Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aerogels Physical Properties
2.1.1. Density and Porosity
2.1.2. Wettability and Maximum Sorption Capacity
2.1.3. Reusability, Sorption Capacity, and Oil Recovery Rate
2.2. Morphological and Structural Characterization
2.2.1. Morphological Characterization
2.2.2. Structural Characterization
2.3. Analyses of Nitrogen and Carbon Contents of Aerogels
2.4. Compressive Mechanical Properties
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Synthesis Procedure for Aerogels
4.3. Analysis of Aerogels’ Physical Properties
4.3.1. Determination of Density and Porosity
4.3.2. Wettability Measurement
4.3.3. Maximum Sorption Capacity Measurement
4.3.4. Reusability Test and Oil Recovery Rate Analyses
4.3.5. Morphological and Structural Characterization
4.3.6. Analysis of Nitrogen and Carbon Content of Aerogels
4.3.7. Compressive Mechanical Properties (Mechanical Tests)
4.3.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MTMS | Methyltrimethoxysilane |
CO | Crude oil |
MDO | Marine diesel oil |
LO | Lubricating oil |
References
- Li, J.; Wan, C.; Lu, Y.; Sun, Q. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Front. Agric. Sci. Eng. 2014, 1, 46. [Google Scholar] [CrossRef]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Dilamian, M.; Noroozi, B. Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 2021, 251, 117016. [Google Scholar] [CrossRef]
- Gu, H.; Huo, X.; Chen, J.; El-Bahy, S.M.; El-Bahy, Z.M. An Overview of Cellulose Aerogel: Classification And Applications. ES Food Agrofor. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Uebe, J.; Kryzevicius, Z.; Katarzyte, M.; Overlingė, D.; Shevchenko, L. Sorption and Removal of Petroleum Hydrocarbons from Brackish Water by Hydrophobic Sorbents Immobilized with Fungi. J. Mar. Sci. Eng. 2023, 11, 1283. [Google Scholar] [CrossRef]
- Martins, B.F.; de Toledo, P.V.; Petri, D.F. Hydroxypropyl methylcellulose based aerogels: Synthesis, characterization and application as adsorbents for wastewater pollutants. Carbohydr. Polym. 2017, 155, 173–181. [Google Scholar] [CrossRef]
- ITOPF. Technical Information paper 8, Use of Sorbent Materials in Oil Spill Response. Available online: https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/TIPS_TAPS_new/TIP_8_Use_of_Sorbent_Materials_in_Oil_Spill_Response.pdf (accessed on 1 March 2025).
- Li, H.; Liu, L.; Yang, F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J. Mater. Chem. A 2013, 1, 3446. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef]
- El-Gendy, N.S.; Ali, H.R.; El-Nady, M.M.; Deriase, S.F.; Moustafa, Y.M.; Roushdy, M.I. Effect of different bioremediation techniques on petroleum biomarkers and asphaltene fraction in oil-polluted sea water. Desalination Water Treat. 2014, 52, 7484–7494. [Google Scholar] [CrossRef]
- Sayed, K.; Baloo, L.; Sharma, N.K. Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin. Int. J. Environ. Res. Public Health 2021, 18, 2226. [Google Scholar] [CrossRef]
- Barnes, N.M.; Damare, S.R.; Bhatawadekar, V.C.; Garg, A.; Lotlikar, N.P. Degradation of crude oil-associated polycyclic aromatic hydrocarbons by marine-derived fungi. 3 Biotech 2023, 13, 335. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, S.; Li, Y.; Klassen, W. Potential Approaches to Improving Biodegradation of Hydrocarbons for Bioremediation of Crude Oil Pollution. J. Environ. Prot. 2011, 02, 47–55. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Wang, Y.; Wan, Z.; Yang, Q.; Xu, Z.; Li, D.; Jin, Y. Mechanically strong wood-based composite aerogels as oil adsorbents and sensors. Ind. Crops Prod. 2022, 187, 115486. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, S.; Xu, D.; Li, Z.; Guo, J.; Li, Z.; Cheng, G. Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks. Polymers 2023, 15, 2323. [Google Scholar] [CrossRef]
- Trifković, K.; Milašinović, N.; Djordjević, V.; Zdunić, G.; Krušić, M.K.; Knežević-Jugović, Z.; Šavikin, K.; Nedović, V.; Bugarski, B. Chitosan crosslinked microparticles with encapsulated polyphenols: Water sorption and release properties. J. Biomater. Appl. 2015, 30, 618–631. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, F.; Yue, X.; Tian, Q.; Yang, D.; Zhang, T. Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. J. Environ. Chem. Eng. 2021, 9, 105857. [Google Scholar] [CrossRef]
- Cadamuro, F.; Ardenti, V.; Nicotra, F.; Russo, L. Alginate–Gelatin Self-Healing Hydrogel Produced via Static–Dynamic Crosslinking. Molecules 2023, 28, 2851. [Google Scholar] [CrossRef]
- Su, J.; Jiang, Z.; Fang, C.; Zheng, Y.; Yang, M.; Pei, L.; Huang, Z. The Reinforcing Effect of Waste Corrugated Paper Fiber on Polylactic Acid. Polymers 2022, 14, 3562. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Sagardui, A.; Huitink, D.; Chen, J.; Ubeyitogullari, A. Cellulose–Starch Composite Aerogels as Thermal Superinsulating Materials. ACS Omega 2024, 9, 49205–49213. [Google Scholar] [CrossRef]
- Costa, T.B.; Matias, P.M.C.; Sharma, M.; Murtinho, D.; Rosa, D.S.; Valente, A.J.M. Recent Advances on Starch-Based Adsorbents for Heavy Metal and Emerging Pollutant Remediation. Polymers 2024, 17, 15. [Google Scholar] [CrossRef]
- Rafieian, F.; Hosseini, M.; Jonoobi, M.; Yu, Q. Development of hydrophobic nanocellulose-based aerogel via chemical vapor deposition for oil separation for water treatment. Cellulose 2018, 25, 4695–4710. [Google Scholar] [CrossRef]
- Rodríguez-Fabià, S.; Torstensen, J.; Johansson, L.; Syverud, K. Hydrophobization of lignocellulosic materials part II: Chemical modification. Cellulose 2022, 29, 8957–8995. [Google Scholar] [CrossRef]
- Kharbanda, Y.; Urbańczyk, M.; Laitinen, O.; Kling, K.; Pallaspuro, S.; Komulainen, S.; Liimatainen, H.; Telkki, V.-V. Comprehensive NMR Analysis of Pore Structures in Superabsorbing Cellulose Nanofiber Aerogels. J. Phys. Chem. C 2019, 123, 30986–30995. [Google Scholar] [CrossRef]
- Paulauskiene, T.; Teresiute, A.; Uebe, J.; Tadzijevas, A. Sustainable Cross-Linkers for the Synthesis of Cellulose-Based Aerogels: Research and Application. J. Mar. Sci. Eng. 2022, 10, 491. [Google Scholar] [CrossRef]
- He, J.; Zhao, H.; Li, X.; Su, D.; Zhang, F.; Ji, H.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef]
- Budtova, T. Cellulose II aerogels: A review. Cellulose 2019, 26, 81–121. [Google Scholar] [CrossRef]
- Pereira, A.L.S.; Feitosa, J.P.A.; Morais, J.P.S.; Rosa, M.d.F. Bacterial cellulose aerogels: Influence of oxidation and silanization on mechanical and absorption properties. Carbohydr. Polym. 2020, 250, 116927. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Li, W.; Dou, M.; Ma, L.; Wang, Q.; Zhao, B.; Chen, G. Enhanced Sorption for the Oil Spills by SDS-Modified Rice Straw. Gels 2023, 9, 285. [Google Scholar] [CrossRef]
- Ferrer, G.G.; Pradas, M.M.; Ribelles, J.G.; Colomer, F.R.; Castilla-Cortázar, I.; Vidaurre, A. Influence of the nature of the porous confining network on the sorption, diffusion and mechanical properties of hydrogel IPNs. Eur. Polym. J. 2010, 46, 774–782. [Google Scholar] [CrossRef]
- Zhu, F. Starch based aerogels: Production, properties and applications. Trends Food Sci. Technol. 2019, 89, 1–10. [Google Scholar] [CrossRef]
- Anand, P.B.; Lakshmikanthan, A.; Gowdru Chandrashekarappa, M.P.; Selvan, C.P.; Pimenov, D.Y.; Giasin, K. Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites. Fibers 2022, 10, 56. [Google Scholar] [CrossRef]
- Chopra, L.; Manikanika. Extraction of cellulosic fibers from the natural resources: A short review. Mater. Today Proc. 2022, 48, 1265–1270. [Google Scholar] [CrossRef]
- Freitas, P.A.V.; Collado, P.A.; González-Martínez, C.; Chiralt, A. Producing Aerogels from Rice Straw Cellulose Obtained by a Green Method and Its Starch Blending. 2025. [Google Scholar] [CrossRef]
- Reed, S. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press: Cambridge, UK, 2005; 106p. [Google Scholar] [CrossRef]
- Gonzalez, V.; Cotte, M.; Vanmeert, F.; de Nolf, W.; Janssens, K. X-ray Diffraction Mapping for Cultural Heritage Science: A Review of Experimental Configurations and Applications. Chem.—A Eur. J. 2019, 26, 1703–1719. [Google Scholar] [CrossRef]
- Thi Thanh, H.L.; Nguyen Minh, A.T.; Huu, H.T. Development of reed-based cellulose aerogel: A sustainable solution for crude oil spill clean-up. R. Soc. Open Sci. 2025, 12, 241207. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.; Kim, H. Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System. Gels 2024, 10, 607. [Google Scholar] [CrossRef]
- Huang, J.; Gao, J.; Qi, L.; Gao, Q.; Fan, L. Preparation and Properties of Starch–Cellulose Composite Aerogel. Polymers 2023, 15, 4294. [Google Scholar] [CrossRef]
- Martins, V.R.; Freitas, C.J.B.; Castro, A.R.; Silva, R.M.; Gudiña, E.J.; Sequeira, J.C.; Salvador, A.F.; Pereira, M.A.; Cavaleiro, A.J. Corksorb Enhances Alkane Degradation by Hydrocarbonoclastic Bacteria. Front. Microbiol. 2021, 12, 618270. [Google Scholar] [CrossRef]
- Zanini, M.; Lavoratti, A.; Lazzari, L.K.; Galiotto, D.; Pagnocelli, M.; Baldasso, C.; Zattera, A.J. Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 2016, 24, 769–779. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Cai, W.; Cao, Y.; Sun, Y.; Tan, F. Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J. Chem. Eng. 2018, 35, 1119–1127. [Google Scholar] [CrossRef]
Cellulose Origin | Production Method | Apparent Viscosity 1 (kPa·s) | Reference |
---|---|---|---|
Recycled cardboard | Freeze drying (aerogel cross-linked with starch) | 4.65–4.83 | This study |
Bacterial cellulose | Freeze drying (aerogel) | - | [28] |
Cellulose pulp | Dissolution and regeneration (fibers) | 38 to 174 | [38] |
Microcrystalline cellulose | Solvent exchange and supercritical CO2 drying (aerogel cross-linked with starch) | - | [20] |
Potato starch and microcrystalline cellulose | Cross-linking with MBA, gelatinization and freeze drying. Starch–cellulose composite aerogel. | - | [39] |
Bacterial cellulose | Solvent exchange, impregnation in MTES and freeze drying (Bacterial cellulose—Si aerogel). | - | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, R.P.; Uebe, J.; Katarzyte, M.; Paulauskiene, T. Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption. Gels 2025, 11, 386. https://doi.org/10.3390/gels11060386
Espinosa RP, Uebe J, Katarzyte M, Paulauskiene T. Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption. Gels. 2025; 11(6):386. https://doi.org/10.3390/gels11060386
Chicago/Turabian StyleEspinosa, Rafael Picazo, Jochen Uebe, Marija Katarzyte, and Tatjana Paulauskiene. 2025. "Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption" Gels 11, no. 6: 386. https://doi.org/10.3390/gels11060386
APA StyleEspinosa, R. P., Uebe, J., Katarzyte, M., & Paulauskiene, T. (2025). Influence of Starch Cross-Linking on the Performance of Cellulose Aerogels for Oil Spills Sorption. Gels, 11(6), 386. https://doi.org/10.3390/gels11060386