Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Methodology Flow
2.3. Data Preprocessing
2.4. SBR Feature Extraction
2.5. The Improved Sauvola Adaptive Thresholding Algorithm
2.6. Postprocessing
3. Experiment
3.1. Pre-Treatment Process
3.2. Extraction of the Rough Oil Spill Regions
3.3. Preliminary Segmentation Result
4. Discussion
4.1. The Impact of Threshold Selection in SBR Feature Extraction
4.2. Comparison of Different Thresholds in Oil Film Segmentation
4.3. Validation of Experimental Results
4.4. Segmentation Accuracy Evaluation
5. Conclusions and Future Work
5.1. Conclusions
5.2. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, Y.; Ding, C.; Zhang, J.N.; Ren, N.Q.; Tang, C.; You, S.J. A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow. Nat. Commun. 2025, 16, 209. [Google Scholar] [CrossRef]
- Altrabolsi, M.; Saleh, M.; Elhajj, I.H.; Asmar, D. A planar capacitive sensor for detecting and measuring thickness and depth of oil under ice. Meas. Sci. Technol. 2025, 36, 15809. [Google Scholar] [CrossRef]
- Copley, S.; Afenyo, M.; Caesar, L.D. A study of risk factors for potential spills in the Galveston Bay Area. Reg. Stud. Mar. Sci. 2025, 81, 103951. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Y.; Zhao, K.; Liu, B.; Sun, Y. A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+Using SAR Images. Ieee Geosci. Remote S. 2025, 22, 4000505. [Google Scholar] [CrossRef]
- Oliveira, L.G.; Araujo, K.C.; Barreto, M.C.; Bastos, M.E.P.A.; Lemos, S.G.; Fragoso, W.D. Applications of chemometrics in oil spill studies. Microchem. J. 2021, 166, 106216. [Google Scholar] [CrossRef]
- Ge, Q.; Chen, Y.; Wang, Y. Shipboard Radar Measurement Errors Modeling Under the Influence of Complex Marine Meteorology. IEEE Sens. J. 2025, 25, 4787–4800. [Google Scholar] [CrossRef]
- Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.; Ren, P. BO-DRNet: An Improved Deep Learning Model for Oil Spill Detection by Polarimetric Features from SAR Images. Remote Sens. 2022, 14, 264. [Google Scholar] [CrossRef]
- Adebangbe, S.A.; Dixon, D.; Barrett, B. Geo-computation techniques for identifying spatio-temporal patterns of reported oil spills along crude oil pipeline networks. Int. J. Digit. Earth 2025, 18, 2448218. [Google Scholar] [CrossRef]
- Chen, G.; Huang, J.; Wen, T.; Du, C.; Lin, Y.; Xiao, Y. Multiscale Feature Fusion for Hyperspectral Marine Oil Spill Image Segmentation. J. Mar. Sci. Eng. 2023, 11, 1265. [Google Scholar] [CrossRef]
- Fingas, M. Marine Oil Spills 2018. J. Mar. Sci. Eng. 2019, 7, 82. [Google Scholar] [CrossRef]
- Shu, Y.; Li, J.; Yousif, H.; Gomes, G. Dark-spot detection from SAR intensity imagery with spatial density thresholding for oil-spill monitoring. Remote Sens. Environ. 2010, 114, 2026–2035. [Google Scholar] [CrossRef]
- Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.; Miranda, G.V.; Mendonça, L.F.; Silva, M.A.; Cambuí, E.C.B.; Lopes, J.M.; Porsani, M.J. Oil Spill Detection and Mapping: A 50-Year Bibliometric Analysis. Remote Sens. 2020, 12, 3647. [Google Scholar] [CrossRef]
- Mercier, G.; Girard-Ardhuin, F. Partially Supervised Oil-Slick Detection by SAR Imagery Using Kernel Expansion. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2839–2846. [Google Scholar] [CrossRef]
- Li, K.; Yu, H.; Xu, Y.; Luo, X. Detection of Oil Spills Based on Gray Level Co-Occurrence Matrix and Support Vector Machine. Front. Environ. Sci. 2022, 10, 1049880. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, H.Z. Oil Spill Detection Using Synthetic Aperture Radar Images and Feature Selection in Shape Space. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 146–157. [Google Scholar] [CrossRef]
- Wang, C.-F.; Liu, K. A Novel Particle Swarm Optimization Algorithm for Global Optimization. Comput. Intell. Neurosci. 2016, 2016, 9482073. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Perrie, W.; Lu, Y.; Wang, C. A Novel Deep Learning Method for Marine Oil Spill Detection from Sat-ellite Synthetic Aperture Radar Imagery. Mar. Pollut. Bull. 2022, 179, 113666. [Google Scholar] [CrossRef]
- Chen, S.; Luk, B.L. Adaptive Simulated Annealing for Optimization in Signal Processing Applications. Signal Process. 1999, 79, 117–128. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil spill detection in quad-polarimetric SAR Images using an advanced convolutional neural network based on SuperPixel model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. Eurasip J. Adv. Signal Process. 2009, 2009, 783194. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, A.; Balzter, H.; Ren, P.; Zhou, H. Oil Spill SAR Image Segmentation via Probability Distribution Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 533–554. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, S.; Wang, X.; Xing, J. Multifeature Semantic Complementation Network for Marine Oil Spill Localization and Segmentation Based on SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3771–3783. [Google Scholar] [CrossRef]
- Chen, F.; Balzter, H.; Ren, P.; Zhou, H. SRCNet: Seminal Image Representation Collaborative Network for Oil Spill Segmentation in SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5223718. [Google Scholar] [CrossRef]
- Akhmedov, F.; Nasimov, R.; Abdusalomov, A. Developing a Comprehensive Oil Spill Detection Model for Marine Environments. Remote Sens. 2024, 16, 3080. [Google Scholar] [CrossRef]
- Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [PubMed]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from Satellite Images Using Deep Neural Networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Cantorna, D.; Dafonte, C.; Iglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks: A comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. 2019, 84, 105716. [Google Scholar] [CrossRef]
- Atanassov, V.; Mladenov, L.; Rangelov, R.; Savchenko, A. Observation of Oil Slicks on the Sea Surface by Using Marine Navigation Radar. In Proceedings of the International Geoscience & Remote Sensing Symposium, Espoo, Finland, 3–6 June 1991; pp. 1323–1326. [Google Scholar]
- Zhu, X.; Li, Y.; Feng, H.; Liu, B.; Xu, J. Oil spill detection method using X-band marine radar imagery. J. Appl. Remote Sens. 2015, 9, 95985. [Google Scholar] [CrossRef]
- Yekeen, S.T.; Balogun, A.-L. Advances in Remote Sensing Technology, Machine Learning and Deep Learning for Marine Oil Spill Detection, Prediction and Vulnerability Assessment. Remote Sens. 2020, 12, 3416. [Google Scholar] [CrossRef]
- Girard-Ardhuin, F.; Mercier, G.; Collard, F.; Garello, R. Operational oil-slick characterization by SAR imagery and synergistic data. IEEE J. Ocean. Eng. 2005, 30, 487–495. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Espeseth, M.M.; Borch, N. Large-Scale Detection and Categorization of Oil Spills from SAR Images with Deep Learning. Remote Sens. 2020, 12, 2260. [Google Scholar] [CrossRef]
- Shaban, M.; Salim, R.; Khalifeh, H.A.; Khelifi, A.; Shalaby, A.; El-Mashad, S.; Mahmoud, A.; Ghazal, M.; El-Baz, A. A Deep-Learning Framework for the Detection of Oil Spills from SAR Data. Sensors 2021, 21, 2351. [Google Scholar] [CrossRef]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An improved Otsu method for oil spill detection from SAR images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Conceição, M.R.A.; de Mendonça, L.F.F.; Lentini, C.A.D.; da Cunha Lima, A.T.; Lopes, J.M.; de Vasconcelos, R.N.; Gouveia, M.B.; Porsani, M.J. SAR Oil Spill Detection System through Random Forest Classifiers. Remote Sens. 2021, 13, 2044. [Google Scholar] [CrossRef]
- Niblack, W. An Introduction to Digital Image Processing; Prentice Hall: Englewood Cliffs, NJ, USA, 1986; pp. 115–116. [Google Scholar]
- Sauvola, J.; Inen, M.P. Adaptive document image binarization. Pattern Recogn. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Xu, J.; Cui, C.; Feng, H.; You, D.; Wang, H.; Li, B. Marine Radar Oil-Spill Monitoring through Local Adaptive Thresholding. Environ. Forensics 2019, 20, 196–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yan, J.; Xu, J.; Zhong, X.; Huang, Y.; Rui, J.; Cheng, M.; Huang, Y.; Wang, Y.; Liang, T.; et al. Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold. J. Mar. Sci. Eng. 2025, 13, 1178. https://doi.org/10.3390/jmse13061178
Yang Y, Yan J, Xu J, Zhong X, Huang Y, Rui J, Cheng M, Huang Y, Wang Y, Liang T, et al. Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold. Journal of Marine Science and Engineering. 2025; 13(6):1178. https://doi.org/10.3390/jmse13061178
Chicago/Turabian StyleYang, Yulong, Jin Yan, Jin Xu, Xinqi Zhong, Yumiao Huang, Jianxun Rui, Min Cheng, Yuanyuan Huang, Yimeng Wang, Tao Liang, and et al. 2025. "Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold" Journal of Marine Science and Engineering 13, no. 6: 1178. https://doi.org/10.3390/jmse13061178
APA StyleYang, Y., Yan, J., Xu, J., Zhong, X., Huang, Y., Rui, J., Cheng, M., Huang, Y., Wang, Y., Liang, T., Lin, Z., & Liu, P. (2025). Oil Film Detection for Marine Radar Image Using SBR Feature and Adaptive Threshold. Journal of Marine Science and Engineering, 13(6), 1178. https://doi.org/10.3390/jmse13061178