Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes †
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Tree Growth Measurements
2.3. Harvest and Olive Oil Extraction
2.4. Fruit Characteristics Determination
2.5. Olive Oil Analysis
2.6. Total Phenol Content and Antioxidant Capacity Determination
2.7. Fatty Acids and Squalene Determination
2.8. Statistical Analysis
3. Results
3.1. Effect of the Treatments on the Growth, Yield, and Fruit Characteristics of the Olive Tree and Quality Parameters of the Olive Oil over a Period of 3 Years
3.2. Effects of Treatments on the Quality of Olive Oil over a 12-Month Storage Period
4. Discussion
4.1. Effects of the Treatments on the Growth, Yield, and Fruit Characteristics of the Olive Tree and Quality Parameters of the Olive Oil
4.2. Effects of Treatments on the Quality of Olive Oil over a 12-Month Storage Period
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heisey, R.M. Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am. J. Bot. 1996, 83, 192–200. [Google Scholar]
- Demasi, S.; Caser, M.; Vanara, F.; Fogliatto, S.; Vidotto, F.; Negre, M.; Trotta, F.; Scariot, V. Ailanthone from Ailanthus altissima (Mill.) Swingle as potential natural herbicide. Sci. Hortic. 2019, 257, 108702. [Google Scholar]
- Voutos, Y.; Godsil, N.; Sotiropoulou, A.; Mylonas, P.; Bouchagier, P.; Exarchos, T.; Martinis, A.; Kabassi, K. Capturing and Evaluating the Effects of the Expansive Species Ailanthus altissima on Agro-Ecosystems on the Ionian Islands. Eng. Proc. 2021, 9, 19. [Google Scholar]
- Lawrence, J.G.; Colwell, A.; Sexton, O.J. The ecological impact of allelopathy in Ailanthus altissima (Simaroubaceae). Am. J. Bot. 1991, 78, 948–958. [Google Scholar]
- Heisey, R.M. Allelopathy and the secret life of Ailanthus altissima. Arnoldia 1997, 57, 28–36. [Google Scholar]
- Bostan, C.; Borlea, F.; Mihoc, C.; Selesan, M. Ailanthus altissima species invasion on biodiversity caused by potential allelopathy. Res. J. Agric. Sci. 2014, 46, 95–103. [Google Scholar]
- DiTomaso, J.M.; Kyser, G.B. Control of Ailanthus altissima using stem herbicide application techniques. Arboric. Urban For. 2007, 33, 55–63. [Google Scholar]
- Soler, J.; Izquierdo, J. The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review. Plants 2024, 13, 931. [Google Scholar] [CrossRef]
- Dauth, B.; Maschek, O.; Steinkellner, S.; Kirisits, T.; Halmschlager, E. Non-target effects of Verticillium nonalfalfae isolate Vert56 used for biological control of Ailanthus altissima on agricultural crops known to be generally susceptible to Verticillium spp. Biol. Control 2022, 174, 105030. [Google Scholar]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar]
- Uzundumlu, A.S.; Ateş, T. Olive Production Forecasts in the Leader Countries for 2023–2027. Appl. Fruit Sci. 2025, 67, 56. [Google Scholar]
- Daskalaki, D.; Kefi, G.; Kotsiou, K.; Tasioula-Margari, M. Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. J. Food Nutr. Res. 2009, 48, 31–41. [Google Scholar]
- Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Anal. Chim. Acta 2016, 913, 1–21. [Google Scholar]
- Mousavi, S.; Mariotti, R.; Stanzione, V.; Pandolfi, S.; Mastio, V.; Baldoni, L.; Cultrera, N.G. Evolution of extra virgin olive oil quality under different storage conditions. Foods 2021, 10, 1945. [Google Scholar] [CrossRef]
- Sanchez de Medina, V.; El Riachy, M.; Priego-Capote, F.; Luque de Castro, M.D. Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection. J. Sci. Food Agric. 2015, 95, 2892–2900. [Google Scholar]
- Khaleghi, E.; Arzani, K.; Moallemi, N.; Barzegar, M. The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv ‘Zard’grown under warm and semi-arid region of Iran. Food Chem. 2015, 166, 35–41. [Google Scholar]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of irrigation on quality attributes of olive oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar]
- Boussadia, O.; Omri, A.; Mzid, N. Eco-physiological behavior of five Tunisian olive tree cultivars under drought stress. Agronomy 2023, 13, 720. [Google Scholar] [CrossRef]
- García-Garví, J.M.; Noguera-Artiaga, L.; Hernández, F.; Pérez-López, A.J.; Burgos-Hernández, A.; Carbonell-Barrachina, Á.A. Quality of Olive Oil Obtained by Regulated Deficit Irrigation. Horticulturae 2023, 9, 557. [Google Scholar] [CrossRef]
- Patumi, M.; d’Andria, R.; Marsilio, V.; Fontanazza, G.; Morelli, G.; Lanza, B. Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes. Food Chem. 2002, 77, 27–34. [Google Scholar]
- Gucci, R.; Lodolini, E.M.; Rapoport, H.F. Productivity of olive trees with different water status and crop load. J. Hortic. Sci. Biotechnol. 2007, 82, 648–656. [Google Scholar]
- Huqi, B.; Dhima, K.; Vasilakoglou, I.; Keco, R.; Salaku, F. Weed flora and weed management in established olive groves in Albania. Weed Biol. Manag. 2009, 9, 276–285. [Google Scholar]
- Vahamidis, P.; Chachalis, D.; Akrivou, A.; Karanasios, E.; Ganopoulou, M.; Argiri, A.; Mandoulaki, A.; Hatzigiannakis, E.; Arampatzis, G.; Panagopoulos, A.; et al. Weed Species’ Diversity and Composition as Shaped by the Interaction of Management, Site, and Soil Variables in Olive Groves of Southern Greece. Agronomy 2024, 14, 640. [Google Scholar] [CrossRef]
- Popolizio, S.; Vivaldi, G.A.; Camposeo, S. Different Weed Managements Influence the Seasonal Floristic Composition in a Super High-Density Olive Orchard. Plants 2023, 12, 2921. [Google Scholar] [CrossRef]
- Qasem, J.R.; Foy, C.L. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop Prod. 2001, 4, 43–119. [Google Scholar]
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop Prot. 2018, 107, 12–18. [Google Scholar]
- Demeter, A.; Saláta, D.; Tormáné Kovács, E.; Szirmai, O.; Trenyik, P.; Meinhardt, S.; Rusvai, K.; Verbényiné Neumann, K.; Schermann, B.; Szegleti, Z.; et al. Effects of the invasive tree species Ailanthus altissima on the floral diversity and soil properties in the Pannonian Region. Land 2021, 10, 1155. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar]
- Pardo, J.E.; Tello, J.; Suárez, M.; Rabadán, A.; De Miguel, C.; Álvarez-Orti, M. Variety characterization and influence of olive maturity in virgin olive oils from the area assigned to the Protected Designation of Origin “Aceite de la Alcarria” (Spain). Agronomy 2019, 10, 38. [Google Scholar]
- European Commission. Commission Regulation EC N 2568/91 of July 1991 on the Characteristic’s Methods of Olive Oils and Their Analytical Methods; EC Journal L 8121.10.1991 to the Regulation EEC/2568/91; Official Journal of the European Union: Brussels, Belgium, 1991.
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites; Blackwell Scientific Publications: Oxford, UK; London, UK, 1994; p. 238. [Google Scholar]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [PubMed]
- Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compost. Anal. 2007, 20, 313–322. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar]
- Mastralexi, A.; Tsimidou, M.Z. On the squalene content of CV Chondrolia Chalkidikis and Chalkidiki (Greece) virgin olive oil. Molecules 2021, 26, 6007. [Google Scholar] [PubMed]
- Rinaldi, R.; Amodio, M.L.; Colelli, G.; Nanos, G.D.; Pliakoni, E. Effect of deficit irrigation on fruit and oil quality of ‘Konservolea’ olives. In Proceedings of the Symposium Olive Trends: From the Olive Tree to Olive Oil: New Trends and Future Challenges (XXVIII International Horticultural Congress—IHC2010), Lisbon, Portugal, 22–27 August 2010. [Google Scholar]
- Ben-Gal, A.; Ron, Y.; Yermiyahu, U.; Zipori, I.; Naoum, S.; Dag, A. Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars. Agric. Water Manag. 2021, 245, 106577. [Google Scholar]
- Mailer, R.; Ayton, J. Effect of irrigation and water stress on olive oil quality and yield based on a four-year study. Acta Hortic. 2011, 888, 63–72. [Google Scholar]
- Sofo, A.; Manfreda, S.; Fiorentino, M.; Dichio, B.; Xiloyannis, C. The olive tree: A paradigm for drought tolerance in Mediterranean climates. Hydrol. Earth Syst. Sci. 2008, 12, 293–301. [Google Scholar]
- Baccari, S.; Elloumi, O.; Chaari-Rkhis, A.; Fenollosa, E.; Morales, M.; Drira, N.; Ben Abdallah, F.; Fki, L.; Munné-Bosch, S. Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo-and antioxidant protection in juvenile olive trees subjected to severe drought. Front. Plant Sci. 2020, 11, 614144. [Google Scholar]
- Sofo, A.; Dichio, B.; Montanaro, G.; Xiloyannis, C. Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering. Agric. Water Manag. 2009, 96, 1201–1206. [Google Scholar]
- Cherbiy-Hoffmann, S.U.; Hall, A.J.; Searles, P.S.; Rousseaux, M.C. Responses of olive tree yield determinants and components to shading during potentially critical phenological phases. Sci. Hortic. 2015, 184, 70–77. [Google Scholar]
- Çolak Esetlili, B.; Pekcan, T.; Bayız, O.; Telli Karaman, H.; Ayata, M.; Sarı, G. Optimizing Olive Production: The Role of Foliar Fertilizers in Boosting Yield and Quality. Horticulturae 2024, 10, 1147. [Google Scholar] [CrossRef]
- Saidana, D.; Braham, M.; Boujnah, D.; Mariem, F.B.; Ammari, S.; El Hadj, S.B. Nutrient stress, ecophysiological, and metabolic aspects of olive tree cultivars. J. Plant Nutr. 2009, 32, 129–145. [Google Scholar]
- Fernández-Escobar, R. Olive nutritional status and tolerance to biotic and abiotic stresses. Front. Plant Sci. 2019, 10, 1151. [Google Scholar]
- Gonçalves, A.; Silva, E.; Brito, C.; Martins, S.; Pinto, L.; Dinis, L.T.; Luzio, A.; Martins-Gomes, C.; Fernandes-Silva, A.; Ribeiro, C.; et al. Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. J. Sci. Food Agric. 2020, 100, 682–694. [Google Scholar]
- Sánchez-Rodríguez, L.; Lipan, L.; Andreu, L.; Martín-Palomo, M.J.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. Effect of regulated deficit irrigation on the quality of raw and table olives. Agric. Water Manag. 2019, 221, 415–421. [Google Scholar]
- Kuçukyumuk, C.; Kacal, E.; Yildiz, H. Effects of different deficit irrigation strategies on yield, fruit quality and some parameters: Braeburn apple cultivar. Not. Bot. Horti. Agrobot. 2013, 41, 510–517. [Google Scholar]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar]
- García, J.M.; Cuevas, M.V.; Fernández, J.E. Production and oil quality in ‘Arbequina’olive (Olea europaea L.) trees under two deficit irrigation strategies. Irrig. Sci. 2013, 31, 359–370. [Google Scholar]
- Sánchez-Rodríguez, L.; Kranjac, M.; Marijanović, Z.; Jerković, I.; Pérez-López, D.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. “Arbequina” olive oil composition is affected by the application of regulated deficit irrigation during pit hardening stage. J. Am. Oil Chem. Soc. 2020, 97, 449–462. [Google Scholar]
- García, J.M.; Hueso, A.; Gómez-del-Campo, M. Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina). Agric. Water Manag. 2020, 230, 105858. [Google Scholar]
- Lémole, G.; Weibel, A.M.; Trentacoste, E.R. Effect of shading in different periods from flowering to maturity on the fatty acid and phenolic composition of olive oil (cv. Arbequina). Sci. Hortic. 2018, 240, 162–169. [Google Scholar]
- Silva, E.; Gonçalves, A.; Martins, S.; Brito, C.; Ferreira, H.; Ferreira, L.M.; Moutinho-Pereira, J.; Rodrigues, M.Â.; Correia, C.M. Olive yield and physicochemical properties of olives and oil in response to nutrient application under rainfed conditions. Molecules 2023, 28, 831. [Google Scholar] [CrossRef]
- Zarrouk, M. Compositional quality of virgin olive oils from cultivars introduced in two Tunisian locations. Afr. J. Agric. Res. 2012, 7, 2469–2474. [Google Scholar]
- Chacón-Ortiz, A.E.; Maia, L.C.D.; Oliveira, A.C.D.; Venske, E.; Pegoraro, C. Characterization and heritability of fruit from olive cultivars in the south of Brazil. Bragantia 2022, 81, 7022. [Google Scholar]
- Roussos, P.A.; Karyda, A.G.; Kapasouris, P.; Kosmadaki, P.G.; Kotsi, C.; Zoti, M. Efficacy Evaluation of Different Mineral Clay Particles on Olive Production Traits and Olive Oil Quality of ‘Koroneiki’ Olive Cultivar Under Rainfed and Irrigated Conditions in Southern Greece. Horticulturae 2025, 11, 579. [Google Scholar] [CrossRef]
- Roussos, P.A.; Karyda, A.G.; Kaibalis, V.; Zontanos, K. Olive Oil Quality Produced Under Conventional and Organic Farming Systems in a Multisite Two-Year Evaluation in Greece. Horticulturae 2025, 11, 130. [Google Scholar] [CrossRef]
- Caruso, G.; Gennai, C.; Gucci, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Servili, M. The effect of the timing of water deficit on yield components and oil quality of olive trees. In Proceedings of the VIII International Symposium on Irrigation of Horticultural Crops, Lleida, Spain, 8–11 June 2015. [Google Scholar]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C.M. Drought stress effects and olive tree acclimation under a changing climate. Plants 2019, 8, 232. [Google Scholar] [CrossRef]
- Romero-Trigueros, C.; Vivaldi, G.A.; Nicolás, E.N.; Paduano, A.; Salcedo, F.P.; Camposeo, S. Ripening indices, olive yield and oil quality in response to irrigation with saline reclaimed water and deficit strategies. Front. Plant Sci. 2019, 10, 1243. [Google Scholar]
- Sena-Moreno, E.; Cabrera-Bañegil, M.; Pérez-Rodríguez, J.M.; De Miguel, C.; Prieto, M.H.; Martín-Vertedor, D. Influence of water deficit in bioactive compounds of olive paste and oil content. J. Am. Oil Chem. Soc. 2018, 95, 349–359. [Google Scholar]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–525. [Google Scholar]
- Matos, L.C.; Pereira, J.A.; Andrade, P.B.; Seabra, R.M.; Oliveira, M.B.P. Evaluation of a numerical method to predict the polyphenols content in monovarietal olive oils. Food Chem. 2007, 102, 976–983. [Google Scholar]
- de Fernandez, M.D.L.A.; SotoVargas, V.C.; Silva, M.F. Phenolic compounds and antioxidant capacity of monovarietal olive oils produced in Argentina. J. Am. Oil Chem. Soc. 2014, 91, 2021–2033. [Google Scholar]
- Roussos, P.A.; Karyda, A.G.; Mavromanolakis, G.I.; Gkliatis, D.; Zoti, M. The Effects of Different Mineral Clay Particles on Olive Yield and Olive Oil Quality of Two Cultivars Under Rainfed or Irrigated Conditions. Horticulturae 2025, 11, 341. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Hanoch, E.; Dag, A. The influence of bearing cycles on olive oil production response to irrigation. Irrig. Sci. 2011, 29, 253–263. [Google Scholar]
- Grattan, S.R.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive oil production as influenced by different quantities of applied water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar]
- Psomiadou, E.; Karakostas, K.X.; Blekas, G.; Tsimidou, M.Z.; Boskou, D. Proposed parameters for monitoring quality of virgin olive oil (Koroneiki cv). Eur. J. Lipid Sci. Technol. 2003, 105, 403–409. [Google Scholar]
- Hernández, M.L.; Velázquez-Palmero, D.; Sicardo, M.D.; Fernández, J.E.; Diaz-Espejo, A.; Martínez-Rivas, J.M. Effect of a regulated deficit irrigation strategy in a hedgerow ‘Arbequina’ olive orchard on the mesocarp fatty acid composition and desaturase gene expression with respect to olive oil quality. Agric. Water Manag. 2018, 204, 100–106. [Google Scholar]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar]
- Kattmah, G.M.; Alali, Y.M.; Okla, B. Fatty Acids Profile of Olive Oil in Response to Nutrient-Based Organic Fertilizer of Olive Tree. IOP Conf. Ser. Earth Environ. Sci. 2023, 1252, 012161. [Google Scholar]
- Yildirim, G. Effect of Storage Time on Olive Oil Quality. Master’s Thesis, Izmir Institute of Technology, Izmir, Turkey, 2009. [Google Scholar]
- Méndez, A.I.; Falqué, E. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control 2007, 18, 521–529. [Google Scholar]
- Stefanoudaki, E.; Williams, M.; Harwood, J. Changes in virgin olive oil characteristics during different storage conditions. Eur. J. Lipid Sci. Technol. 2010, 112, 906–914. [Google Scholar]
- Averbuch, N.C.; Silva, L.T.; Cavalcante, L.S.; Machado, I.C.K.; dos Santos, S.O.; Nogueira, J.L.; Scheid, C.; Merib, J.; Garavaglia, J. Evolution of the quality and sensory characteristics of extra virgin olive oil as affected by phenolic content during long-time storage at room temperature. JSFA Rep. 2023, 3, 320–330. [Google Scholar]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil. Food Control 2010, 21, 412–418. [Google Scholar]
- Gündüz, A.O.; Baştürk, A. Some deterioration parameters of edible oils and fats sold in Tűrkiye markets. Gıda 2023, 48, 317–332. [Google Scholar]
- Markhali, F.S.; Teixeira, J.A. Stability of target polyphenols of leaf-added virgin olive oil under different storage conditions over time. Sustain. Food Technol. 2024, 2, 780–789. [Google Scholar]
- Ghreishi Rad, S.A.; Jalili, M.; Ansari, F.; Rashidi Nodeh, H.; Rashidi, L. Maturity impact on physicochemical composition and polyphenol properties of extra virgin olive oils obtained from Manzanilla, Arbequina, and Koroneiki varieties in Iran. Food Sci. Nutr. 2024, 11, 5396–5408. [Google Scholar]
- Karyda, A.-G.; Roussos, P.A. Effect of Ailanthus altissima on photosynthetic activity, yield and olive oil quality characteristics under two irrigation regimes. In Proceedings of the XIV International Scientific Agriculture Symposium “AGROSYM 2023”, Jahorina, Bosnia and Herzegovina, 5–8 October 2023; pp. 134–139. [Google Scholar]
- Fotiadou, R.; Lefas, D.; Vougiouklaki, D.; Tsakni, A.; Houhoula, D.; Stamatis, H. Enzymatic modification of pomace olive oil with natural antioxidants: Effect on oxidative stability. Biomolecules 2023, 13, 1034. [Google Scholar] [CrossRef]
- Giannakopoulos, E.; Salachas, G.; Zisimopoulos, D.; Barla, S.A.; Kalaitzopoulou, E.; Papadea, P.; Skipitari, M.; Georgiou, C.D. Long-term preservation of total phenolic content and antioxidant activity in extra virgin olive oil: A physico-biochemical approach. Free. Radic. Antioxid. 2020, 10, 4–9. [Google Scholar]
- Rastrelli, L.; Passi, S.; Ippolito, F.; Vacca, G.; De Simone, F. Rate of degradation of α-tocopherol, squalene, phenolics, and polyunsaturated fatty acids in olive oil during different storage conditions. J. Agric. Food Chem. 2002, 50, 5566–5570. [Google Scholar]
- Bendini, A.; Cerretani, L.; Salvador, M.D.; Fregapane, G.; Lercker, G. Stability of the sensory quality of virgin olive oil during storage: An overview. Ital. Food Bever. Technol. 2010, 60, 5–18. [Google Scholar]
Increment (cm) | TCSA (cm2) | Fruit Yield/Tree (kg) | Olive Oil (% w/w of Olive Paste) | Olive Oil/Tree (kg) | |
---|---|---|---|---|---|
Treatment | |||||
C (Control) | 15.72 a | 0.55 a | 0.21 a | 15.91 a | 0.03 a |
A (Ailanthus) | 10.65 a | 0.46 a | 0.22 a | 12.85 b | 0.03 a |
Irrigation regime | |||||
F (Full) | 13.17 a | 0.48 a | 0.21 a | 16.24 a | 0.03 a |
D (Deficit) | 13.20 a | 0.53 a | 0.22 a | 12.52 b | 0.03 a |
Treatment × Irrigation regime | |||||
C × F | 13.71 a | 0.52 a | 0.18 a | 16.44 a | 0.02 a |
C × D | 17.73 a | 0.58 a | 0.23 a | 15.37 a | 0.03 a |
A × F | 12.63 a | 0.45 a | 0.24 a | 16.04 a | 0.03 a |
A × D | 8.67 a | 0.48 a | 0.20 a | 9.66 b | 0.02 a |
Fruit Weight (g) | Diameter (mm) | Length (mm) | Flesh Fresh Weight/Dry Weight | % Stone Weight/Fruit Weight | % Flesh Weight/Fruit Weight | |
---|---|---|---|---|---|---|
Treatment | ||||||
C (Control) | 1.17 a | 11.26 a | 16.66 a | 2.75 a | 33.47 a | 66.53 a |
A (Ailanthus) | 1.14 a | 11.18 a | 16.53 a | 2.54 a | 32.12 a | 67.88 a |
Irrigation regime | ||||||
F (Full) | 1.26 a | 11.60 a | 17.11 a | 2.65 a | 33.16 a | 66.84 a |
D (Deficit) | 1.05 b | 10.85 b | 16.08 b | 2.65 a | 32.43 a | 67.57 a |
Treatment × Irrigation regime | ||||||
C × F | 1.24 a | 11.55 a | 16.93 a | 2.74 a | 34.05 a | 65.95 a |
C × D | 1.09 b | 10.97 b | 16.39 ab | 2.76 a | 32.89 a | 67.11 a |
A × F | 1.28 a | 11.64 a | 17.30 a | 2.55 a | 32.27 a | 67.73 a |
A × D | 1.00 b | 10.72 b | 15.77 b | 2.53 a | 31.96 a | 68.04 a |
L* | Hue Angle (h°) | Chroma Value | Maturity Index | |
---|---|---|---|---|
Treatment | ||||
C (Control) | 58.10 a | 102.87 a | 26.30 a | 2.3 a |
A (Ailanthus) | 58.61 a | 106.86 a | 30.59 a | 2.1 a |
Irrigation regime | ||||
F (Full) | 56.16 b | 97.64 b | 25.07 b | 2.5 a |
D (Deficit) | 60.54 a | 112.10 a | 31.81 a | 1.9 b |
Treatment × Irrigation | ||||
C × F | 56.14 a | 96.19 a | 22.79 b | 2.6 a |
C × D | 60.06 a | 109.56 a | 29.81 ab | 2.0 ab |
A × F | 56.19 a | 99.09 a | 27.36 ab | 2.4 ab |
A × D | 61.03 a | 114.64 a | 33.82 a | 1.8 b |
Peroxides (meq. O2/kg oil) | Acidity (g Oleic Acid/100 g oil) | K232 | K270 | ΔK | |
---|---|---|---|---|---|
Treatment | |||||
C (Control) | 14.5 a | 0.40 a | 1.10 b | 0.11 b | 0.00 |
A (Ailanthus) | 15.7 a | 0.39 a | 1.60 a | 0.17 a | 0.00 |
Irrigation regime | |||||
F (Full) | 16.7 a | 0.47 a | 1.39 a | 0.14 a | 0.00 |
D (Deficit) | 13.5 a | 0.32 b | 1.31 a | 0.25 a | 0.00 |
Treatment × Irrigation regime | |||||
C × F | 12.7 a | 0.48 a | 1.05 b | 0.10 c | 0.00 |
C × D | 11.9 a | 0.32 b | 1.16 b | 0.13 bc | 0.00 |
A × F | 16.2 a | 0.45 ab | 1.73 a | 0.18 a | 0.01 |
A × D | 15.1 a | 0.33 b | 1.47 a | 0.16 ab | 0.00 |
Total Phenols (mg Gallic Acid/kg oil) | Total o- Diphenols (mg Caffeic Acid/kg oil) | Total Flavonoids (mg Catechin/kg oil) | DPPH (μmol Trolox/kg oil) | FRAP (μmol Trolox/kg oil) | ABTS (μmol Trolox/kg oil) | |
---|---|---|---|---|---|---|
Treatment | ||||||
C (Control) | 227.47 a | 34.54 b | 164.60 a | 850.53 a | 1005.45 a | 1041.97 a |
A (Ailanthus) | 209.93 a | 52.04 a | 141.16 a | 696.92 a | 934.60 a | 983.27 a |
Irrigation regime | ||||||
F (Full) | 187.00 a | 36.43 a | 121.91 b | 598.51 b | 728.85 b | 865.73 b |
D (Deficit) | 250.40 a | 50.15 a | 183.84 a | 948.95 a | 1211.20 a | 1159.52 a |
Treatment × Irrigation regime | ||||||
C × F | 157.79 b | 33.91 b | 107.48 b | 522.99 b | 649.17 b | 799.18 b |
C × D | 297.16 a | 35.17 b | 221.71 a | 1178.07 a | 1361.74 a | 1284.76 a |
A × F | 216.22 ab | 38.94 ab | 136.35 ab | 674.02 b | 808.54 b | 932.27 b |
A × D | 203.65 ab | 65.13 a | 145.97 ab | 719.82 ab | 1060.66 ab | 1034.28 ab |
Treatment | Irrigation Regime | Treatment × Irrigation Regime | ||||||
---|---|---|---|---|---|---|---|---|
C (Control) | A (Ailanthus) | F (Full) | D (Deficit) | C × F | C × D | A × F | A × D | |
C16:0 | 14.01 a | 14.16 a | 14.28 a | 13.90 a | 14.20 a | 13.83 a | 14.36 a | 13.96 a |
C16:1 | 0.98 b | 1.08 a | 1.03 a | 1.04 a | 1.01 ab | 0.95 b | 1.04 ab | 1.12 a |
C17:0 | 0.04 a | 0.05 a | 0.04 a | 0.05 a | 0.04 a | 0.04 a | 0.04 a | 0.05 a |
C17:1 | 0.07 a | 0.07 a | 0.07 b | 0.08 a | 0.07 b | 0.07 ab | 0.07 ab | 0.08 a |
C18:0 | 2.61 a | 2.66 a | 2.81 a | 2.45 b | 2.86 a | 2.36 b | 2.78 a | 2.54 ab |
C18:1 | 71.92 a | 71.76 a | 71.47 a | 72.21 a | 70.79 a | 73.05 a | 72.15 a | 71.37 a |
C18:2 | 7.90 a | 7.49 a | 7.84 a | 7.56 a | 8.60 a | 7.21 a | 7.08 a | 7.91 a |
C20:0 | 0.37 a | 0.43 a | 0.39 a | 0.41 a | 0.38 a | 0.37 a | 0.40 a | 0.45 a |
C18:3 | 0.89 b | 1.04 a | 0.89 b | 1.04 a | 0.88 b | 0.89 b | 0.89 b | 1.19 a |
C20:1 | 0.26 a | 0.27 a | 0.25 b | 0.28 a | 0.25 ab | 0.26 ab | 0.24 b | 0.30 a |
C22:0 | 0.13 a | 0.13 a | 0.12 b | 0.14 a | 0.12 a | 0.14 a | 0.13 a | 0.14 a |
C24:0 | 0.05 b | 0.06 a | 0.06 a | 0.06 a | 0.06 a | 0.05 a | 0.06 a | 0.06 a |
SFAs | 17.12 a | 17.39 a | 17.61 a | 16.90 b | 17.55 ab | 16.69 b | 17.67 a | 17.11 ab |
MUFAs | 73.20 a | 73.18 a | 72.79 a | 73.59 a | 72.10 a | 74.31 a | 73.48 a | 72.87 a |
PUFAs | 8.79 a | 8.54 a | 8.73 a | 8.61 a | 9.48 a | 8.10 a | 7.97 a | 9.11 a |
UFAs | 81.99 a | 81.71 a | 81.51 a | 82.20 a | 81.58 a | 82.41 a | 81.45 a | 81.98 a |
SFAs/ UFAs | 0.21 a | 0.21 a | 0.22 a | 0.21 b | 0.22 a | 0.20 a | 0.22 a | 0.21 a |
MUFAs/ PUFAs | 8.79 a | 8.88 a | 8.82 a | 8.85 a | 8.19 a | 9.39 a | 9.45 a | 8.31 a |
C18:1/ C18:2 | 2.57 a | 2.82 a | 2.42 a | 2.97 a | 2.05 a | 3.09 a | 2.79 a | 2.85 a |
Squalene (mg/100 g oil) | 408.29 a | 484.67 a | 384.50 a | 508.46 a | 317.41 a | 499.18 a | 451.60 a | 517.74 a |
Factors | Peroxides (meq. O2/kg Oil) | Acidity (g Oleic Acid/100 g Oil) | K232 | K270 | ΔK |
---|---|---|---|---|---|
Storage period | |||||
Harvest | 17.50 c | 0.25 b | 1.35 c | 0.16 b | 0.00 |
6 months | 35.63 b | 0.47 a | 2.14 b | 0.15 b | 0.01 |
12 months | 51.75 a | 0.45 a | 2.89 a | 0.25 a | 0.01 |
Treatments | |||||
CF | 36.07 b | 0.45 a | 2.17 a | 0.20 a | 0.03 |
CD | 42.77 a | 0.35 b | 2.12 a | 0.17 b | 0.00 |
AF | 27.73 d | 0.38 b | 2.15 a | 0.19 ab | 0.01 |
AD | 33.27 c | 0.38 b | 2.07 a | 0.19 a | 0.01 |
Total Phenols (mg Gallic Acid/kg Oil) | Total o- Diphenols (mg Caffeic Acid/kg Oil) | Total Flavonoids (mg Catechin/kg Oil) | DPPH (μmol Trolox/kg Oil) | FRAP (μmol Trolox/kg Oil) | ABTS (μmol Trolox/kg Oil) | |
---|---|---|---|---|---|---|
Storage period | ||||||
Harvest | 269.84 a | 51.82 a | 223.71 a | 1043.4 a | 1017.46 a | 1059.71 a |
6 months | 195.00 b | 20.26 b | 118.41 b | 512.62 b | 783.2 b | 781.57 b |
12 months | 138.37 c | 12.74 c | 97.89 b | 610.69 b | 870.56 ab | 684.69 b |
Treatments | ||||||
CF | 210.83 b | 34.06 a | 170.43 a | 816.59 b | 991.82 b | 936.97 a |
CD | 106.09 c | 18.21 c | 68.38 b | 321.66 c | 524.91 c | 587.23 b |
AF | 250.93 a | 31.28 b | 168.55 a | 833.33 b | 973.14 b | 900.76 a |
AD | 236.43 ab | 29.54 b | 179.31 a | 917.38 a | 1071.77 a | 942.99 a |
Storage Period | Treatments | ||||||
---|---|---|---|---|---|---|---|
Harvest | 6 Months | 12 Months | CF | CD | AF | AD | |
C16:0 | 14.81 b | 16.52 a | 15.23 b | 14.93 b | 16.30 a | 15.00 b | 15.85 a |
C16:1 | 1.21 a | 1.08 b | 0.96 c | 1.09 ab | 1.08 ab | 1.05 b | 1.10 a |
C18:0 | 2.53 a | 2.36 b | 2.26 c | 2.48 a | 2.31 c | 2.40 b | 2.35 bc |
C18:1 | 69.89 c | 71.77 b | 73.25 a | 70.88 c | 70.35 c | 73.19 a | 72.12 b |
C18:2 | 7.09 a | 6.95 a | 7.04 a | 8.32 a | 7.54 b | 6.12 c | 6.12 c |
C20:0 | 0.42 a | 0.33 b | 0.29 b | 0.35 ab | 0.35 ab | 0.32 b | 0.37 a |
C18:3 | 0.90 a | 0.85 a | 0.78 b | 0.82 b | 0.91 a | 0.76 c | 0.88 a |
C20:1 | 0.27 a | 0.18 b | 0.20 b | 0.21 a | 0.22 a | 0.22 a | 0.21 a |
SFAs | 17.92 b | 19.21 a | 17.78 b | 17.79 b | 19.02 a | 17.76 b | 18.64 a |
MUFAs | 71.43 c | 73.02 b | 74.40 a | 72.19 c | 71.67 c | 74.48 a | 73.46 b |
PUFAs | 7.98 a | 7.80 b | 7.82 b | 9.14 a | 8.45 b | 6.88 c | 7.00 c |
UFAs | 79.41 c | 80.82 b | 82.22 a | 81.34 a | 80.11 b | 81.35 a | 80.45 b |
SFAs/ UFAs | 0.23 b | 0.24 a | 0.22 c | 0.22 b | 0.24 a | 0.22 b | 0.23 a |
MUFAs/ PUFAs | 9.13 b | 9.50 a | 9.69 a | 7.90 d | 8.50 c | 10.84 a | 10.50 b |
C18:1/ C18:2 | 0.04 a | 0.03 b | 0.03 c | 0.04 a | 0.03 b | 0.03 b | 0.03 b |
Squalene (mg/100 g oil) | 740.86 a | 200.38 b | 199.48 b | 286.31 a | 396.32 a | 403.93 a | 434.39 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karyda, A.-G.; Roussos, P.A. Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes. Appl. Sci. 2025, 15, 7678. https://doi.org/10.3390/app15147678
Karyda A-G, Roussos PA. Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes. Applied Sciences. 2025; 15(14):7678. https://doi.org/10.3390/app15147678
Chicago/Turabian StyleKaryda, Asimina-Georgia, and Petros Anargyrou Roussos. 2025. "Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes" Applied Sciences 15, no. 14: 7678. https://doi.org/10.3390/app15147678
APA StyleKaryda, A.-G., & Roussos, P. A. (2025). Influence of the Invasive Species Ailanthus altissima (Tree of Heaven) on Yield Performance and Olive Oil Quality Parameters of Young Olive Trees cv. Koroneiki Under Two Distinct Irrigation Regimes. Applied Sciences, 15(14), 7678. https://doi.org/10.3390/app15147678