·105 U·dm−3 of culture media was produced in the optimized process. Full article
(This article belongs to the Special Issue Biocatalysis for Tasty Food)
Show Figures

Figure 1

17 pages, 2024 KiB  
Article
Sulfur-Containing Compounds: Natural Potential Catalyst for the Isomerization of Phytofluene, Phytoene and Lycopene in Tomato Pulp
by Lulu Ma, Cheng Yang, Xin Jiang, Qun Wang, Jian Zhang and Lianfu Zhang
Foods 2021, 10(7), 1444; https://doi.org/10.3390/foods10071444 - 22 Jun 2021
Cited by 10 | Viewed by 2784
Abstract
The effects of some sulfur-containing compounds on the isomerization and degradation of lycopene, phytofluene, and phytoene under different thermal treatment conditions were studied in detail. Isothiocyanates such as allyl isothiocyanate (AITC) and polysulfides like dimethyl trisulfide (DMTS) had the effect on the configuration [...] Read more.
The effects of some sulfur-containing compounds on the isomerization and degradation of lycopene, phytofluene, and phytoene under different thermal treatment conditions were studied in detail. Isothiocyanates such as allyl isothiocyanate (AITC) and polysulfides like dimethyl trisulfide (DMTS) had the effect on the configuration of PTF (phytofluene), PT (phytoene), and lycopene. The proportion of their naturally occurring Z-isomers (Z1,2-PTF and 15-Z-PT) decreased and transformed into other isomers including all-trans configuration, while Z-lycopene increased significantly after thermal treatment, especially for 5-Z-lycopene. The results showed that increase in heating temperature, time, and the concentration of DMTS and AITC could promote the isomerization reaction effectively to some extent. In addition, 15-Z-PT and the newly formed Z4-PTF were the predominant isomers in tomato at the equilibrium. Unlike the lycopene, which degraded significantly during heat treatment, the isomers of PTF and PT were stable enough to resist decomposition. Moreover, the isomerization of three carotenoids was enhanced, and the bioaccessibility of lycopene increased significantly with the addition of shii-take mushroom containing sulfur compounds, while there was no positive effect observed in that of PTF and PT. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

6 pages, 2297 KiB  
Short Note
(E)-1-(3,4-Dimethoxyphenyl)-2-methyl-3-phenylprop-2-en-1-one: A P-Type Acid-Stable Photochromic α-Methylchalcone
by Banu Öngel, Jörg M. Neudörfl and Axel G. Griesbeck
Molbank 2021, 2021(2), M1226; https://doi.org/10.3390/M1226 - 4 Jun 2021
Viewed by 2761
Abstract
The α-methylated chalcone 3 with an electron-donor substituted A-aryl ring and an unsubstituted B-phenyl ring was synthesized by base-catalyzed aldehyde/acetophenone condensation. Compound 3 can be photo-switched from E→Z by irradiation with long-wavelength light λ > 350 nm, whereas irradiation with shorter wavelengths leads [...] Read more.
The α-methylated chalcone 3 with an electron-donor substituted A-aryl ring and an unsubstituted B-phenyl ring was synthesized by base-catalyzed aldehyde/acetophenone condensation. Compound 3 can be photo-switched from E→Z by irradiation with long-wavelength light λ > 350 nm, whereas irradiation with shorter wavelengths leads to photo-stationary states (PSS) with lower amounts of the Z-isomer. The limiting wavelength for fully equilibrated E⮀Z (PSS = 1) can be achieved around 240 nm. The stability of both E- and Z-isomers at the wavelength-dependent PSS under UV-irradiation between 250 and 350 nm is remarkably high as observed from UV and NMR spectroscopy. Compound 3 is fatigue resistant even after more than 10 days continuous irradiation and is also oxygenation-stable under singlet oxygen sensitization conditions. In remarkable contrast to many other α-methylated chalcones, no change in the E/Z-ratio was detected when PSS samples were treated with Broensted acids. The negative photochromic E→Z switch of 3 is accompanied by a conformational switch from the E-form in its preferred s-trans conformation to the Z-form in a distorted s-cis conformation (Es-c→Zs-t). Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
Structural Relevance of Intramolecular H-Bonding in Ortho-Hydroxyaryl Schiff Bases: The Case of 3-(5-bromo-2-hydroxybenzylideneamino) Phenol
by İsa Sıdır, Yadigar Gülseven Sıdır, Sándor Góbi, Halil Berber and Rui Fausto
Molecules 2021, 26(9), 2814; https://doi.org/10.3390/molecules26092814 - 10 May 2021
Cited by 13 | Viewed by 3373
Abstract
A new Schiff base compound, 3-(5-bromo-2-hydroxybenzylideneamino)phenol (abbreviated as BHAP) was synthesized and characterized by 1H- and 13C- nuclear magnetic resonance and infrared spectroscopies. DFT/B3LYP/6-311++G(d,p) calculations were undertaken in order to explore the conformational space of both the E- and Z [...] Read more.
A new Schiff base compound, 3-(5-bromo-2-hydroxybenzylideneamino)phenol (abbreviated as BHAP) was synthesized and characterized by 1H- and 13C- nuclear magnetic resonance and infrared spectroscopies. DFT/B3LYP/6-311++G(d,p) calculations were undertaken in order to explore the conformational space of both the E- and Z- geometrical isomers of the enol-imine and keto-amine tautomers of the compound. Optimized geometries and relative energies were obtained, and it was shown that the most stable species is the E-enol-imine form, which may exist in four low-energy intramolecularly hydrogen-bonded forms (I, II, V, and VI) that are almost isoenergetic. These conformers were concluded to exist in the gas phase equilibrium with nearly equal populations. On the other hand, the infrared spectra of the compound isolated in a cryogenic argon matrix (10 K) are compatible with the presence in the matrix of only two of these conformers (conformers II and V), while conformers I and VI convert to these ones by quantum mechanical tunneling through the barrier associated with the rotation of the OH phenolic group around the C–O bond. The matrix isolation infrared spectrum was then assigned and interpreted with help of the DFT(B3LYP)/6-311++G(d,p) calculated infrared spectra for conformers II and V. In addition, natural bond orbital (NBO) analysis was performed on the most stable conformer of the experimentally relevant isomeric form (E-enol-imino conformer V) to shed light on details of its electronic structure. This investigation stresses the fundamental structural relevance of the O–H···N intramolecular H-bond in o-hydroxyaryl Schiff base compounds. Full article
(This article belongs to the Special Issue Fundamentals and Applications in Quantum Chemistry)
Show Figures

Figure 1

14 pages, 6647 KiB  
Article
Z,E-Isomerism in a Series of Substituted Iminophosphonates: Quantum Chemical Research
by Alexander B. Rozhenko, Andrey A. Kyrylchuk, Yuliia O. Lapinska, Yuliya V. Rassukana, Vladimir V. Trachevsky, Volodymyr V. Pirozhenko, Jerzy Leszczynski and Petro P. Onysko
Organics 2021, 2(2), 84-97; https://doi.org/10.3390/org2020008 - 23 Apr 2021
Cited by 4 | Viewed by 4380
Abstract
Esters of iminophosphonic acids (iminophosphonates, or IPs), including a fragment, >P(=O)-C=N, can be easily functionalized, for instance to aminophosphonic acids with a wide range of biological activity. Depending on the character of the substitution, the Z- or E-configuration is favorable for IPs, which [...] Read more.
Esters of iminophosphonic acids (iminophosphonates, or IPs), including a fragment, >P(=O)-C=N, can be easily functionalized, for instance to aminophosphonic acids with a wide range of biological activity. Depending on the character of the substitution, the Z- or E-configuration is favorable for IPs, which in turn can influence the stereochemistry of the products of chemical transformations of IPs. While the Z,E-isomerism in IPs has been thoroughly studied by NMR spectroscopy, the factors stabilizing a definite isomer are still not clear. In the current work, density functional theory (DFT, using M06-2X functional) and ab initio spin-component–scaled second-order Møller–Plesset perturbation theory (SCS-MP2) calculations were carried out for a broad series of IPs. The calculations reproduce well a subtle balance between the preferred Z-configuration inherent for C-trifluoromethyl substituted IPs and the E-form, which is more stable for C-alkyl- or aryl-substituted IPs. The predicted trend of changing activation energy values agrees well with the recently determined experimental ΔG298 magnitudes. Depending on the substitution in the aromatic moiety, the Z/E-isomerization of N-aryl-substituted IPs proceeds via two types of close-in energy transition states. Not a single main factor but a combination of various contributions should be considered in order to explain the Z/E-isomerization equilibrium for different IPs. Full article
Show Figures

Figure 1

20 pages, 6182 KiB  
Article
Photoswitchable Azo- and Diazocine-Functionalized Derivatives of the VEGFR-2 Inhibitor Axitinib
by Linda Heintze, Dorian Schmidt, Theo Rodat, Lydia Witt, Julia Ewert, Malte Kriegs, Rainer Herges and Christian Peifer
Int. J. Mol. Sci. 2020, 21(23), 8961; https://doi.org/10.3390/ijms21238961 - 25 Nov 2020
Cited by 32 | Viewed by 5589
Abstract
In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib’s stilbene-like double bond is unidirectional in [...] Read more.
In this study, we aimed at the application of the concept of photopharmacology to the approved vascular endothelial growth factor receptor (VEGFR)-2 kinase inhibitor axitinib. In a previous study, we found out that the photoisomerization of axitinib’s stilbene-like double bond is unidirectional in aqueous solution due to a competing irreversible [2+2]-cycloaddition. Therefore, we next set out to azologize axitinib by means of incorporating azobenzenes as well as diazocine moieties as photoresponsive elements. Conceptually, diazocines (bridged azobenzenes) show favorable photoswitching properties compared to standard azobenzenes because the thermodynamically stable Z-isomer usually is bioinactive, and back isomerization from the bioactive E-isomer occurs thermally. Here, we report on the development of different sulfur–diazocines and carbon–diazocines attached to the axitinib pharmacophore that allow switching the VEGFR-2 activity reversibly. For the best sulfur–diazocine, we could verify in a VEGFR-2 kinase assay that the Z-isomer is biologically inactive (IC50 >> 10,000 nM), while significant VEGFR-2 inhibition can be observed after irradiation with blue light (405 nm), resulting in an IC50 value of 214 nM. In summary, we could successfully develop reversibly photoswitchable kinase inhibitors that exhibit more than 40-fold differences in biological activities upon irradiation. Moreover, we demonstrate the potential advantage of diazocine photoswitches over standard azobenzenes. Full article
(This article belongs to the Special Issue Protein Kinases: Function, Substrates, and Implication in Diseases)
Show Figures

Graphical abstract

14 pages, 979 KiB  
Article
Highly Efficient and Reusable Alkyne Hydrosilylation Catalysts Based on Rhodium Complexes Ligated by Imidazolium-Substituted Phosphine
by Olga Bartlewicz, Magdalena Jankowska-Wajda and Hieronim Maciejewski
Catalysts 2020, 10(6), 608; https://doi.org/10.3390/catal10060608 - 1 Jun 2020
Cited by 9 | Viewed by 3928
Abstract
Rhodium complexes ligated by imidazolium-substituted phosphine were used as catalysts in the hydrosilylation of alkynes (1-heptyne, 1-octyne, and phenylacetylene) with 1,1,1,3,5,5,5-heptamethyltrisiloxane (HMTS) or triethylsilane (TES). In all cases, the above complexes showed higher activity and selectivity compared to their precursors ([Rh(PPh3) [...] Read more.
Rhodium complexes ligated by imidazolium-substituted phosphine were used as catalysts in the hydrosilylation of alkynes (1-heptyne, 1-octyne, and phenylacetylene) with 1,1,1,3,5,5,5-heptamethyltrisiloxane (HMTS) or triethylsilane (TES). In all cases, the above complexes showed higher activity and selectivity compared to their precursors ([Rh(PPh3)3Cl] and [{Rh(µ-Cl)(cod)}2]). In the reactions with aliphatic alkynes (both when HMTS and TES were used as hydrosilylating agents), β(Z) isomer was mainly formed, but, in the reaction of phenylacetylene with TES, the β(E) product was formed. The catalysts are very durable, stable in air and first and foremost insoluble in the reactants which facilitated their isolation and permitted their multiple use in subsequent catalytic runs. They make a very good alternative to the commonly used homogeneous catalysts. Full article
(This article belongs to the Special Issue Ionic Liquids in Catalysis)
Show Figures

Graphical abstract

19 pages, 5911 KiB  
Article
Sequence-Specific DNA Binding by Noncovalent Peptide–Azocyclodextrin Dimer Complex as a Suitable Model for Conformational Fuzziness
by Zulma B. Quirolo, M. Alejandra Sequeira, José C. Martins and Verónica I. Dodero
Molecules 2019, 24(13), 2508; https://doi.org/10.3390/molecules24132508 - 9 Jul 2019
Cited by 6 | Viewed by 5121
Abstract
Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, [...] Read more.
Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions. Full article
(This article belongs to the Special Issue The Fuzziness in Molecular, Supramolecular, and Systems Chemistry)
Show Figures

Graphical abstract

11 pages, 2644 KiB  
Article
Preparation of Cyano-Substituted Tetraphenylethylene Derivatives and Their Applications in Solution-Processable OLEDs
by Xiaoyi Sun, Lele Zhao, Xiao Han, Hui Liu, Yu Gao, Yanchun Tao, Haiquan Zhang, Bing Yang and Ping Lu
Molecules 2018, 23(1), 190; https://doi.org/10.3390/molecules23010190 - 17 Jan 2018
Cited by 8 | Viewed by 5938
Abstract
Creation of organic luminescent materials with high solid-state efficiency is of vital importance for their applications in optoelectronic fields. Here, a series of AIE luminogens (AIE gens), (Z)-2,3-bis(4-(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)phenyl)-3-phenylacrylonitrile (SFC), and 2,3-bis(4-(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)phenyl)fumaronitrile (DFC), [...] Read more.
Creation of organic luminescent materials with high solid-state efficiency is of vital importance for their applications in optoelectronic fields. Here, a series of AIE luminogens (AIE gens), (Z)-2,3-bis(4-(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)phenyl)-3-phenylacrylonitrile (SFC), and 2,3-bis(4-(9,9-bis(6-(9H-carbazol-9-yl)hexyl)-9H-fluoren-2-yl)phenyl)fumaronitrile (DFC), utilizing 2,3,3-triphenylacrylonitrile and 2,3-diphenylfumaronitrile as respective centers, are designed and synthesized by Suzuki coupling reactions with high yields. The cis- and trans-isomers of DFC are also successfully obtained. All of them are thermally stable and show good solubility in common organic solvents. They all emit weakly in solution, but become strong emitters when fabricated into solid films. It is found introduction of one additional cyano group in DFC induced a big red-shift in solid-state emission, owing to its high electron-withdrawing ability. The cis- and trans-DFC show similar photophysical and Cyclic voltammogram (CV) behaviors. Non-doped solution-processed organic light-emitting diodes (OLEDs) using the three compounds as light-emitting layers are fabricated. SFC gives the best device performance with a maximum luminance of 5201 cd m−2, a maximum current efficiency of 3.67 cd A−1 and a maximum external quantum efficiencies (EQE) of 1.37%. Red-shifted EL spectra are observed for cis- and trans-DFC-based device, and the OLED using trans-DFC as active layer exhibits better performance, which might derive from their different conformation in film state. Full article
Show Figures

Figure 1

9 pages, 1071 KiB  
Article
Visible-Light Photocatalytic E to Z Isomerization of Activated Olefins and Its Application for the Syntheses of Coumarins
by Kun Zhan and Yi Li
Catalysts 2017, 7(11), 337; https://doi.org/10.3390/catal7110337 - 9 Nov 2017
Cited by 48 | Viewed by 10740
Abstract
Photocatalytic isomerization of thermodynamically stable E-alkene to less stable Z-alkene has been the subject of numerous studies, being successfully achieved mainly under UV irradiation. Recent development of visible light photoredox catalysis has witnessed it emerging as a powerful tool for the [...] Read more.
Photocatalytic isomerization of thermodynamically stable E-alkene to less stable Z-alkene has been the subject of numerous studies, being successfully achieved mainly under UV irradiation. Recent development of visible light photoredox catalysis has witnessed it emerging as a powerful tool for the access of new structural complexity and many challenging targets. Herein, we report a visible light-promoted E to Z isomerization of cinnamates. When E-isomer of cinnamates was irradiated with blue light in the presence of an organo-photocatalyst, fac-Ir(ppy)3, Z-isomer was exclusively obtained in high yields and with good selectivity. The mild, convenient reaction condition has made this protocol an effective synthetic methodology, which was subsequently implemented in an efficient synthesis of coumarins. Full article
Show Figures

Scheme 1

Back to TopTop