Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = spread oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5896 KiB  
Article
Simulation Study of the Effect of Oil Injection Speed on the Air Curtain of High-Speed Bearings
by Yanfang Dong, Botao Ye, Zibo Yan, Hai Zhang, Wei Yu, Jianyong Sun and Wenbo Zhou
Lubricants 2025, 13(8), 334; https://doi.org/10.3390/lubricants13080334 - 30 Jul 2025
Viewed by 206
Abstract
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and [...] Read more.
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and its lubrication mechanism in the high-speed rotary bearing. In the process of high-speed bearing operation, the lubricant is subject to the combined effect of centrifugal force and contact pressure, gradually spreads to both sides of the steel ball, and forms a stable oil film after injection from the nozzle. However, due to the influence of high pressure distribution in the contact area, the actual formation of the oil film coverage is relatively limited. In order to further optimize the lubrication effect, this study focuses on investigating the influence law of different injection speeds and rotational speeds on the bearing air curtain effect. The results of the study show that when the air curtain effect is enhanced, there will be significant shear interference on the trajectory of the lubricant, which is manifested in the phenomenon of “buckling” at the end of the lubricant, thus reducing the lubrication efficiency. To address this problem, this study innovatively proposes the air curtain obstruction coefficient K as a quantitative evaluation index, and through numerical simulation, it is found that the lubricant can effectively overcome the air curtain obstruction and achieve a better lubrication coverage when the value of K is reduced to below 0.4. Based on this finding, the study further confirmed that the lubrication efficiency of bearings can be significantly improved under different operating conditions by rationally regulating the injection rate. Full article
Show Figures

Figure 1

19 pages, 788 KiB  
Review
Advances in Genetic Diversity of Germplasm Resources, Origin and Evolution of Turnip Rape (Brassica rapa L.)
by Xiaoming Lu, Tianyu Zhang, Yuanqiang Ma, Chunyang Han, Wenxin Yang, Yuanyuan Pu, Li Ma, Junyan Wu, Gang Yang, Wangtian Wang, Tingting Fan, Lijun Liu and Wancang Sun
Plants 2025, 14(15), 2311; https://doi.org/10.3390/plants14152311 - 26 Jul 2025
Viewed by 239
Abstract
During a prolonged domestication and environmental selection, Brassica rapa has formed diverse morphological types during a cultivation process of up to 8000 years, such as root-type turnips (Brassica rapa var. rapa), leaf-type Chinese cabbage (Brassica rapa var. pekinensis), oil-type [...] Read more.
During a prolonged domestication and environmental selection, Brassica rapa has formed diverse morphological types during a cultivation process of up to 8000 years, such as root-type turnips (Brassica rapa var. rapa), leaf-type Chinese cabbage (Brassica rapa var. pekinensis), oil-type rapeseed (Brassica rapa L.), and other rich types. China is one of the origins of Brassica rapa L., which is spread all over the east, west, south, and north of China. Studying its origin and evolution holds significant importance for unraveling the cultivation history of Chinese oilseed crops, intraspecific evolutionary relationships, and the utilization value of genetic resources. This article summarizes the cultivation history, evolution, classification research progress, and germplasm resource diversity of Brassica rapa var. oleifera in China. Combining karyotype analysis, genomic information, and wild relatives of Brassica rapa var. oleifera discovered on the Qinghai–Tibet Plateau, it is proposed that Brassica rapa var. oleifera has the characteristic of polycentric origin, and Gansu Province in China is one of the earliest regions for its cultivation. Brassica rapa var. oleifera, originating from the Mediterranean region, was diffused to the East Asian continent through two independent transmission paths (one via the Turkish Plateau and the other via Central Asia and Siberia). Analyzing the genetic diversity characteristics and evolutionary trajectories of these two transmission paths lays a foundation for clarifying the origin and evolutionary process of Brassica rapa var. oleifera and accelerating the breeding of Brassica rapa var. oleifera in China. Despite existing research on the origin of Brassica rapa L., the domestication process of this species remains unresolved. Future studies will employ whole-genome resequencing to address this fundamental question. Full article
Show Figures

Figure 1

21 pages, 3663 KiB  
Article
A Study on the Road Performance of the Self-Healing Microcapsule for Asphalt Pavement
by Pei Li, Rongyi Ji, Chenlong Zhang, Jinghan Xu, Mulian Zheng and Xinghan Song
Materials 2025, 18(15), 3483; https://doi.org/10.3390/ma18153483 - 25 Jul 2025
Viewed by 332
Abstract
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the [...] Read more.
Asphalt pavement cracking is an important factor affecting its service life. Under certain conditions, the self-healing behavior of asphalt itself can repair pavement cracks. However, the self-healing ability of asphalt itself is limited. In order to strengthen the self-healing ability of asphalt, the microcapsule wrapped with a repair agent is pre-mixed into the asphalt mixture. When the crack occurs and spreads to the surface of the microcapsule, the microcapsule ruptures and the healing agent flows out to realize the self-healing of the crack. Current microcapsules are mostly prepared with healing agents and bio-oil as core materials, and their high-temperature resistance to rutting is poor. While the epoxy resin contains a three-membered cyclic ether, it can undergo ring-opening polymerization to bond and repair the asphalt matrix. In addition, research on microcapsules mainly focuses on the self-healing properties of microcapsule-modified asphalt. In fact, before adding microcapsules to asphalt to improve its self-healing performance, it is necessary to ensure that the asphalt has a good road performance. On this basis, the self-healing performance of asphalt is improved, thereby extending the service life of asphalt pavement. Therefore, two-component epoxy self-healing microcapsules (E-mic and G-mic) were first prepared in this paper. Then, a temperature scanning test, rheological test of bending beams, and linear amplitude scanning test were, respectively, conducted for the microcapsule/asphalt to evaluate its road performance, including the high-temperature performance, low-temperature crack resistance, and fatigue performance. Finally, the self-healing performance of microcapsules/asphalt was tested. The results showed that the self-developed epoxy self-healing microcapsules were well encapsulated and presented as spherical micron-sized particles. The average particle size of the E-mic was approximately 23.582 μm, while the average particle size of the G-mic was approximately 22.440 μm, exhibiting a good normal distribution. In addition, they can remain intact and unbroken under high-temperature conditions. The results of road performance tests indicated that the microcapsule/asphalt mixture exhibits an excellent high-temperature resistance to permanent deformation, low-temperature crack resistance, and fatigue resistance. The self-healing test demonstrated that the microcapsule/asphalt exhibited an excellent self-healing performance. When the microcapsule content was 4%, the self-healing rate reached its optimal level of 67.8%, which was 149.2% higher than that of the base asphalt. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

14 pages, 381 KiB  
Article
A Cross-Sectional Analysis of Oil Pulling on YouTube Shorts
by Jun Yaung, Sun Ha Park and Shahed Al Khalifah
Dent. J. 2025, 13(7), 330; https://doi.org/10.3390/dj13070330 - 21 Jul 2025
Viewed by 549
Abstract
Objective: This cross-sectional content analysis aimed to investigate how oil pulling is portrayed on YouTube Shorts, focusing on the types of speakers, claims made, and alignment with scientific evidence. The study further explored how the content may influence viewer perception, health behaviors, [...] Read more.
Objective: This cross-sectional content analysis aimed to investigate how oil pulling is portrayed on YouTube Shorts, focusing on the types of speakers, claims made, and alignment with scientific evidence. The study further explored how the content may influence viewer perception, health behaviors, and the potential spread of misinformation. Methods: On 28 January 2025, a systematic search of YouTube Shorts was performed using the term “oil pulling” in incognito mode to reduce algorithmic bias. English language videos with at least 1000 views were included through purposive sampling. A total of 47 Shorts met the inclusion criteria. Data were extracted using a structured coding framework that recorded speaker type (e.g., dentist, hygienist, influencer), engagement metrics, stated benefits, oil type and regimen, the use of disclaimers or citations, and stance toward oil pulling rated on a 5-point Likert scale. Speaker background and nationality were determined through publicly available channel descriptions or linked websites, with user identities anonymized and ethical approval deemed unnecessary due to the use of publicly available content. In total, 47 videos met the inclusion criteria. Results: Of the 47 YouTube Shorts that met the inclusion criteria, most were posted by influencers rather than dental professionals. These videos predominantly encouraged oil pulling, often recommending coconut oil for 10–15 min daily and citing benefits such as reduced halitosis and improved gum health. However, a smaller subset advanced more extreme claims, including reversing cavities and remineralizing enamel. Notably, US-licensed dentists and dental hygienists tended to discourage or express skepticism toward oil pulling, assigning lower Likert scores (1 or 2) to influencers and alternative health practitioners (often 4 or 5). Conclusions: YouTube Shorts largely promote oil pulling through anecdotal and testimonial-driven content, often diverging from evidence-based dental recommendations. The findings reveal a disconnect between professional dental guidance and popular social media narratives. While some benefits like halitosis reduction may have limited support, exaggerated or misleading claims may result in improper oral hygiene practices. Greater engagement from dental professionals and improved health communication strategies are needed to counteract misinformation and reinforce oil pulling’s role, if any, as an adjunct—not a replacement—for standard oral care. Future studies should explore viewer interpretation, behavioral influence, and cross-platform content patterns to better understand the impact of short-form health videos. Full article
(This article belongs to the Topic Preventive Dentistry and Public Health)
Show Figures

Figure 1

17 pages, 449 KiB  
Article
Immunotoxicity Studies on the Insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP) in Hsd:Harlan Sprague Dawley SD® Rats
by Victor J. Johnson, Stefanie C. M. Burleson, Michael I. Luster, Gary R. Burleson, Barry McIntyre, Veronica G. Robinson, Reshan A. Fernando, James Blake, Donna Browning, Stephen Cooper, Shawn Harris and Dori R. Germolec
Toxics 2025, 13(7), 600; https://doi.org/10.3390/toxics13070600 - 17 Jul 2025
Viewed by 562
Abstract
The broad-spectrum insect growth regulator (IGR) and insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP; also known as pyriproxyfen) is increasingly being used to address public health programs for vector control, initiated by the spread of Zika virus in 2015–2016. While considered relatively safe for humans under normal [...] Read more.
The broad-spectrum insect growth regulator (IGR) and insecticide 2-((1-(4-Phenoxyphenoxy)propan-2-yl)oxy)pyridine (MPEP; also known as pyriproxyfen) is increasingly being used to address public health programs for vector control, initiated by the spread of Zika virus in 2015–2016. While considered relatively safe for humans under normal conditions, limited toxicology data are available. Current studies were undertaken to address the data gap regarding potential immunotoxicity of MPEP, with particular emphasis on host resistance to viral infection. Hsd:Harlan Sprague Dawley SD® rats were treated for 28 days by oral gavage with doses of 0, 62.5, 125, 250 or 500 mg/kg/day of MPEP in corn oil. There was a dose-dependent increase in liver weights which is consistent with the liver playing a dominant role in MPEP metabolism. However, no histological correlates were observed. Following treatment, rats were subjected to a battery of immune tests as well as an established rat model of influenza virus infection to provide a comprehensive assessment of immune function and host resistance. While several of the immune tests showed minor exposure-related changes, evidenced by negative dose–response trends, most did not show significant differences in any of the MPEP treatment groups relative to vehicle control. Most notable was a negative trend in pulmonary mononuclear cell phagocytosis with increases in dose of MPEP. There was also a positive trend in early humoral immune response (5 days after immunization) to keyhole limpet hemocyanin (KLH) as evidenced by increased serum anti-KLH IgM antibodies which was followed later (14 days following immunization) by decreasing trends in anti-KLH IgM and IgG antibody levels. However, MPEP treatment had no effect on the ability of rats to clear the influenza virus nor the T-dependent IgM and IgG antibody response to the virus. The lack of effects of MPEP on host resistance to influenza suggests the immune effects were minimal and unlikely to present a hazard with respect to susceptibility to respiratory viral infection. Full article
(This article belongs to the Special Issue Environmental Contaminants and Human Health—2nd Edition)
Show Figures

Figure 1

18 pages, 313 KiB  
Article
Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes
by Asimina-Georgia Karyda and Petros Anargyrou Roussos
Appl. Sci. 2025, 15(14), 7678; https://doi.org/10.3390/app15147678 - 9 Jul 2025
Viewed by 250
Abstract
Ailanthus altissima (AA) is an invasive tree species rapidly spreading worldwide, colonizing both urban and agricultural or forestry environments. This three-year study aimed to assess its effects on the growth and yield traits of the Koroneiki olive cultivar under co-cultivation in [...] Read more.
Ailanthus altissima (AA) is an invasive tree species rapidly spreading worldwide, colonizing both urban and agricultural or forestry environments. This three-year study aimed to assess its effects on the growth and yield traits of the Koroneiki olive cultivar under co-cultivation in pots, combined with two irrigation regimes, full and deficit irrigation (60% of full). Within each irrigation regime, olive trees were grown either in the presence or absence (control) of AA. The trial evaluated several parameters, including vegetative growth, yield traits, and oil quality characteristics. Co-cultivation with AA had no significant impact on tree growth after three years, though it significantly reduced oil content per fruit. Antioxidant capacity of the oil improved under deficit irrigation, while AA presence did not significantly affect it, except for an increase in o-diphenol concentration. Neither the fatty acid profile nor squalene levels were significantly influenced by either treatment. Fruit weight and color were primarily affected by deficit irrigation. During storage, olive oil quality declined significantly, with pre-harvest treatments (presence or absence of AA and full or deficit irrigation regime) playing a critical role in modulating several quality parameters. In conclusion, the presence of AA near olive trees did not substantially affect the key quality indices of the olive oil, which remained within the criteria for classification as extra virgin. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
16 pages, 1792 KiB  
Article
The Russia–Ukraine Conflict and Stock Markets: Risk and Spillovers
by Maria Leone, Alberto Manelli and Roberta Pace
Risks 2025, 13(7), 130; https://doi.org/10.3390/risks13070130 - 4 Jul 2025
Viewed by 832
Abstract
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of [...] Read more.
Globalization and the spread of technological innovations have made world markets and economies increasingly unified and conditioned by international trade, not only for sales markets but above all for the supply of raw materials necessary for the functioning of the production complex of each country. Alongside oil and gold, the main commodities traded include industrial metals, such as aluminum and copper, mineral products such as gas, electrical and electronic components, agricultural products, and precious metals. The conflict between Russia and Ukraine tested the unification of markets, given that these are countries with notable raw materials and are strongly dedicated to exports. This suggests that commodity prices were able to influence the stock markets, especially in the countries most closely linked to the two belligerents in terms of import-export. Given the importance of industrial metals in this period of energy transition, the aim of our study is to analyze whether Industrial Metals volatility affects G7 stock markets. To this end, the BEKK-GARCH model is used. The sample period spans from 3 January 2018 to 17 September 2024. The results show that lagged shocks and volatility significantly and positively influence the current conditional volatility of commodity and stock returns during all periods. In fact, past shocks inversely influence the current volatility of stock indices in periods when external events disrupt financial markets. The results show a non-linear and positive impact of commodity volatility on the implied volatility of the stock markets. The findings suggest that the war significantly affected stock prices and exacerbated volatility, so investors should diversify their portfolios to maximize returns and reduce risk differently in times of crisis, and a lack of diversification of raw materials is a risky factor for investors. Full article
(This article belongs to the Special Issue Risk Management in Financial and Commodity Markets)
Show Figures

Figure 1

21 pages, 832 KiB  
Article
Dynamic Impacts of Economic Growth, Energy Use, Urbanization, and Trade Openness on Carbon Emissions in the United Arab Emirates
by Hatem Ahmed Adela, Wadeema BinHamoodah Aldhaheri and Ahmed Hatem Ali
Sustainability 2025, 17(13), 5823; https://doi.org/10.3390/su17135823 - 24 Jun 2025
Viewed by 572
Abstract
The United Arab Emirates has become increasingly concerned about carbon dioxide emissions due to their impact on climate change and the environment, as it is one of the top ten world oil producers. This reflects its recognition of the need for sustainable development. [...] Read more.
The United Arab Emirates has become increasingly concerned about carbon dioxide emissions due to their impact on climate change and the environment, as it is one of the top ten world oil producers. This reflects its recognition of the need for sustainable development. Therefore, this research aims to study the dynamic impact of economic growth, urbanization, energy consumption, and economic openness on CO2 emissions, during the period 1975–2022. To capture these effects, a novel dynamic ARDL is employed to separate the impact of each variable separately. The results indicate that the effect of GDP per capita on carbon emissions is negative, as a 1% increase in economic growth leads to a decrease in carbon dioxide emissions by 0.6%. Moreover, the findings confirm that the UAE economy does not apply to the Kuznets curve in developing countries. Furthermore, the impact of energy consumption, urbanization, and trade openness is positive on CO2 emissions, as a 1% increase in each raises CO2 by 0.17%, 11.6%, and 1.2%, respectively. These findings are important for decision makers in the environmental field to make decisions to reduce carbon emissions by altering the impact of economic variables and spread awareness towards reducing carbon emissions. Full article
Show Figures

Figure 1

18 pages, 2165 KiB  
Article
Soluble Soybean Polysaccharide Improves Quality and Shelf Life of Peanut Butter
by Liangchen Zhang, Liyou Zheng, Jian Sun, Sameh A. Korma, Fahad Al-Asmari, Mengxi Xie and Miao Yu
Foods 2025, 14(13), 2180; https://doi.org/10.3390/foods14132180 - 22 Jun 2025
Viewed by 478
Abstract
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of [...] Read more.
Peanut butter, a plant-based spread, has gained global prominence due to the increasing consumer demand for nutritious convenience foods and the rising adoption of plant-based diets. However, oil separation during storage and transportation accelerates the oxidative rancidity and reduces the shelf life of peanut butter. Enhancing peanut butter stability by minimizing oil separation is therefore essential. This study investigates the effect of soluble soybean polysaccharides (SSPSs) on the quality and shelf life of peanut butter. Optimal processing conditions were established by adding 1.7% SSPS (w/w), heating the mixture to 85 °C for 40 min, and then cooling it to 1 °C. The addition of SSPSs significantly increased the lightness of the peanut butter without altering its red-green color characteristics. Furthermore, SSPS incorporation improved its textural properties by increasing hardness and cohesiveness. Nutritional analysis showed that SSPS supplementation elevated proximate composition parameters (moisture, ash, carbohydrates, and fiber) while slightly reducing acid and peroxide values. Scanning electron microscopy revealed that SSPSs enhanced the internal network structure of peanut butter, inhibited oil migration, and reduced centrifugal emulsification rates. First-order kinetic models based on acid and peroxide values were developed to predict the effects of SSPSs on shelf life. Both the model predictions and experimental data confirmed that SSPS addition effectively extends the shelf life of peanut butter. Full article
Show Figures

Graphical abstract

17 pages, 15281 KiB  
Article
Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold
by Yulong Yang, Jin Yan, Jin Xu, Xinqi Zhong, Yumiao Huang, Jianxun Rui, Min Cheng, Yuanyuan Huang, Yimeng Wang, Tao Liang, Zisen Lin and Peng Liu
J. Mar. Sci. Eng. 2025, 13(6), 1178; https://doi.org/10.3390/jmse13061178 - 16 Jun 2025
Viewed by 387
Abstract
Marine oil spills pose a serious and persistent threat to marine ecosystems, coastal resources, and global environmental health. These incidents not only disrupt ecological balance by damaging marine flora and fauna but also lead to long-term economic consequences for fisheries, tourism, and maritime [...] Read more.
Marine oil spills pose a serious and persistent threat to marine ecosystems, coastal resources, and global environmental health. These incidents not only disrupt ecological balance by damaging marine flora and fauna but also lead to long-term economic consequences for fisheries, tourism, and maritime industries. Owing to their rapid spread and often unpredictable occurrence, timely and accurate detection is essential for effective containment and mitigation. An efficient detection system can significantly enhance the responsiveness of emergency teams, enabling targeted interventions that minimize ecological damage and economic loss. This paper proposes a marine radar-based oil spill detection method that combines the Significance-to-Boundary Ratio (SBR) feature with an improved Sauvola adaptive thresholding algorithm. The raw radar data was firstly preprocessed through mean and median filtering, grayscale correction, and contrast enhancement. SBR features were then employed to extract coarse oil spill regions, which were further refined using an improved Sauvola thresholding algorithm followed by a denoising step to obtain fine-grained segmentation. Comparative experiments using different threshold values demonstrate that the proposed method achieves superior segmentation performance by better preserving oil spill boundaries and reducing background noise. Overall, the approach provides a robust and efficient solution for marine oil spill detection and monitoring. Full article
(This article belongs to the Special Issue Remote Sensing for Maritime Monitoring and Ship Surveillance)
Show Figures

Figure 1

38 pages, 6595 KiB  
Article
Optimized CO2 Modeling in Saline Aquifers: Evaluating Fluid Models and Grid Resolution for Enhanced CCS Performance
by Ismail Ismail, Sofianos Panagiotis Fotias, Spyridon Pissas and Vassilis Gaganis
Processes 2025, 13(6), 1901; https://doi.org/10.3390/pr13061901 - 16 Jun 2025
Viewed by 614
Abstract
Carbon Capture and Storage (CCS) is a critical strategy for reducing CO2 emissions from hard-to-abate sectors. Reliable and efficient reservoir simulation tools are essential for supporting the safe and effective deployment of CCS projects. This study presents a twofold contribution to CCS [...] Read more.
Carbon Capture and Storage (CCS) is a critical strategy for reducing CO2 emissions from hard-to-abate sectors. Reliable and efficient reservoir simulation tools are essential for supporting the safe and effective deployment of CCS projects. This study presents a twofold contribution to CCS modeling in saline aquifers: (1) the validation of the Black Oil Model (BoM) as a computationally efficient alternative to compositional simulators, and (2) a systematic assessment of the impact of grid resolution on plume prediction accuracy. The BoM was benchmarked against three commercial compositional simulators—Eclipse E300, CMG-GEM, and TNavigator. The comparison focused on key aspects of CO2 storage operations, including plume evolution to assess containment and storage security, as well as injection safety and efficiency through pressure and saturation profile analysis, evaluated across both the injection and the post-closure monitoring phases. The BoM successfully reproduced plume extent and CO2 saturation distributions, with mean deviations of 3% during injection, 5% during post-closure, and an overall average of 4% across the entire project duration. Additionally, simulation times were reduced by a factor of four compared to compositional models. These results confirm the BoM’s practical utility as a robust and efficient tool for CO2 storage simulation. In parallel, the study investigated the influence of vertical and lateral grid resolutions/coarsening on the accuracy of CO2 modeling. Seven models were developed and evaluated using a hybrid qualitative–quantitative framework, consistent with the BoM validation methodology. Vertical resolution was found to be particularly critical during the monitoring phase. While a 5 m resolution proved adequate during injection, deviations in plume shape and magnitude during post-injection increased to an average of 15% compared to a fine 2 m vertical resolution model, highlighting the necessity of fine vertical discretization (≤2 m) to capture gravity-driven plume dynamics during the monitoring phase. Conversely, lateral grid resolution had a stronger effect during the injection phase. A lateral cell size of 150 m was required for accurate plume prediction, with 200 m remaining moderately acceptable for early-phase assessment and prospect ranking, whereas coarser lateral grids led to significant underestimation of plume spread and dissolution extent. These findings demonstrate that the BoM, when combined with informed grid resolution strategies, enables accurate and computationally efficient simulation of CO2 storage in saline aquifers. The study provides practical guidelines for fluid model selection and spatial discretization, offering critical input to subsurface experts involved in CCS project development, monitoring design, and regulatory compliance. Full article
Show Figures

Figure 1

21 pages, 2197 KiB  
Article
Production and Immune Response Against Pandemic Influenza Candidate Vaccines as Preparedness Against the Circulating H5N1 Influenza Viruses
by Paulo Lee Ho, Yordanka Medina-Armenteros, Lívia Mendonça Munhoz Dati, Daniela Cajado-Carvalho, Christian Savio Silva, Pollyanna Fernandes Campos, Patrícia Antonia Estima Abreu, Júlia Tavares de Castro, Paulo Newton Tonolli, Mahyumi Fujimori, Rhubia Silveira Martins Rosa, Soledad Palameta, Michael Edward Miller, Vitor Anselmo Sakihara, Fernanda de Lima Valadares, Fabiana Lauretti Ferreira, Bianca Pereira Carvalho Holanda, Douglas Gonçalves de Macedo, Priscila Comone, Natully de Souza Suffert Fogaça, Alexandre Bimbo, Felipe Catanzaro De Moraes, Stephane Tereza Queiroz de Andrade, Helena Lage Ferreira, Edison Luiz Durigon, Clarice Weis Arns, Esper George Kallás, Milena Apetito Akamatsu and Ricardo das Neves Oliveiraadd Show full author list remove Hide full author list
Vaccines 2025, 13(6), 620; https://doi.org/10.3390/vaccines13060620 - 8 Jun 2025
Viewed by 1767
Abstract
Background/Objectives:H5N1 influenza viruses are spreading worldwide and threaten global public health. Preparedness is necessary to mitigate the worst-case scenario should an H5N1 influenza pandemic occur and justify the development of vaccines against circulating H5N1 viruses of concern. Methods: The production and characterization [...] Read more.
Background/Objectives:H5N1 influenza viruses are spreading worldwide and threaten global public health. Preparedness is necessary to mitigate the worst-case scenario should an H5N1 influenza pandemic occur and justify the development of vaccines against circulating H5N1 viruses of concern. Methods: The production and characterization of egg-based split and inactivated H5Nx of three distinct monovalent antigens from clades 2.3.4.4b, 2.3.2.1c, and 2.3.4 were performed at an industrial scale. These antigens were formulated and their immune responses, when combined or not with IB160 squalene-based oil-in-water emulsion adjuvant in a rat model, were evaluated in a one- or two-dose immunization schedule. IgG antibodies, hemagglutination inhibitions, and microneutralization titers were measured for vaccine-induced immunity and cross-reactivity. Results: Three monovalent vaccines from clades 2.3.4.4b, 2.3.2.1c, and 2.3.4 were produced at an industrial scale and characterized. The immune responses against the monovalent vaccines showed a clade-specific antibody response and the need to combine with IB160 adjuvant for a required immune response. Conclusions: Considering the candidate vaccine viruses (CVVs) with the testing potency reagents available and that the antibody response obtained against the CVVs produced was clade-specific, IDCDC RG-71A is the indicated CVV for the predominant currently circulating H5N1 influenza virus of clade 2.3.4.4b and must be combined with adjuvant to induce a higher and efficacious immune response in a two-dose immunization protocol. Full article
(This article belongs to the Special Issue Vaccine Development for Influenza Virus)
Show Figures

Figure 1

22 pages, 3884 KiB  
Review
Castor: A Renewed Oil Crop for the Mediterranean Environment
by Valeria Cafaro, Giorgio Testa and Cristina Patanè
Agronomy 2025, 15(6), 1402; https://doi.org/10.3390/agronomy15061402 - 6 Jun 2025
Viewed by 949
Abstract
Castor (Ricinus communis L.) is a plant belonging to the Euphorbiaceae family originated from Asia or Africa and well adapted to the Mediterranean environment. As an oilseed crop with a high oil content (35–65%), it is nowadays used for biofuels production, with [...] Read more.
Castor (Ricinus communis L.) is a plant belonging to the Euphorbiaceae family originated from Asia or Africa and well adapted to the Mediterranean environment. As an oilseed crop with a high oil content (35–65%), it is nowadays used for biofuels production, with a large potential for applications in chemical and pharmaceutical sectors as well. As for other oilseed crops, the interest towards this crop has grown exponentially in the past decades because of the necessity of limiting fossil fuels, obtaining clean energy, and use of a renewable energy source as required by RED (Renewable Energy Directive) within the European Union. Moreover, castor has a great adaptability in different soil and climate conditions, and it is known as a low-key maintenance crop. These characteristics, together with the necessity of increasing renewable energy sources, with the possibility of re-evaluating marginal lands, make castor the ideal plant to be exploited in the years to come. This review aims at giving useful information regarding its cultivation and soil and climate requirements, providing an overview on its spread on the market. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

16 pages, 6647 KiB  
Article
Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption
by Rafael Picazo Espinosa, Jochen Uebe, Marija Katarzyte and Tatjana Paulauskiene
Gels 2025, 11(6), 386; https://doi.org/10.3390/gels11060386 - 24 May 2025
Viewed by 508
Abstract
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper [...] Read more.
Oil spills represent a significant environmental threat due to the toxicity of hydrocarbons, particularly in aquatic environments where oil rapidly spreads across the surface. Sustainable sorbents are needed for an efficient and eco-friendly response to oil spills. Cellulose aerogels produced from recycled paper and cardboard exhibit promising properties such as buoyancy, light weight, biocompatibility, and recyclability. Mechanical stability and reusability can be enhanced using cross-linkers such as starch. This study evaluated the impact of starch on cellulose aerogel morphology, sorption capacity for various petroleum products (crude oil, marine diesel, and lubricating oil), and reusability using scanning electron microscopy (SEM) and elemental mapping. Aerogels containing 0.5 and 1 wt% starch showed higher porosity, sorption capacity, and reusability. Starch did not affect hydrophobization or significantly alter nitrogen and carbon levels, indicating limited influence on surface chemistry and adsorption performance. Full article
(This article belongs to the Special Issue Cellulose Gels: Properties and Prospective Applications)
Show Figures

Figure 1

17 pages, 3335 KiB  
Article
Efficient Virus-Induced Gene Silencing (VIGS) Method for Discovery of Resistance Genes in Soybean
by Kelin Deng, Zihua Lu, Hongli Yang, Shuilian Chen, Chao Li, Dong Cao, Hongwei Wang, Qingnan Hao, Haifeng Chen and Zhihui Shan
Plants 2025, 14(10), 1547; https://doi.org/10.3390/plants14101547 - 21 May 2025
Viewed by 672
Abstract
Soybean (Glycine max L.) is a vital grain and oil crop, serving as a primary source of edible oil, plant-based protein, and livestock feed. Its production is crucial for ensuring global food security. However, soybean yields are severely impacted by various diseases, [...] Read more.
Soybean (Glycine max L.) is a vital grain and oil crop, serving as a primary source of edible oil, plant-based protein, and livestock feed. Its production is crucial for ensuring global food security. However, soybean yields are severely impacted by various diseases, and the development of disease-resistant cultivars remains the most sustainable strategy for mitigating these losses. While stable genetic transformation is a common approach for studying gene function, virus-induced gene silencing (VIGS) offers a rapid and powerful alternative for functional genomics, enabling efficient screening of candidate genes. Nevertheless, the application of VIGS in soybean has been relatively limited. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for soybean, utilizing Agrobacterium tumefaciens-mediated infection. The TRV vector was delivered through cotyledon nodes, facilitating systemic spread and effective silencing of endogenous genes. Our results demonstrate that this TRV–VIGS system efficiently silences target genes in soybean, inducing significant phenotypic changes with a silencing efficiency ranging from 65% to 95%. Key genes, including phytoene desaturase (GmPDS), the rust resistance gene GmRpp6907, and the defense-related gene GmRPT4, were successfully silenced, confirming the system’s robustness. This work establishes a highly efficient TRV–VIGS platform for rapid gene function validation in soybean, providing a valuable tool for future genetic and disease resistance research. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Back to TopTop