Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,587)

Search Parameters:
Keywords = stabilization rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3115 KB  
Article
Leakage-Proof and High-Conductivity Composite Phase Change Material Using Low-Melting-Point-Alloy-Encapsulated Copper Foam/Paraffin for Superior Thermal Homogeneity in Lithium-Ion Battery Modules
by Shengzhi He, Jiajun Zhao, Dongxu Ouyang and Mingyi Chen
Materials 2025, 18(19), 4604; https://doi.org/10.3390/ma18194604 (registering DOI) - 4 Oct 2025
Abstract
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM [...] Read more.
Ensuring thermal stability is a major concern in lithium-ion battery systems. Although phase change materials (PCMs) provide a passive approach for temperature regulation, they are limited by poor heat conduction and potential leakage during phase transitions. This study develops a novel composite PCM (CPCM) using paraffin (PA) as the matrix, copper foam (CF) as a conductive skeleton (10–30 pores per inch, PPI), and a low-melting-point alloy (LMA) as an encapsulant to prevent leakage. The effects of CF pore size on thermal conductivity, impregnation ratio, and leakage resistance were systematically investigated. Results show that CPCM with 10 PPI CF achieved the highest thermal conductivity (4.42 W·m−1·K−1), while LMA encapsulation effectively eliminated leakage. The thermal management performance was evaluated on both a single 18,650 LIB cell and a 2S2P module during rate discharging at 1C, 2C, and 3C. For the module at 3C, the 10 PPI CPCM significantly lowered the maximum temperature from 75.9 °C to 44.6 °C and critically reduced the maximum temperature difference between cells from 10.2 °C to a safe level of 1.2 °C, significantly improving temperature uniformity. This work provides a high-conductivity and leakage-proof CPCM solution based on LMA-encapsulated CF/PA for enhanced thermal safety and uniformity in LIB modules. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

21 pages, 413 KB  
Article
Hormonal Therapy Patterns in Older Men with Prostate Cancer in the United States, 2010–2019
by Mohanad Albayyaa, Yong-Fang Kuo, Vahakn Shahinian, David S. Lopez, Biai Digbeu, Randall Urban and Jacques Baillargeon
Cancers 2025, 17(19), 3231; https://doi.org/10.3390/cancers17193231 (registering DOI) - 4 Oct 2025
Abstract
Importance: Understanding trends in the use of hormonal therapy (HT) for prostate cancer (PCa) is crucial to optimize treatment strategies, particularly for older men with locally advanced and metastatic disease. Objective: To evaluate changes in the patterns of adjuvant and primary HT [...] Read more.
Importance: Understanding trends in the use of hormonal therapy (HT) for prostate cancer (PCa) is crucial to optimize treatment strategies, particularly for older men with locally advanced and metastatic disease. Objective: To evaluate changes in the patterns of adjuvant and primary HT use over time in older U.S. men diagnosed with locally advanced and metastatic prostate cancer. Design, Setting, and Participants: This cohort study utilized SEER-Medicare data, which covers approximately 48% of the U.S. population and links cancer registry data with Medicare claims, including 149,515 men aged ≥66 years diagnosed with PCa between 2010 and 2019. We analyzed trends in the use of adjuvant HT for higher-risk and primary HT for lower-risk PCa. Multivariable logistic regression models were used to adjust for clinical and demographic factors. Main Outcomes and Measures: The primary outcome was the proportion of men receiving any form of HT within 6 months of PCa diagnosis. HT included injectable Gonadotropin-releasing hormone (GnRH) agonists and antagonists, orchiectomy, and anti-androgens agents. Results: The rate of adjuvant HT in higher-risk PCa patients increased significantly from 53.6% in 2010 to 68.1% in 2019 (p < 0.0001), with a steady rise in the last four years. In contrast, the rate of men with lower-risk disease receiving primary HT declined from 25% in 2010 to 16.9% in 2013, then peaked at 28.2% in 2015, and stabilized between 25% and 27.3% from 2017 to 2019. The overall HT usage increased from 33.5% in 2010 to 45.2% in 2019, showing a consistent increase over the years. These patterns persisted after adjusting for clinical and demographic factors. Conclusions and Relevance: The increasing use of adjuvant HT in higher-risk PCa patients aligns with evolving treatment guidelines, while the stable rate of primary HT in lower-risk patients represents persistent inappropriate use and highlights the need for further efforts to optimize treatment choices. While previous studies focused on men with intermediate-risk PCa receiving radiation therapy, our study broadens the scope to include men who did not undergo radiation therapy, providing a more inclusive view of HT trends. Future research should focus on refining strategies to reduce inappropriate primary HT use and improve adjuvant HT administration. Full article
(This article belongs to the Section Cancer Therapy)
15 pages, 963 KB  
Article
Phytoremediation of Meta-Cresol by Sunflower: Tolerance of Plant and Removal of M-Cresol
by Hui Li, Shuai Su, Yujia Jiang, Hong Chen, Liudong Zhang, Yi Li, Shengguo Ma, Jiaxin Liu, Haitao Li, Degang Fu, Kun Li and Huicheng Xie
Toxics 2025, 13(10), 845; https://doi.org/10.3390/toxics13100845 - 3 Oct 2025
Abstract
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus [...] Read more.
Meta-cresol (m-cresol) is highly corrosive and toxic, and is widely present in industrial wastewater. As a pollutant, it adversely affects various aspects of human production and daily life. To evaluate the feasibility of using sunflowers to remediate m-cresol-contaminated wastewater, this study used Helianthus annuus L. as the test subject to analyze its tolerance and the wastewater purification efficiency under different m-cresol concentrations. The results showed that the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and light energy utilization efficiency (LUE) of Helianthus annuus L. exhibited an overall decreasing trend, while the intercellular CO2 concentration (Cᵢ) initially increased and subsequently decreased with increasing m-cresol concentration. When m-cresol concentration reached or exceeded 60 mg·L−1, the net photosynthetic rate and intercellular CO2 concentration in the leaves showed opposite trends with further increases in m-cresol stress. The inhibition of net photosynthesis in sunflowers by m-cresol was mainly attributed to non-stomatal factors. The maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), PSII excitation energy partition coefficient (α), and the fraction of absorbed light energy used for photochemistry (P) all decreased with increasing m-cresol concentration. In contrast, non-photochemical quenching (NPQ), the quantum yield of regulated energy dissipation [Y(NPQ)], and the fraction of energy dissipated as heat through the antenna (D) first increased and then decreased. Under low-concentration m-cresol stress, sunflowers protected their photosynthetic system by dissipating excess light energy as heat as a stress response. However, high concentrations of m-cresol caused irreversible damage to Photosystem II (PSII) in sunflowers. Under m-cresol stress, chlorophyll a exhibited strong stability with minimal degradation. As the m-cresol concentration increased from 30 to 180 mg·L−1, the removal rate decreased from 84.91% to 11.84%. In conclusion, sunflowers show good remediation potential for wastewater contaminated with low concentrations of m-cresol and can be used for treating m-cresol wastewater with concentrations ≤ 51.9 mg·L−1. Full article
19 pages, 2480 KB  
Article
Evolutionary Dynamics of Oncosuppression Under Selection Pressure
by Mikhail Potievskiy, Peter A. Shatalov, Ilya Klabukov, Dmitrii Atiakshin, Anna Yakimova, Denis Baranovskii, Peter V. Shegai and Andrey D. Kaprin
Life 2025, 15(10), 1556; https://doi.org/10.3390/life15101556 - 3 Oct 2025
Abstract
Background and Objectives: Changes in the environment and physiology may be associated with an increased or decreased risk of cancer. Our study aims to evaluate the strength and the direction of the selection acting on oncosuppressor genes in association with phenotypic changes. Methods: [...] Read more.
Background and Objectives: Changes in the environment and physiology may be associated with an increased or decreased risk of cancer. Our study aims to evaluate the strength and the direction of the selection acting on oncosuppressor genes in association with phenotypic changes. Methods: We calculated the relative evolutionary rate (RER) using the converge method and linear regression on branches of phylogenetic trees. The association between changes in the evolutionary rate of oncosuppressors (DNA repair and cell cycle control genes) and trait selection was studied. The evolutionary rates of single oncosuppressor genes and pathways were evaluated. We studied two types of traits: those that are characteristic of vertebrates, such as homeothermy (the ability to maintain a constant body temperature), flight, and amnions; and those that are characteristic of mammals, such as high body mass and lifespan, an underground lifestyle, and hibernation. The analysis included 19,445 genes; 100 vertebrates and 46 mammalian species. We studied ancestral branches individually and all the clades having a trait. Results: Oncosuppressor genes accelerated in association with the ability to fly; p-value = 0.03 (positive or relaxed negative selection) and decelerated in homeothermic species; p-value = 0.04 (stabilizing selection). DNA repair genes were significantly accelerated in ancestral branches and in all clades of amniotic, homeothermic, and high-body-mass mammals (p-value < 0.05, FDR correction). Cell cycle control genes were under stabilizing selection in homeothermic animals, high-body-mass, long-lived, and underground mammals (p-value < 0.05, FDR correction). Data on the evolution of oncosuppressors are crucial for understanding the origin of cancer and will be important for future studies of tumor pathogenesis, pathomorphosis, and microevolution. Conclusions: The selection of traits associated with changes in cancer risk leads to positive/relaxed negative and stabilizing selection of oncosuppressor genes. Full article
(This article belongs to the Special Issue Advances in Integrative Omics Data Analysis for Cancer Research)
Show Figures

Figure 1

15 pages, 288 KB  
Case Report
A Single-Team Case Study of Corrective Exercises for Upper-Extremity Injuries and Movement Dysfunction in Collegiate Swimmers
by Kristen G. Quigley, Madison Fenner, Philip Pavilionis and Nicholas G. Murray
Sports 2025, 13(10), 349; https://doi.org/10.3390/sports13100349 - 3 Oct 2025
Abstract
Swimming research has determined that rounded shoulders, forward head, and scapular dyskinesis are common imbalances that may lead to injury without correction. This case study aimed to evaluate a preventative exercise program designed to reduce injuries, correct postural deviations, and improve shoulder function [...] Read more.
Swimming research has determined that rounded shoulders, forward head, and scapular dyskinesis are common imbalances that may lead to injury without correction. This case study aimed to evaluate a preventative exercise program designed to reduce injuries, correct postural deviations, and improve shoulder function over one collegiate swimming season. Twenty female NCAA Division I swimmers (average age = 21.6 ± 1.3 years) participated over 25 weeks, completing pre-, mid-, and post-season assessments of injury rates, shoulder range of motion, and stability using standardized tests. Injuries were included as diagnosed and reported by an athletic trainer. Testing included internal rotation, external rotation, the Hawkins-Kennedy test, Neer’s sign, Sulcus sign, and the Closed Kinetic Chain Upper-Extremity Stability Test (CKCUEST). Compared to the season prior with no intervention, swimmers who completed the program were 44% less likely to sustain an upper-extremity injury, as assessed from the CKCUEST scores (p < 0.01 for all metrics), shoulder internal rotation (p < 0.01 for both shoulders), and total range of motion (p < 0.01 for both shoulders). These findings suggest that a targeted corrective exercise program can effectively reduce injury rates and improve shoulder mobility and function in collegiate athletes. The interpretation of these results is limited by the study’s non-randomized design and absence of a control group. Full article
(This article belongs to the Special Issue Science and Medicine in Swimming)
24 pages, 4210 KB  
Article
Influence of Mineral Fillers on the Curing Process and Thermal Degradation of Polyethylene Glycol Maleate–Acrylic Acid-Based Systems
by Gulsym Burkeyeva, Anna Kovaleva, Danagul Muslimova, David Havlicek, Abylaikhan Bolatbay, Yelena Minayeva, Aiman Omasheva, Elmira Zhakupbekova and Margarita Nurmaganbetova
Polymers 2025, 17(19), 2675; https://doi.org/10.3390/polym17192675 - 3 Oct 2025
Abstract
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at [...] Read more.
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)–based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at 20 °C can be described by the modified Kamal autocatalytic model; the critical degree of conversion (αc) decreases with increasing content of the unsaturated polyester pEGM and in the presence of fillers. In particular, for unfilled systems, αc was 0.77 for pEGM45 and 0.60 for pEGM60. TGA results demonstrated that higher pEGM content and the incorporation of fillers lead to increased thermal stability and residual mass, along with a reduction in the maximum decomposition rate (dTGₘₐₓ). Calculations using the Kissinger–Akahira–Sunose and Friedman methods also confirmed an increase in the activation energy of thermal degradation (Ea): EKAS was 419 kJ/mol for pEGM45 and 470 kJ/mol for pEGM60, with the highest values observed for pEGM60 systems with fillers (496 kJ/mol for SiO2 and 514 kJ/mol for CaCO3). Rheological studies employing three-interval thixotropy tests revealed the onset of thixotropic behavior upon filler addition and an increase in structure recovery after deformation of up to 56%. These findings underscore the potential of pEGM-based systems for low-temperature curing and for the design of composite materials with improved thermal resistance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

11 pages, 1143 KB  
Communication
Development of Nanobody-Based Sandwich ELISA Resistant to SpA Interference for Sensitive Detection of Staphylococcal Enterotoxin A
by Chenghao Hu, Di Wang, Yangwei Ou, Ruoyu Li, Qi Chen and Peng Liu
Biosensors 2025, 15(10), 666; https://doi.org/10.3390/bios15100666 - 3 Oct 2025
Abstract
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% [...] Read more.
Staphylococcus aureus is a major pathogen responsible for staphylococcal food poisoning (SFP), with its pathogenicity primarily dependent on staphylococcal enterotoxins (SEs). Among these, staphylococcal enterotoxin A (SEA) is a critical risk factor due to its high toxicity, high detection rate (accounting for 80% of SFP cases), strong thermal stability, and resistance to hydrolysis. Traditional SEA immunoassays, such as enzyme-linked immunosorbent assay (ELISA), are prone to false-positive results caused by nonspecific binding interference from S. aureus surface protein A (SpA). In recent years, nanobodies (single-domain heavy-chain antibodies) have emerged as an ideal alternative to address SpA interference owing to their small molecular weight (15 kDa), high affinity, robust stability, and lack of Fc regions. In this study, based on a previously developed highly specific monoclonal antibody against SEA (mAb-4C6), four anti-SEA nanobodies paired with mAb-4C6 were obtained through two-part (four-round) of biopanning from a naive nanobody phage display library. Among these, SEA-4-20 and SEA-4-31 were selected as optimal candidates and paired with mAb-4C6 to construct double-antibody sandwich ELISAs. The detection limits for SEA were 0.135 ng/mL and 0.137 ng/mL, respectively, with effective elimination of SpA interference. This approach provides a reliable tool for rapid and accurate detection of SEA in food, clinical, and environmental samples. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing (2nd Edition))
Show Figures

Figure 1

22 pages, 3598 KB  
Article
Research on Denoising Methods for Magnetocardiography Signals in a Non-Magnetic Shielding Environment
by Biao Xing, Xie Feng and Binzhen Zhang
Sensors 2025, 25(19), 6096; https://doi.org/10.3390/s25196096 - 3 Oct 2025
Abstract
Magnetocardiography (MCG) offers a noninvasive method for early screening and precise localization of cardiovascular diseases by measuring picotesla-level weak magnetic fields induced by cardiac electrical activity. However, in unshielded magnetic environments, geomagnetic disturbances, power-frequency electromagnetic interference, and physiological/motion artifacts can significantly overwhelm effective [...] Read more.
Magnetocardiography (MCG) offers a noninvasive method for early screening and precise localization of cardiovascular diseases by measuring picotesla-level weak magnetic fields induced by cardiac electrical activity. However, in unshielded magnetic environments, geomagnetic disturbances, power-frequency electromagnetic interference, and physiological/motion artifacts can significantly overwhelm effective magnetocardiographic components. To address this challenge, this paper systematically constructs an integrated denoising framework, termed “AOA-VMD-WT”. In this approach, the Arithmetic Optimization Algorithm (AOA) adaptively optimizes the key parameters (decomposition level K and penalty factor α) of Variational Mode Decomposition (VMD). The decomposed components are then regularized based on their modal center frequencies: components with frequencies ≥50 Hz are directly suppressed; those with frequencies <50 Hz undergo wavelet threshold (WT) denoising; and those with frequencies <0.5 Hz undergo baseline correction. The purified signal is subsequently reconstructed. For quantitative evaluation, we designed performance indicators including QRS amplitude retention rate, high/low frequency suppression amount, and spectral entropy. Further comparisons are made with baseline methods such as FIR and wavelet soft/hard thresholds. Experimental results on multiple sets of measured MCG data demonstrate that the proposed method achieves an average improvement of approximately 8–15 dB in high-frequency suppression, 2–8 dB in low-frequency suppression, and a decrease in spectral entropy ranging from 0.1 to 0.6 without compromising QRS amplitude. Additionally, the parameter optimization exhibits high stability. These findings suggest that the proposed framework provides engineerable algorithmic support for stable MCG measurement in ordinary clinic scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 2011 KB  
Article
Research on Optimization Method of Operating Parameters for Electric Submersible Pumps Based on Multiphase Flow Fitting
by Mingchun Wang, Xinrui Zhang, Yuchen Ji, Yupei Liu, Tianhao Wang, Zixiao Xing, Guoqing Han and Yinmingze Sun
Processes 2025, 13(10), 3156; https://doi.org/10.3390/pr13103156 - 2 Oct 2025
Abstract
Electric submersible pumps (ESPs) are among the most widely used artificial lifting systems, and their operational stability is crucial to the production capacity and lifespan of oil wells. However, during the operation of ESP systems, they often face complex flow issues such as [...] Read more.
Electric submersible pumps (ESPs) are among the most widely used artificial lifting systems, and their operational stability is crucial to the production capacity and lifespan of oil wells. However, during the operation of ESP systems, they often face complex flow issues such as gas lock and insufficient liquid carry. Traditional control strategies relying on liquid level monitoring and electrical parameter alarms exhibit obvious latency, making it difficult to effectively guide the adjustments of key operating parameters such as pump frequency, valve opening, and on/off strategies. To monitor the flow state of ESP systems and optimize it in a timely manner, this paper proposes an innovative profile recognition method based on multiphase flow fitting in the wellbore, aimed at reconstructing the flow state at the pump’s intake. This method identifies flow abnormalities and, in conjunction with flow characteristics, designs targeted operating parameter optimization logic to enhance the stability and efficiency of ESP systems. Research shows that this optimization method can significantly improve the pump’s operational performance, reduce failure rates, and extend equipment lifespan, thus providing an effective solution for optimizing production in electric pump wells. Additionally, this method holds significant importance for enhancing oil well production efficiency and economic benefits, providing a scientific theoretical foundation and practical guidance for future oil and gas exploration and management. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 2617 KB  
Article
Kilowatt-Level EUV Regenerative Amplifier Free-Electron Laser Enabled by Transverse Gradient Undulator in a Storage Ring
by Changchao He, Nanshun Huang, Tao Liu, Changliang Li, Bo Liu and Haixiao Deng
Photonics 2025, 12(10), 983; https://doi.org/10.3390/photonics12100983 - 2 Oct 2025
Abstract
High-average-power extreme ultraviolet (EUV) sources are essential for large-scale nanoscale chip manufacturing, yet commercially available laser-produced plasma sources face challenges in scaling to the kilowatt level. We propose a novel scheme that combines the high repetition rate of a diffraction-limited storage ring with [...] Read more.
High-average-power extreme ultraviolet (EUV) sources are essential for large-scale nanoscale chip manufacturing, yet commercially available laser-produced plasma sources face challenges in scaling to the kilowatt level. We propose a novel scheme that combines the high repetition rate of a diffraction-limited storage ring with a regenerative amplifier free-electron laser (RAFEL) employing a transverse gradient undulator (TGU). By introducing dispersion in the storage ring, electrons of different energies are directed into corresponding magnetic field strengths of the TGU, thereby satisfying the resonance condition under a large energy spread and increasing the FEL gain. Simulations show that at equilibrium, the average EUV power exceeds 1 kW, with an output pulse energy reaching ∼2.86 μJ, while the energy spread stabilizes at ∼0.45%. These results demonstrate the feasibility of ring-based RAFEL with TGU as a promising route toward kilowatt-level EUV sources. Full article
(This article belongs to the Special Issue Next-Generation X-Ray Optical Technologies and Applications)
16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

20 pages, 4517 KB  
Article
An Investigation of the Laminar–Turbulent Transition Mechanisms of Low-Pressure Turbine Boundary Layers with Linear Stability Theories
by Alice Fischer and Frank Eulitz
Int. J. Turbomach. Propuls. Power 2025, 10(4), 33; https://doi.org/10.3390/ijtpp10040033 - 2 Oct 2025
Abstract
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) [...] Read more.
Stability theory offers a practical method on parametric studies that encompass scales in the boundary layer typically not captured in Large Eddy (LES) or Reynolds-Averaged Navier–Stokes (RANS) simulations. We investigated the transition modes of a Low-Pressure Turbine (LPT) with Linear Stability Theory (LST) and Linear Parabolized Stability Equations (LPSEs) over a wider parametric space. A parametric study was done to examine the wall-shear stress, shape factor, momentum thickness, as well as the growth rate and N-factor envelope. Additionally, the methodology was applied to active control techniques like suction and blowing. The results are consistent with the expected physical behavior and initial observations, while also offering a quantitative description of trends in frequencies, amplitude growth, and wavelengths. This confirms the suitability of the two stability theories, laying the base for their future validation to ensure accuracy and reliability. Full article
Show Figures

Figure 1

25 pages, 6498 KB  
Article
SCPL-TD3: An Intelligent Evasion Strategy for High-Speed UAVs in Coordinated Pursuit-Evasion
by Xiaoyan Zhang, Tian Yan, Tong Li, Can Liu, Zijian Jiang and Jie Yan
Drones 2025, 9(10), 685; https://doi.org/10.3390/drones9100685 - 2 Oct 2025
Abstract
The rapid advancement of kinetic pursuit technologies has significantly increased the difficulty of evasion for high-speed UAVs (HSUAVs), particularly in scenarios where two collaboratively operating pursuers approach from the same direction with optimized initial space intervals. This paper begins by deriving an optimal [...] Read more.
The rapid advancement of kinetic pursuit technologies has significantly increased the difficulty of evasion for high-speed UAVs (HSUAVs), particularly in scenarios where two collaboratively operating pursuers approach from the same direction with optimized initial space intervals. This paper begins by deriving an optimal initial space interval to enhance cooperative pursuit effectiveness and introduces an evasion difficulty classification framework, thereby providing a structured approach for evaluating and optimizing evasion strategies. Based on this, an intelligent maneuver evasion strategy using semantic classification progressive learning with twin delayed deep deterministic policy gradient (SCPL-TD3) is proposed to address the challenging scenarios identified through the analysis. Training efficiency is enhanced by the proposed SCPL-TD3 algorithm through the employment of progressive learning to dynamically adjust training complexity and the integration of semantic classification to guide the learning process via meaningful state-action pattern recognition. Built upon the twin delayed deep deterministic policy gradient framework, the algorithm further enhances both stability and efficiency in complex environments. A specially designed reward function is incorporated to balance evasion performance with mission constraints, ensuring the fulfillment of HSUAV’s operational objectives. Simulation results demonstrate that the proposed approach significantly improves training stability and evasion effectiveness, achieving a 97.04% success rate and a 7.10–14.85% improvement in decision-making speed. Full article
Show Figures

Figure 1

13 pages, 1197 KB  
Article
Engineered Leghemoglobin as a High-Performance Biocatalyst for Carbene N–H Insertion: Active-Site Remodeling Unlocks Catalytic Proficiency
by Hong Zhang, Meijiao Gao, Xin Zhang and Zhi Wang
Catalysts 2025, 15(10), 950; https://doi.org/10.3390/catal15100950 - 2 Oct 2025
Abstract
Leghemoglobin (LegH), a plant-derived hemoprotein, is engineered for the first time as a standalone biocatalyst for carbene N–H insertion. Through semi-rational design, the K65P mutation in the heme pocket significantly enhances catalytic efficiency. Under mild aqueous conditions (PBS buffer, 25 °C), the K65P [...] Read more.
Leghemoglobin (LegH), a plant-derived hemoprotein, is engineered for the first time as a standalone biocatalyst for carbene N–H insertion. Through semi-rational design, the K65P mutation in the heme pocket significantly enhances catalytic efficiency. Under mild aqueous conditions (PBS buffer, 25 °C), the K65P variant achieves 92% yield in the model reaction between benzylamine and ethyl α-diazoacetate—surpassing wild-type LegH by >1.6-fold in initial reaction rate. The mutant also exhibits markedly improved thermostability. This work establishes engineered LegH as a high-performance, cofactor-free biocatalyst for C–N bond formation, providing a sustainable platform for synthesizing chiral amine derivatives. The catalytic proficiency and inherent stability of the K65P mutant demonstrate the potential of plant hemoproteins in non-natural carbene transfer reactions without requiring immobilization supports. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

17 pages, 3361 KB  
Article
Synergistic Regulation of Ag Nanoparticles and Reduced Graphene Oxide in Boosting TiO2 Microspheres Photocatalysis for Wastewater Treatment
by Guoshuai Ma, Zhijian An, Yinqi Yang, Wei Wang, Yao Wang, Shuting Tian, Jingwen Gao, Xue-Zhong Gong, Laurence A. Belfoire and Jianguo Tang
Nanomaterials 2025, 15(19), 1510; https://doi.org/10.3390/nano15191510 - 2 Oct 2025
Abstract
Dye-contaminated wastewater has become one of the most severe environmental challenges due to the non-biodegradability and toxicity of synthetic dyes. While photocatalytic degradation is considered a green and efficient technology for wastewater purification, conventional TiO2 suffers from limited light utilization and rapid [...] Read more.
Dye-contaminated wastewater has become one of the most severe environmental challenges due to the non-biodegradability and toxicity of synthetic dyes. While photocatalytic degradation is considered a green and efficient technology for wastewater purification, conventional TiO2 suffers from limited light utilization and rapid electron–hole recombination. In this exploration, Ag-TiO2-RGO nanocomposites were successfully fabricated and systematically investigated by XRD, SEM, TEM, XPS, Raman, and PL spectroscopy. The incorporation of Ag nanoparticles and reduced graphene oxide (RGO) synergistically improved charge separation and transfer efficiency. Photocatalytic activity was evaluated using different dyes as pollutants under visible light irradiation. Among the samples, Ag-TiO2-RGO-3% exhibited the highest RhB degradation efficiency of 99.5% within 75 min, with a rate constant (K) of 0.05420 min−1, which was nearly three times higher than that of pure TiO2. The photocatalyst also showed excellent reusability with only minor efficiency loss after five cycles, and its activity remained stable across a wide pH range. Radical trapping experiments revealed that •O2 served as the dominant reactive species, with additional contributions from •OH and photogenerated holes (h+). A possible photocatalytic mechanism was proposed, in which Ag nanoparticles and RGO effectively suppressed electron–hole recombination and accelerated the formation of reactive oxygen species for efficient dye mineralization. These findings demonstrate that Ag-TiO2-RGO-3% is a promising photocatalyst with high activity, stability, and environmental adaptability for wastewater remediation. Full article
Show Figures

Figure 1

Back to TopTop