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Abstract: The α-methylated chalcone 3 with an electron-donor substituted A-aryl ring and an
unsubstituted B-phenyl ring was synthesized by base-catalyzed aldehyde/acetophenone conden-
sation. Compound 3 can be photo-switched from E→Z by irradiation with long-wavelength light
λ > 350 nm, whereas irradiation with shorter wavelengths leads to photo-stationary states (PSS) with
lower amounts of the Z-isomer. The limiting wavelength for fully equilibrated E�Z (PSS = 1) can be
achieved around 240 nm. The stability of both E- and Z-isomers at the wavelength-dependent PSS
under UV-irradiation between 250 and 350 nm is remarkably high as observed from UV and NMR
spectroscopy. Compound 3 is fatigue resistant even after more than 10 days continuous irradiation
and is also oxygenation-stable under singlet oxygen sensitization conditions. In remarkable contrast
to many other α-methylated chalcones, no change in the E/Z-ratio was detected when PSS samples
were treated with Broensted acids. The negative photochromic E→Z switch of 3 is accompanied by
a conformational switch from the E-form in its preferred s-trans conformation to the Z-form in a
distorted s-cis conformation (Es-c→Zs-t).

Keywords: photochromism; chalcones; quantum yields; photo-switch

1. Introduction

Photochromic molecules have a long tradition in history of chemistry [1]. Initially only
an optical curiosity, photochromism developed into a highly productive and technically
applicable phenomenon [2]. Compounds that behave photochromically are currently used
in very different fields of applications ranging from photo-pharmacology [3–5], signaling,
and sensing to information storage materials [6–9]. The general concept is the light-induced
unimolecular switch of a molecule to a thermodynamically less stable configurational or
constitutional isomer that is coupled with a back reaction that can be also light-induced or
purely thermal [7]. Variations that are more complex in applications involve bimolecular
processes, such as the addition or release of singlet oxygen [8]. Possible mechanisms for the
return process to the initial states beside photochemical (P-type) and thermal (T-type) are
Lewis- or Broensted-acid catalysis or changes in solvent properties, ion strength, or other
physical parameters [9,10]. The structurally most versatile processes are cis/trans (E/Z)
photo-switches that can involve CC-, CN-, or NN-double bonds as central switching units
(alkenes, imines, azo compounds) [11,12]. A typical example for a P-type E�Z-switch with
biological relevance is shown in Scheme 1 [13]: E-chalcone 1 shows antitumor-activities
that are largely increased in the Z-configuration. A strong increase in pharmacological
properties was also described for the electronic ground states of α-methylated chalcones in
comparison with the non-methylated analogs [14]. We became therefore interested in photo-
switch properties of these α-methylated chalcones [15] and their stability against singlet
oxygen, a reactive oxygen species that often increases system fatigue in the photo-switching
processes [16].
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Scheme 1. The four relevant E/Z-photo-switch chromophores and a photochromic chalcone 1 with 
configurationally dependent biological activities: an example for photo-pharmacology. 

The target molecule 3 that is described here in detail has a special feature: two elec-
tronically highly differentiated aryl groups that were initially expected to lead to red-
shifted absorption and higher PSS because of better spectral separation of the two config-
urational isomers. We have recently determined PSS for different donor-substituted and 
donor, acceptor-substituted α-methylated chalcones [16] and found relatively high Z/E-
PSS (60:40 to 76:25) for all compounds using 350 nm excitation. From these wavelength-
dependent PSS switching back to the E-configuration could be realized by treatment with 
Broensted acids. 

2. Results 
2.1. Synthesis and Structure of the α-Methyl Chalcone 2 

The synthesis of 3 is conducted by a classical aldol condensation route in moderate 
yields (Scheme 2). The reaction proceeds exceedingly slowly (average reaction time at 
room temperature several days) possibly due to the lower acidity of the α-CH component. 
The condensation following aldol addition is highly diastereoselective and the E-isomer 
is formed with 95% diastereoselectivity (>99% after one recrystallization). 

 
Scheme 2. Aldol condensation route to diastereoisomerically pure chalcone E-3. 

From the NMR analyses, the preferred conformation of E-3 could be estimated: the 
decisive 1H chemical shift of the ß-H of 7.1 ppm is indicatively shifted to lower fields in 
comparison with the ß-H in the parent E-chalcone (E-4, 7.8 ppm, Scheme 3). This interpre-
tation is also supported by the crystal structure analysis of 3 (Figure 1). We have recently 
determined by DFT computations that the E-isomers of α-methyl chalcones are preferen-
tially in s-trans configuration avoiding additional Aryl/Me steric strain. The Z-isomer of 3 
is distorted from planarity due to the strong Ar/Ar-π-repulsion which is in excellent 
agreement with the 50 nm blue-shift observed during E→Z-photoisomerization (vide in-
fra). 

Scheme 1. The four relevant E/Z-photo-switch chromophores and a photochromic chalcone 1 with
configurationally dependent biological activities: an example for photo-pharmacology.

The target molecule 3 that is described here in detail has a special feature: two
electronically highly differentiated aryl groups that were initially expected to lead to
red-shifted absorption and higher PSS because of better spectral separation of the two
configurational isomers. We have recently determined PSS for different donor-substituted
and donor, acceptor-substituted α-methylated chalcones [16] and found relatively high
Z/E-PSS (60:40 to 76:25) for all compounds using 350 nm excitation. From these wavelength-
dependent PSS switching back to the E-configuration could be realized by treatment with
Broensted acids.

2. Results
2.1. Synthesis and Structure of the α-Methyl Chalcone 2

The synthesis of 3 is conducted by a classical aldol condensation route in moderate
yields (Scheme 2). The reaction proceeds exceedingly slowly (average reaction time at
room temperature several days) possibly due to the lower acidity of the α-CH component.
The condensation following aldol addition is highly diastereoselective and the E-isomer is
formed with 95% diastereoselectivity (>99% after one recrystallization).
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Scheme 2. Aldol condensation route to diastereoisomerically pure chalcone E-3.

From the NMR analyses, the preferred conformation of E-3 could be estimated: the
decisive 1H chemical shift of the ß-H of 7.1 ppm is indicatively shifted to lower fields
in comparison with the ß-H in the parent E-chalcone (E-4, 7.8 ppm, Scheme 3). This
interpretation is also supported by the crystal structure analysis of 3 (Figure 1). We have
recently determined by DFT computations that the E-isomers of α-methyl chalcones are
preferentially in s-trans configuration avoiding additional Aryl/Me steric strain. The Z-
isomer of 3 is distorted from planarity due to the strong Ar/Ar-π-repulsion which is in
excellent agreement with the 50 nm blue-shift observed during E→Z-photoisomerization
(vide infra).
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Figure 1. Structure of the α-methyl E-chalcone 3 (s-trans configuration) in the crystal. 
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Scheme 3. Configurational and conformational switching of the α-methyl chalcone 3 and the parent 
chalcone 4. 

2.2. E/Z-Photoswitching, PSS, and PSS-Stability of the α-Methyl Chalcone 3 
The photochromic behavior of 3 was studied in diluted acetonitrile solutions using 

different excitation wavelengths. As shown in Figure 2 for 350 nm excitation, the UV-ab-
sorption of 3 is rapidly changing after few seconds with hypochromic shifts at 290 and 270 
nm (negative photochromism [17]) and an isosbestic point at 258 nm. No further changes 
in the absorption spectrum could be observed after 1 min and prolonged irradiation for 
several hours did not lead to further changes. 
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Scheme 3. Configurational and conformational switching of the α-methyl chalcone 3 and the parent
chalcone 4.
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Figure 1. Structure of the α-methyl E-chalcone 3 (s-trans configuration) in the crystal.

2.2. E/Z-Photoswitching, PSS, and PSS-Stability of the α-Methyl Chalcone 3

The photochromic behavior of 3 was studied in diluted acetonitrile solutions using
different excitation wavelengths. As shown in Figure 2 for 350 nm excitation, the UV-
absorption of 3 is rapidly changing after few seconds with hypochromic shifts at 290
and 270 nm (negative photochromism [17]) and an isosbestic point at 258 nm. No further
changes in the absorption spectrum could be observed after 1 min and prolonged irradiation
for several hours did not lead to further changes.
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Figure 2. Irradiation at 350 nm of a 10−5 M solution of the α-methyl chalcone 3 in acetonitrile
solutions. The photostationary equilibrium (E/Z = 35:65) is reached is less than 1 min. Negative
photochromism is apparent from the bleaching of the 300 nm absorption and hyperchromic shift at
230 nm.
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From the UV-absorption analyses at different excitation wavelengths and quantum
yield determinations at 344 nm, the data shown in Table 1 resulted. The PSS that were
determined by NMR spectroscopy (see Figure 3) approach unity at shorter wavelength.
The low PSS makes compound 3 not a useful representative of the α-methylated chalcones
which usually can be switched to PSS > 29:71, e.g., compound 5 [16] and, more important,
back-switched to the initial E/Z-mixture be treatment with Broensted acids (Scheme 4, [16]).
The quantum yields for forward and backward switching for compound 3 were determined
by the QYD-system as developed by Riedle and coworkers [18]. The Z→E switch process is
more efficient than the E→Z switch at 344 nm and the PSS originates from the differences in
ελ for the E- and Z-isomers, respectively, following the relation PPS = [ελ (E) × Φλ

E→Z/ελ

(Z) × Φλ
Z→E].

Table 1. Excitation wavelength, PSS, forward–backward photoisomerization quantum yields Φ.

Excitation Wavelength λex [nm] PSS [E/Z Ratio, %] ΦE→Z
1 ΦZ→E

1

254 46:54 - -
300 40:60 - -
350 35:65 0.18 0.64

1 Quantum yields for 344 nm irradiation were determined by the Riedle-QYDS [17].
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Figure 3. Long-time irradiation of the α-methyl chalcone 3 with 350 nm light in acetonitrile solutions,
c = 10−4 M. The PSS (E/Z = 35:65) is reached after approx. 6 h. No degradation (<2%) is detectable
even after > 11 days of continuous irradiation.
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Molbank 2021, 2021, M1226 5 of 6

3. Materials and Methods
1H-NMR spectra were recorded on a Bruker Avance 300 or on a Bruker Avance 500

spectrometer (Bruker, Ettlingen, Germany) instruments operating at 500 MHz. Chemical
shifts are reported as δ in ppm and the coupling constants J in Hz units. In all spectra, the
solvent peaks were used as the internal standard. Solvents used were CDCl3 (δ = 7.24 ppm)
and MeOH-d4 (δ = 3.35, 4.78 ppm). Splitting patterns are designated as follows: s, singlet;
d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; the 13C-NMR spectra were recorded
either on a Bruker Avance 300 spectrometer instrument operating at 75 MHz, or on a
Bruker Avance 500 spectrometer instrument operating at 125 MHz. High-resolution mass
spectra (HR-MS) were recorded on a Finnigan MAT 900 spectrometer (Scientific Instrument
Services, Ringoes, NJ, USA) and measured for the molecular ion peak (M+). IR spectra were
obtained on a Si crystal Fourier-Transform spectrometer by Thermo Scientific (Nicolet 380
FT-IR). Absorption spectra were recorded on a Perkin-Elmer Lambda 35. The samples were
placed into quartz cells of 1 cm path length. All samples were measured in a concentration
of 10−5 M in acetonitrile.

Synthesis of (E)-1-(3,4-dimethoxyphenyl)-2-methyl-3-phenylprop-2-en-1-one (3). 1.50 g
(7.72 mmol, 1.0 eq.) of dimethoxypropiophenone (2) and 0.83 mL (8.11 mmol, 1.05 eq.)
of benzaldehyde were dissolved in a mixture of 20 mL of ethanol and 10 mL of water,
treated 2.78 mL of a 10% aqueous NaOH-Lösung and stirred for 5 d at room temperature.
Extraction with methylene chloride, washing with 1N aqueous HCl, drying and solvent
evaporation followed by column chromatography (cHex:EtOAc, 10:1) delivered the chal-
cone 3 in 33% yield as slightly yellow needles, m.p. 81–82 ◦C. C18H18O3 (282.34 g/mol)
(300 MHz, CDCl3): δ (ppm) = 7.47–7.41 (m, 6H, H-5, H-6, H-8, H-9, H-11, H-15), 7.38–7.33
(m, 1H, H-7), 7.14 (d, J = 1.2 Hz, 1H, H-3), 6.91 (d, J = 8.1 Hz, 1H, H-14), 3.97 (d, J = 5.7 Hz,
6H, H-17, H-18), 2.29 (d, J = 1.4 Hz, 3H, H-16). (75 MHz, CDCl3): δ (ppm) = 198.3 (s, C-1),
152.6 (s, C-13), 148.9 (s, C-12), 139.9 (s, C-3), 136.9 (s, C-2), 135.9 (s, C-4), 130.7 (s, C-10),
129.7 (d, C-6, C-8), 128.5 (d, C-5, C-9), 128.4 (d, C-7), 124.4 (d, C-15), 112.1 (d, C-11), 109.8
(d, C-14), 56.1 (q, C-18), 56.0 (q, C-17), 15.0 (q, C-16). ṽ (cm−1) = 3073 (w), 2965 (w), 2934
(w), 2902 (w), 2837 (w), 1631 (m), 1594 (m), 1581 (m), 1510 (m), 1447 (w), 1412 (w), 1356
(w), 1302 (w), 1263 (s), 1226 (m), 1179 (w), 1132 (m), 1022 (s), 947 (w), 879 (m), 849 (m),
766 (s), 745 (m), 722 (m), 699 (m), 657 (w), 598 (w), 527 (w). Calculated mass [M − H]+

= 283.1328710 [M − Na]+ = 305.1148156 determined mass (amu): [M − H]+ = 283.13329
[M − Na]+ = 305.11542.

Supplementary Materials: The following data are available online, Figures S1–S6: Chalcone 3: X-ray
ellipsoid picture, ball and stick picture, 1H-NMR, 13C-NMR, and IR spectra, MS analysis, Table S1:
data for X-ray structure analysis [19].
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