Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = spiro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 7013 KiB  
Review
Fused-Linked and Spiro-Linked N-Containing Heterocycles
by Mikhail Yu. Moskalik and Bagrat A. Shainyan
Int. J. Mol. Sci. 2025, 26(15), 7435; https://doi.org/10.3390/ijms26157435 (registering DOI) - 1 Aug 2025
Abstract
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen [...] Read more.
Fused and spiro nitrogen-containing heterocycles play an important role as structural motifs in numerous biologically active natural products and pharmaceuticals. The review summarizes various approaches to the synthesis of three-, four-, five-, and six-membered fused and spiro heterocycles with one or two nitrogen atoms. The assembling of the titled compounds via cycloaddition, oxidative cyclization, intramolecular ring closure, and insertion of sextet intermediates—carbenes and nitrenes—is examined on a vast number of examples. Many of the reactions proceed with high regio-, stereo-, or diastereoselectivity and in excellent, up to quantitative, yield, which is of principal importance for the synthesis of chiral drug-like compounds. For most unusual and hardly predictable transformations, the mechanisms are given or referred to. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

24 pages, 1026 KiB  
Article
Straightforward Access to the Dispirocyclic Framework via Regioselective Intramolecular Michael Addition
by Weilun Cao, Junmin Dong, Xuan Pan and Zhanzhu Liu
Molecules 2025, 30(15), 3164; https://doi.org/10.3390/molecules30153164 - 29 Jul 2025
Viewed by 108
Abstract
In this article, an efficient and straightforward protocol for the construction of complex dispirocyclic skeletons via regioselective intramolecular Michael addition is presented. Diverse dispirocyclic compounds were synthesized under mild and transition-metal-free conditions with good to excellent yields. Most stereoisomers were conveniently separated by [...] Read more.
In this article, an efficient and straightforward protocol for the construction of complex dispirocyclic skeletons via regioselective intramolecular Michael addition is presented. Diverse dispirocyclic compounds were synthesized under mild and transition-metal-free conditions with good to excellent yields. Most stereoisomers were conveniently separated by column chromatography, and their relative configurations were identified by single-crystal X-Ray diffraction of representative compounds. A scale-up experiment validated the practicality of this method. In an in vitro assay, some dispirocyclic compounds exhibited potent cytotoxicity with an IC50 value of 10−6 mol/L. Full article
Show Figures

Figure 1

13 pages, 2686 KiB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Viewed by 329
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

15 pages, 2776 KiB  
Article
A Novel Fluorescent Probe AP for Highly Selective and Sensitive Detection of Hg2+ and Its Application in Environmental Monitoring
by Zhi Yang, Chaojie Lei, Qian Wang, Yonghui He and Senlin Tian
Processes 2025, 13(7), 2306; https://doi.org/10.3390/pr13072306 - 19 Jul 2025
Viewed by 330
Abstract
Mercury is a highly toxic heavy metal that poses serious threats to human health and environmental safety, highlighting the critical importance of accurate Hg2+ detection. In this study, a novel fluorescent probe AP was synthesized by conjugating fluorescein, serving as the luminescent [...] Read more.
Mercury is a highly toxic heavy metal that poses serious threats to human health and environmental safety, highlighting the critical importance of accurate Hg2+ detection. In this study, a novel fluorescent probe AP was synthesized by conjugating fluorescein, serving as the luminescent group, with pyridine-2-carboxaldehyde to enable selective Hg2+ detection. Hg2+ binds to AP in a 1:2 stoichiometric ratio, inducing the opening of the spiro-lactam ring and resulting in a significant fluorescence enhancement. The probe exhibited excellent selectivity and sensitivity toward Hg2+. A strong linear correlation was observed between its fluorescence intensity and Hg2+ concentration (R2 = 0.99952), with a detection limit of as low as 9.75 × 10−8 mol/L. The average recoveries of Hg2+ across various water matrices ranged from 95.23% to 103.40%, with relative standard deviations (RSDs) below 3.07%. These results indicate that the probe performs effectively in real water-sample testing. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

14 pages, 2994 KiB  
Article
The Effect of Cs-Controlled Triple-Cation Perovskite on Improving the Sensing Performance of Deep-Ultraviolet Photodetectors
by Jun Seo Kim, Sangmo Kim and Hyung Wook Choi
Appl. Sci. 2025, 15(14), 7982; https://doi.org/10.3390/app15147982 - 17 Jul 2025
Viewed by 283
Abstract
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the [...] Read more.
In this study, a UVC photodetector (PD) was fabricated by incorporating CsI into a conventional double-cation perovskite (FAMAPbI3) to enhance its stability. The device utilized a methylammonium iodide post-treatment solution to fabricate CsFAMAPbI3 perovskite thin films, which functioned as the primary light-absorbing layer in an NIP structure composed of n-type SnO2 and p-type spiro-OMeTAD. Perovskite films were fabricated and analyzed as a function of the Cs concentration to optimize the Cs content. The results demonstrated that Cs doping improved the crystallinity and phase stability of the films, leading to their enhanced electron mobility and photodetection performance. The UVC PD with an optimum Cs concentration exhibited a responsivity of 58.2 mA/W and a detectivity of 3.52 × 1014 Jones, representing an approximately 7% improvement over conventional structures. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 2020 KiB  
Article
Diastereoselective Synthesis and Biological Evaluation of Spiro[chromane-2,4′-pyrimidin]-2′(3′H)-ones as Novel Antimicrobial and Antioxidant Agents
by Alena S. Karandeeva, Natalia A. Bogdanova, Mariya V. Kabanova, Sergey I. Filimonov, Zhanna V. Chirkova, Anna A. Romanycheva, Valeria A. Panova, Anton A. Shetnev, Nurila A. Togyzbayeva, Saken A. Kanzhar, Nurbol O. Appazov and Kyrill Yu. Suponitsky
Molecules 2025, 30(14), 2954; https://doi.org/10.3390/molecules30142954 - 14 Jul 2025
Viewed by 601
Abstract
This study reports an improved diastereoselective synthesis of substituted spiro[chromane-2,4′-pyrimidin]-2′(3′H)-ones via the acid-catalyzed condensation of 6-styryl-4-aryldihydropyrimidin-2-ones with resorcinol, 2-methylresorcinol, and pyrogallol. The optimized method allows for the isolation of diastereomerically pure products, with stereoselectivity controlled by varying acid catalysts (e.g., methanesulfonic [...] Read more.
This study reports an improved diastereoselective synthesis of substituted spiro[chromane-2,4′-pyrimidin]-2′(3′H)-ones via the acid-catalyzed condensation of 6-styryl-4-aryldihydropyrimidin-2-ones with resorcinol, 2-methylresorcinol, and pyrogallol. The optimized method allows for the isolation of diastereomerically pure products, with stereoselectivity controlled by varying acid catalysts (e.g., methanesulfonic acid vs. toluenesulfonic acid) and solvent conditions. The synthesized compounds were evaluated for antimicrobial and antioxidant activities. Notably, the (2S*,4R*,6′R*)-diastereomers exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains with minimal inhibition concentration down to 2 µg/mL, while derivatives containing vicinal bisphenol moieties demonstrated potent antioxidant activity, with IC50 values (12.5 µg/mL) comparable to ascorbic acid. Pharmacokinetic analysis of selected hit compounds revealed favorable drug-like properties, including high gastrointestinal absorption and blood-brain barrier permeability. These findings highlight the potential of spirochromane-pyrimidine hybrids as promising candidates for further development in the treatment of infectious diseases and oxidative stress-related pathologies. Full article
(This article belongs to the Special Issue Design, Synthesis and Applications of Bioactive Compounds)
Show Figures

Figure 1

26 pages, 5733 KiB  
Article
Design Optimization of Cesium Contents for Mixed Cation MA1−xCsxPbI3-Based Efficient Perovskite Solar Cell
by Syed Abdul Moiz, Ahmed N. M. Alahmadi and Mohammed Saleh Alshaikh
Nanomaterials 2025, 15(14), 1085; https://doi.org/10.3390/nano15141085 - 13 Jul 2025
Viewed by 347
Abstract
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. [...] Read more.
Perovskite solar cells (PSCs) have already been reported as a promising alternative to traditional energy sources due to their excellent power conversion efficiency, affordability, and versatility, which is particularly relevant considering the growing worldwide demand for energy and increasing scarcity of natural resources. However, operational concerns under environmental stresses hinder its economic feasibility. Through the addition of cesium (Cs), this study investigates how to optimize perovskite solar cells (PSCs) based on methylammonium lead-iodide (MAPbI3) by creating mixed-cation compositions of MA1−xCsxPbI3 (x = 0, 0.25, 0.5, 0.75, 1) for devices A to E, respectively. The impact of cesium content on the following factors, such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE), was investigated using simulation software, with ITO/TiO2/MA1−xCsxPbI3/Spiro-OMeTAD/Au as a device architecture. Due to diminished defect density, the device with x = 0.5 (MA0.5Cs0.5PbI3) attains a maximum power conversion efficiency of 18.53%, with a Voc of 0.9238 V, Jsc of 24.22 mA/cm2, and a fill factor of 82.81%. The optimal doping density of TiO2 is approximately 1020 cm−3, while the optimal thicknesses of the electron transport layer (TiO2, 10–30 nm), the hole-transport layer (Spiro-OMeTAD, about 10–20 nm), and the perovskite absorber (750 nm) were identified to maximize efficiency. The inclusion of a small amount of Cs may improve photovoltaic responses; however, at elevated concentrations (x > 0.5), power conversion efficiency (PCE) diminished due to the presence of trap states. The results show that mixed-cation perovskite solar cells can be a great commercially viable option because they strike a good balance between efficiency and performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

15 pages, 1099 KiB  
Article
Enhanced Efficiency and Mechanical Stability in Flexible Perovskite Solar Cells via Phenethylammonium Iodide Surface Passivation
by Ibtisam S. Almalki, Tamader H. Alenazi, Lina A. Mansouri, Zainab H. Al Mubarak, Zainab T. Al Nahab, Sultan M. Alenzi, Yahya A. Alzahrani, Ghazal S. Yafi, Abdulmajeed Almutairi, Abdurhman Aldukhail, Bader Alharthi, Abdulaziz Aljuwayr, Faisal S. Alghannam, Anas A. Almuqhim, Huda Alkhaldi, Fawziah Alhajri, Nouf K. AL-Saleem, Masfer Alkahtani, Anwar Q. Alanazi and Masaud Almalki
Nanomaterials 2025, 15(14), 1078; https://doi.org/10.3390/nano15141078 - 11 Jul 2025
Viewed by 504
Abstract
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium [...] Read more.
Flexible perovskite solar cells (FPSCs) hold great promise for lightweight and wearable photovoltaics, but improving their efficiency and durability under mechanical stress remains a key challenge. In this work, we fabricate and characterize flexible planar FPSCs on a polyethylene terephthalate (PET). A phenethylammonium iodide (PEAI) surface passivation layer is introduced on the perovskite to form a two-dimensional capping layer, and its impact on device performance and stability is systematically studied. The champion PEAI-passivated flexible device achieves a power conversion efficiency (PCE) of ~16–17%, compared to ~14% for the control device without PEAI. The improvement is primarily due to an increased open-circuit voltage and fill factor, reflecting effective surface defect passivation and improved charge carrier dynamics. Importantly, mechanical bending tests demonstrate robust flexibility: the PEAI-passivated cells retain ~85–90% of their initial efficiency after 700 bending cycles (radius ~5 mm), significantly higher than the ~70% retention of unpassivated cells. This work showcases that integrating a PEAI surface treatment with optimized electron (SnO2) and hole (spiro-OMeTAD) transport layers (ETL and HTL) can simultaneously enhance the efficiency and mechanical durability of FPSCs. These findings pave the way for more reliable and high-performance flexible solar cells for wearable and portable energy applications. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

11 pages, 1373 KiB  
Article
High-Performance Multilevel and Ambipolar Nonvolatile Organic Transistor Memory Using Small-Molecule SFDBAO and PS as Charge Trapping Elements
by Lingzhi Jin, Wenjuan Xu, Yangzhou Qian, Tao Ji, Kefan Wu, Liang Huang, Feng Chen, Nanchang Huang, Shu Xing, Zhen Shao, Wen Li, Yuyu Liu and Linghai Xie
Nanomaterials 2025, 15(14), 1072; https://doi.org/10.3390/nano15141072 - 10 Jul 2025
Viewed by 279
Abstract
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration [...] Read more.
Organic nonvolatile transistor memories (ONVMs) using a hybrid spiro [fluorene-9,7′-dibenzo [c, h] acridine]-5′-one (SFDBAO)/polystyrene (PS) film as bulk-heterojunction-like tunneling and trapping elements were fabricated. From the characterization of the 10% SFDBAO/PS based on ONVM, a sterically hindered small-molecule SFDBAO with rigid orthogonal configuration and a donor–acceptor (D-A) structure as a molecular-scale charge storage element demonstrated significantly higher charge trapping ability than other small-molecule materials such as C60 and Alq3. The ONVM based on 10% SFDBAO/PS presents ambipolar memory behaviors with a wide memory window (146 V), a fast-switching speed (20 ms), an excellent retention time (over 5 × 104 s), and stable reversibility (36 cycles without any noticeable decay). By applying different gate voltages, the above ONVM shows reliable four-level data storage characteristics. The investigation demonstrates that the strategical bulk-heterojunction-like tunneling and trapping elements composed of small-molecule materials and polymers exhibit promising potential for high-performance ambipolar ONVMs. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

47 pages, 13613 KiB  
Article
Colorless Polyimides with Low Linear Coefficients of Thermal Expansion and Their Controlled Soft Adhesion/Easy Removability on Glass Substrates: Role of Modified One-Pot Polymerization Method
by Masatoshi Hasegawa, Takehiro Shinoda, Kanata Nakadai, Junichi Ishii, Tetsuo Okuyama, Kaya Tokuda, Hiroyuki Wakui, Naoki Watanabe and Kota Kitamura
Polymers 2025, 17(13), 1887; https://doi.org/10.3390/polym17131887 - 7 Jul 2025
Viewed by 537
Abstract
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) [...] Read more.
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB). This system was selected with the aim of exhibiting excellent optical transparency and low linear coefficient of thermal expansion (CTE) properties. However, fabricating this PI film via the conventional two-step process was challenging because of crack formation. In contrast, modified one-pot polymerization at 200 °C using a combined catalyst resulted in a homogeneous solution of PI with an exceptionally high molecular weight, yielding a flexible cast film. The solubility of PI plays a crucial role in its success. This study delves into the mechanism behind the significant catalytic effect on enhancing molecular weight. The CpODA/TFMB PI cast film simultaneously achieved very high optical transparency, an extremely high glass transition temperature (Tg = 411 °C), a significantly low linear coefficient of thermal expansion (CTE = 16.7 ppm/K), and sufficient film toughness, despite the trade-off between low CTE and high film toughness. The CpODA/TFMB system was modified by copolymerization with minor contents of another cycloaliphatic tetracarboxylic dianhydride, 5,5′-(1,4-phenylene)-exo-bis(hexahydro-4,7-methanoisobenzofuran-cis-exo-1,3-dione) (BzDAxx). This approach was effective in improving the film toughness without sacrificing the low CTE and other target properties. The peel strengths (σpeel) of laminates comprising surface-modified glass substrates and various colorless PI films were measured to evaluate the compatibility with the temporary adhesion process. Most colorless PI films studied were found to be incompatible. Additionally, no correlation between σpeel and PI structure was observed, making it challenging to identify the structural factors influencing σpeel control. Surprisingly, a strong correlation was observed between σpeel and CTE of the PI films, suggesting that the observed solid–solid lamination is closely linked to the unexpectedly high surface mobility of the PI films. The laminate using CpODA(90);BzDAxx(10)/TFMB copolymer exhibited suitable adhesion strength for the temporary adhesion process, while meeting other target properties. The modified one-pot polymerization method significantly contributed to the development of colorless PIs suitable for plastic substrates. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

7 pages, 1961 KiB  
Short Note
3′H-Spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one
by Brian A. Chalmers, David B. Cordes, Aidan P. McKay, Iain L. J. Patterson, Nadiia Vladymyrova and Iain A. Smellie
Molbank 2025, 2025(3), M2033; https://doi.org/10.3390/M2033 - 7 Jul 2025
Viewed by 219
Abstract
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not [...] Read more.
Target compound 3′H-spiro[dibenzo[c,h]xanthene-7,1′-isobenzofuran]-3′-one (1) has long been known to be a by-product obtained from the preparation of naphtholphthalein. The structure of compound 1 was elucidated in the early 20th century; however, this compound has not previously been fully characterized using modern techniques. In this report, 1H NMR and 13C NMR spectra are provided. X-ray crystallography is also used to characterize the title compound for the first time. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

17 pages, 1028 KiB  
Article
Angular 6/6/5/6-Annelated Pyrrolidine-2,3-Diones: Growth-Regulating Activity in Chlorella vulgaris
by Anastasia D. Novokshonova, Pavel V. Khramtsov and Ekaterina E. Khramtsova
Chemistry 2025, 7(4), 102; https://doi.org/10.3390/chemistry7040102 - 21 Jun 2025
Viewed by 384
Abstract
Chlorella vulgaris, a unicellular microalga with broad industrial applications, is a valuable source of bioactive compounds, including proteins, pigments, and lipids. However, optimizing its growth and metabolite production remains a challenge. This study investigates the potential of angular 6/6/5/6-annelated pyrrolidine-2,3-diones—structurally complex small [...] Read more.
Chlorella vulgaris, a unicellular microalga with broad industrial applications, is a valuable source of bioactive compounds, including proteins, pigments, and lipids. However, optimizing its growth and metabolite production remains a challenge. This study investigates the potential of angular 6/6/5/6-annelated pyrrolidine-2,3-diones—structurally complex small molecules resembling alkaloids and 13(14 → 8)abeo-steroids—as novel growth stimulants for C. vulgaris. A series of these compounds (20 structurally diverse derivatives, including 7 previously unreported ones) were synthesized and screened for their ability to enhance microalgal growth. Primary screening identified one compound as a promising candidate, significantly increasing algae cell concentration in microplate cultures. Subsequent validation in flask-scale experiments revealed that this candidate induced a 19% increase in protein content at 1 μmol/L, suggesting potential for protein enrichment in algal biomass. Stability studies of the candidate compound revealed its significant hydrolytic degradation in aqueous media. These findings highlight the potential of angular 6/6/5/6-annelated pyrrolidine-2,3-diones as modulators of microalgal metabolism, offering a new avenue for enhancing C. vulgaris biomass quality, particularly for protein-rich applications in the food and feed industries. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Figure 1

19 pages, 3823 KiB  
Article
Theoretical Performance of BaSnO3-Based Perovskite Solar Cell Designs Under Variable Light Intensities, Temperatures, and Donor and Defect Densities
by Nouf Alkathran, Shubhranshu Bhandari and Tapas K. Mallick
Designs 2025, 9(3), 76; https://doi.org/10.3390/designs9030076 - 18 Jun 2025
Viewed by 395
Abstract
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO [...] Read more.
Barium stannate (BaSnO3) has emerged as a promising alternative electron transport material owing to its superior electron mobility, resistance to UV degradation, and energy bandgap tunability, yet BaSnO3-based perovskite solar cells have not reached the efficiency levels of TiO2-based designs. This theoretical study presents a design-driven evaluation of BaSnO3-based perovskite solar cell architectures, incorporating MAPbI3 or FAMAPbI3 perovskite materials, Spiro-OMeTAD, or Cu2O hole transport materials as well as hole-free configurations, under varying light intensity. Using a systematic device modelling approach, we explore the influence of key design variables—such as layer thickness, donor density, and interface defect concentration—of BaSnO3 and operating temperature on the power conversion efficiency (PCE). Among the proposed designs, the FTO/BaSnO3/FAMAPbI3/Cu2O/Au heterostructure exhibits an exceptionally effective arrangement with PCE of 38.2% under concentrated light (10,000 W/m2, or 10 Sun). The structure also demonstrates strong thermal robustness up to 400 K, with a low temperature coefficient of −0.078% K−1. These results underscore the importance of material and structural optimisation in PSC design and highlight the role of high-mobility, thermally stable inorganic transport layers—BaSnO3 as the electron transport material (ETM) and Cu2O as the hole transport material (HTM)—in enabling efficient and stable photovoltaic performance under high irradiance. The study contributes valuable insights into the rational design of high-performance PSCs for emerging solar technologies. Full article
Show Figures

Graphical abstract

15 pages, 4545 KiB  
Article
CNT:TiO2-Doped Spiro-MeOTAD/Selenium Foam Heterojunction for High-Stability Self-Powered Broadband Photodetector
by Yuxin Huang, Pengfan Li, Xuewei Yu, Shiliang Feng, Yanfeng Jiang and Pingping Yu
Nanomaterials 2025, 15(12), 916; https://doi.org/10.3390/nano15120916 - 12 Jun 2025
Viewed by 414
Abstract
Photodetectors are critical components in modern optoelectronic systems due to their extensive applications in information conversion and image storage. Selenium (Se), an element with a low melting point, a broad spectral response, and rapid response speed, exhibits a disadvantage of high optical reflectivity, [...] Read more.
Photodetectors are critical components in modern optoelectronic systems due to their extensive applications in information conversion and image storage. Selenium (Se), an element with a low melting point, a broad spectral response, and rapid response speed, exhibits a disadvantage of high optical reflectivity, which leads to a reduction in response. Spiro-MeOTAD, featuring controllable energy bands and facile processing, has its practical application limited by inadequate thermal and environmental stability. In this study, Spiro-MeOTAD-1 with enhanced stability was prepared through the optimization of dopants (Zn(TFSI)2 and CNT:TiO2) within Spiro-MeOTAD, to create a Se-F/Spiro-MeOTAD-1 heterojunction photodetector by subsequently compositing with selenium foam (Se-F). The self-powered device demonstrates exceptional photovoltaic performance within the wavelength range of 350–800 nm at 0 V bias, exhibiting a maximum responsivity of 108 mA W−1, a switching ratio of 5 × 103, a specific detectivity of 2.96 × 1012 Jones, and a response time of 20 ms/50 ms. The device also demonstrates elevated environmental stability pretreatment at 140 °C following a one-month period. The photodetection stability of the Se-F/Spiro-MeOTAD-1 flexible PD was demonstrated by its capacity to retain 76.3% of its initial light current when subjected to 70 bending cycles at 30°. This finding further substantiates the photodetection stability of the material under various bending conditions. Further verification of the applicability of Spiro-MeOTAD-1 in Se-based devices establishes a novel paradigm for designing photodetectors with enhanced performance and stability. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

17 pages, 2784 KiB  
Article
Boron-Centered Compounds: Exploring the Optical Properties of Spiro Derivatives with Imidazo[1,5-a]Pyridines
by Anita Cinco, G. Attilio Ardizzoia, Stefano Brenna, Bruno Therrien and Gioele Colombo
Molecules 2025, 30(12), 2552; https://doi.org/10.3390/molecules30122552 - 11 Jun 2025
Viewed by 650
Abstract
Five boron-centered spiro compounds with imidazo[1,5-a]pyridin-3-yl phenols as ligands were synthesized and thoroughly characterized through 1H-NMR, 13C-NMR, infrared spectroscopy, and X-ray single crystal analysis. The fluorescence properties of these compounds in solution and in the solid state were investigated, [...] Read more.
Five boron-centered spiro compounds with imidazo[1,5-a]pyridin-3-yl phenols as ligands were synthesized and thoroughly characterized through 1H-NMR, 13C-NMR, infrared spectroscopy, and X-ray single crystal analysis. The fluorescence properties of these compounds in solution and in the solid state were investigated, revealing blue emission with wavelengths maxima dependent on the electronic properties of the substituents on the ligands in solution, and an orange-red emission in the solid state. Time-Dependent Density Functional Theory (TD-DFT) calculations were performed to describe the nature of the transitions Full article
(This article belongs to the Special Issue Boron Chemistry and Applications)
Show Figures

Graphical abstract

Back to TopTop