Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,225)

Search Parameters:
Keywords = spinel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2583 KiB  
Article
Burst-Mode Operation of End-Pumped, Passively Q-Switched (Er/Yb):Glass Lasers
by Stephen R. Chinn, Lew Goldberg and A. D. Hays
Photonics 2025, 12(8), 750; https://doi.org/10.3390/photonics12080750 - 25 Jul 2025
Viewed by 122
Abstract
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a [...] Read more.
We describe the output characteristics of a compact, passively Q-switched, diode-end-pumped (Er/Yb):Glass laser operating in a multi-pulse burst mode. Such operation enables much higher optical efficiency and larger output of total energy than possible with conventional solitary pulse emissions. The laser generated a 15-pulse burst of pulses at 1.5 μm with a combined energy of 5.8 mJ. Measurements of pulse energies, spatial mode characteristics, output beam divergence, and impact of thermal effects in the (Er/Yb):Glass are described. These results are compared to predictions of a numerical simulation using a finite-difference beam propagation method (FD-BPM) that incorporates thermal effects caused by distributed local heating in the glass. We show good agreement between the measured and simulated laser output characteristics. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

12 pages, 1897 KiB  
Article
Enhanced Extraction of Valuable Metals from Copper Slags by Disrupting Fayalite and Spinel Structures Using Sodium Sulfate
by Shafiq Alam, Behzod Tolibov, Madat Akhmedov, Umidjon Khujamov and Sardor Yarlakabov
Minerals 2025, 15(8), 771; https://doi.org/10.3390/min15080771 - 22 Jul 2025
Viewed by 575
Abstract
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition [...] Read more.
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition rate of 89%, highlighting its effectiveness in liberating valuable metals from the slag matrix. The optimal temperature for maximizing fayalite decomposition is determined to be 900 °C, which significantly enhances reaction kinetics and efficiency. Furthermore, extending the reaction time to 90 min resulted in the highest observed decomposition efficiency. Subsequent leaching experiments in sulfuric acid confirmed that the liberated metal transitioned into the solution phase was very effective, ensuring high metal recovery rates. The treated samples demonstrated metal recovery rates of 97% for copper (Cu), 96% for iron (Fe), and 93% for zinc (Zn). In contrast, the untreated samples exhibited considerably lower recovery rates, with copper at 61%, iron at 59%, and zinc at 65%. Additionally, this approach mitigates filtration challenges by preventing the formation of silica gel. These findings provide key operational parameters for optimizing metal recovery from copper slag and establish a solid foundation for advancing sustainable and efficient resource extraction research. Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Figure 1

10 pages, 2670 KiB  
Article
High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films
by Huayong Hu, Jie Liu, Liqing Chao, Xiangdong Ma, Jun Zhang, Yanbing Zhang and Bing Yang
Coatings 2025, 15(8), 861; https://doi.org/10.3390/coatings15080861 - 22 Jul 2025
Viewed by 265
Abstract
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and [...] Read more.
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and the hardness of the coating dropped to 12 gpa. Oxygen-doped coatings exhibit excellent oxidation resistance; this is especially the case for oxidized coatings, whose structure remains stable up to 900 °C in an oxidizing environment. Full article
(This article belongs to the Special Issue Advanced Thin Films of High-Entropy Alloys)
Show Figures

Figure 1

18 pages, 11678 KiB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 193
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

15 pages, 3240 KiB  
Article
Utilization of Chromite Spinel Powder in the Metallothermic Smelting of Low-Carbon Ferrochrome
by Yerbolat Makhambetov, Magzhan Kutzhanov, Ruslan Toleukadyr, Aibar Myrzagaliyev, Zhadiger Sadyk, Zhalgas Saulebek and Amankeldy Akhmetov
Processes 2025, 13(7), 2288; https://doi.org/10.3390/pr13072288 - 18 Jul 2025
Viewed by 296
Abstract
This study investigates the feasibility of producing low-carbon FeCr via metallothermic smelting of Cr concentrate and chromite spinel powder using a complex FeAlSiCa alloy as the reductant in an induction furnace. The proposed approach offers an alternative to conventional carbothermic and oxygen-blown technologies, [...] Read more.
This study investigates the feasibility of producing low-carbon FeCr via metallothermic smelting of Cr concentrate and chromite spinel powder using a complex FeAlSiCa alloy as the reductant in an induction furnace. The proposed approach offers an alternative to conventional carbothermic and oxygen-blown technologies, reducing both the carbon footprint and airborne emissions. Three charge compositions were tested with varying FeAlSiCa additions (12, 14, and 16 kg per 100 kg of Cr source) and partial replacement of Cr concentrate with up to 20% CSP. Thermodynamic and microstructural analyses were conducted, and the effects of the slag basicity, temperature profiles, and holding time were assessed. In optimal conditions, Cr recovery reached up to 80% with minimal Cr2O3 losses in slag, and the resulting alloys met ISO 5448-81 requirements for nitrogen-containing low-carbon FeCr. Microstructural examination revealed the formation of Fe-Cr solid solutions and CrN phases, with V incorporation from the FeAlSiCa alloy. The process proved stable and energy-efficient, producing compact, non-disintegrating slag. This study highlights the potential of induction furnace smelting and chromite spinel powder valorization as a sustainable path for FeCr production. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

13 pages, 2184 KiB  
Article
A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings
by Linwen Wang, Jiawei Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu and Ziwu Liu
Coatings 2025, 15(7), 826; https://doi.org/10.3390/coatings15070826 - 15 Jul 2025
Viewed by 210
Abstract
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr [...] Read more.
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr3C2-NiCrCoMo/nano-CeO2 coatings with superior high-temperature oxidation performance. This study compares the high-temperature oxidation behavior of these coating samples and explores their respective oxidation mechanisms. The results indicate that the addition of CoCrMo improves the compatibility between the oxide film and the coating, enhancing the microstructure and integrity of the oxide film. Compared to Cr3C2-NiCrCoMo coatings, the incorporation of nano-CeO2 promotes the reaction between oxides in the Cr3C2-NiCrCoMo/nano-CeO2 coating, increasing the content of binary spinel phases, reducing thermal stress at the oxide–coating interface, and improving the adhesion strength of the oxide film. As a result, the oxidation rate of the coating is reduced, and its oxidation resistance is improved. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

22 pages, 4482 KiB  
Article
Cu-Doping Induced Structural Transformation and Magnetocaloric Enhancement in CoCr2O4 Nanoparticles
by Ming-Kang Ho, Yun-Tai Yu, Hsin-Hao Chiu, K. Manjunatha, Shih-Lung Yu, Bing-Li Lyu, Tsu-En Hsu, Heng-Chih Kuo, Shuan-Wei Yu, Wen-Chi Tu, Chiung-Yu Chang, Chia-Liang Cheng, H. Nagabhushana, Tsung-Te Lin, Yi-Ru Hsu, Meng-Chu Chen, Yue-Lin Huang and Sheng Yun Wu
Nanomaterials 2025, 15(14), 1093; https://doi.org/10.3390/nano15141093 - 14 Jul 2025
Viewed by 312
Abstract
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a [...] Read more.
This study systematically investigates the impact of Cu2+ doping on the structural, magnetic, and magnetocaloric properties of CuxCo1−xCr2O4 nanoparticles synthesized via a solution combustion method. Cu incorporation up to x = 20% induces a progressive structural transformation from a cubic spinel to a trigonal corundum phase, as confirmed by X-ray diffraction and Raman spectroscopy. The doping process also leads to increased particle size, improved crystallinity, and reduced agglomeration. Magnetic measurements reveal a transition from hard to soft ferrimagnetic behavior with increasing Cu content, accompanied by a notable rise in the Curie temperature from 97.7 K (x = 0) to 140.2 K (x = 20%). The magnetocaloric effect (MCE) is significantly enhanced at higher doping levels, with the 20% Cu-doped sample exhibiting a maximum magnetic entropy change (−ΔSM) of 2.015 J/kg-K and a relative cooling power (RCP) of 58.87 J/kg under a 60 kOe field. Arrott plot analysis confirms that the magnetic phase transitions remain second-order in nature across all compositions. These results demonstrate that Cu doping is an effective strategy for tuning the magnetostructural response of CoCr2O4 nanoparticles, making them promising candidates for low-temperature magnetic refrigeration applications. Full article
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Engineered Cu0.5Ni0.5Al2O4/GCN Spinel Nanostructures for Dual-Functional Energy Storage and Electrocatalytic Water Splitting
by Abdus Sami, Sohail Ahmad, Ai-Dang Shan, Sijie Zhang, Liming Fu, Saima Farooq, Salam K. Al-Dawery, Hamed N. Harharah, Ramzi H. Harharah and Gasim Hayder
Processes 2025, 13(7), 2200; https://doi.org/10.3390/pr13072200 - 9 Jul 2025
Viewed by 340
Abstract
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, [...] Read more.
The rapid growth in population and industrialization have significantly increased global energy demand, placing immense pressure on finite and environmentally harmful conventional fossil fuel-based energy sources. In this context, the development of hybrid electrocatalysts presents a crucial solution for energy conversion and storage, addressing environmental challenges while meeting rising energy needs. In this study, the fabrication of a novel bifunctional catalyst, copper nickel aluminum spinel (Cu0.5Ni0.5Al2O4) supported on graphitic carbon nitride (GCN), using a solid-state synthesis process is reported. Because of its effective interface design and spinel cubic structure, the Cu0.5Ni0.5Al2O4/GCN nanocomposite, as synthesized, performs exceptionally well in electrochemical energy conversion, such as the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER), and energy storage. In particular, compared to noble metals, Pt/C- and IrO2-based water-splitting cells require higher voltages (1.70 V), while for the Cu0.5Ni0.5Al2O4/GCN nanocomposite, a voltage of 1.49 V is sufficient to generate a current density of 10 mA cm−2 in an alkaline solution. When used as supercapacitor electrode materials, Cu0.5Ni0.5Al2O4/GCN nanocomposites show a specific capacitance of 1290 F g−1 at a current density of 1 A g−1 and maintain a specific capacitance of 609 F g−1 even at a higher current density of 5 A g−1, suggesting exceptional rate performance and charge storage capacity. The electrode’s exceptional capacitive properties were further confirmed through the determination of the roughness factor (Rf), which represents surface heterogeneity and active area enhancement, with a value of 345.5. These distinctive characteristics render the Cu0.5Ni0.5Al2O4/GCN composite a compelling alternative to fossil fuels in the ongoing quest for a viable replacement. Undoubtedly, the creation of the Cu0.5Ni0.5Al2O4/GCN composite represents a significant breakthrough in addressing the energy crisis and environmental concerns. Owing to its unique composition and electrocatalytic characteristics, it is considered a feasible choice in the pursuit of ecologically sustainable alternatives to fossil fuels. Full article
Show Figures

Graphical abstract

17 pages, 5900 KiB  
Article
Thermally Induced Phase Transformation of Ni-Exchanged LTA Zeolite as an Alternative Route of Obtaining Stable Ni-Spinel Pigment
by Miomir Krsmanović, Aleksandar Popović, Smilja Marković, Bojana Milićević, Dušan Bučevac, Marjetka Savić and Mia Omerašević
Materials 2025, 18(14), 3225; https://doi.org/10.3390/ma18143225 - 8 Jul 2025
Viewed by 299
Abstract
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. [...] Read more.
This study investigates the thermally induced phase transformation of Ni-exchanged LTA zeolite as a dual-purpose method for nickel immobilization and the synthesis of stable ceramic pigments. The process describes a cost-effective and sustainable alternative to conventional pigment production, aligning with circular economy principles. Upon thermal treatment at temperatures ranging between 900 °C and 1300 °C, Ni-exchanged LTA zeolite undergoes a transformation to NiAl2O4 spinel, confirmed by XRPD, FTIR, and thermal analysis. Initially, NiO is formed, but as the temperature increases, it dissolves and transforms into NiAl2O4. Colorimetric studies revealed intensified blue pigmentation with increasing temperature, correlating with crystallite growth and structural evolution. SEM analysis showed morphological changes from cubic particles to sintered agglomerates, enhancing pigment stability and hardness. The Ni-LTA sample calcined at 1300 °C showed the highest hue angle, which was consistent with the formation of over 99 wt.% of the nickel aluminate crystalline phase at this temperature. The results demonstrate that Ni-LTA zeolite can be effectively transformed into durable greenish-blue pigments suitable for application in porcelain. This transformation is especially evident at 1300 °C, where a spinel phase (NiAlSi2O4) forms, with colorimetric values: L = 58.94, a* = –16.08, and b* = –15.90. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

35 pages, 6721 KiB  
Article
Magnetic Separation of Oil Spills from Water Using Cobalt Ferrite Nanoparticles with Fluorocarbon Functionalization
by Aljoša Košak, Ajra Hadela, Mojca Poberžnik and Aleksandra Lobnik
Int. J. Mol. Sci. 2025, 26(14), 6562; https://doi.org/10.3390/ijms26146562 - 8 Jul 2025
Viewed by 483
Abstract
In the present study, we synthesized fluorocarbon-coated cobalt ferrite (CoFe2O4) magnetic nanoparticles using alkoxysilanes such as trimethoxy(3,3,3-trifluoropropyl)silane (TFPTMS), trimethoxy(1H,1H,2H,2H-nonafluorohexyl)silane (NFHTMS), and triethoxy(1H,1H,2H,2H-perfluorodecyl)silane (PFDTES). The synthesized nanoparticles were characterized by various techniques, including X-ray diffractometry (XRD), transmission electron microscopy (TEM/HRTEM/EDXS), [...] Read more.
In the present study, we synthesized fluorocarbon-coated cobalt ferrite (CoFe2O4) magnetic nanoparticles using alkoxysilanes such as trimethoxy(3,3,3-trifluoropropyl)silane (TFPTMS), trimethoxy(1H,1H,2H,2H-nonafluorohexyl)silane (NFHTMS), and triethoxy(1H,1H,2H,2H-perfluorodecyl)silane (PFDTES). The synthesized nanoparticles were characterized by various techniques, including X-ray diffractometry (XRD), transmission electron microscopy (TEM/HRTEM/EDXS), Fourier transform infrared spectroscopy (FTIR), specific surface area measurements (BET), and magnetometry (VSM). To understand their surface characteristics, contact angle (CA) measurements were carried out, providing valuable insights into their hydrophobic properties. Among the samples of CoFe2O4 coated with fluoroalkoxysilanes, those with PFDTES surface coating had the highest water contact angle of 159.2°, indicating their superhydrophobic character. The potential of the prepared fluoroalkoxysilane-coated CoFe2O4 nanoparticles for the removal of waste low-SAPS synthetic engine oil from a model aqueous solution was evaluated based on three key parameters: adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%). All synthesized CoFe2O4 samples coated with fluoroalkoxysilane showed high oil adsorption efficiency, ranging from 87% to 98%. The average oil adsorption capacity for the samples was as follows: F3-SiO2@CoFe2O4 (3.1 g of oil/g of adsorbent) > F9-SiO2@CoFe2O4 (2.7 g of oil/g of adsorbent) > F17-SiO2@CoFe2O4 (1.5 g of oil/g of adsorbent) as a result of increasing oleophobicity with increasing fluorocarbon chain length. The desorption results, which showed 77–97% oil recovery, highlighted the possibility of reusing the adsorbents in multiple adsorption/desorption cycles. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 3869 KiB  
Article
Dual-Mode Integration of a Composite Nanoparticle in PES Membranes: Enhanced Performance and Photocatalytic Potential
by Rund Abu-Zurayk, Nour Alnairat, Haneen Waleed, Aya Khalaf, Duaa Abu-Dalo, Ayat Bozeya and Razan Afaneh
Nanomaterials 2025, 15(14), 1055; https://doi.org/10.3390/nano15141055 - 8 Jul 2025
Viewed by 380
Abstract
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity [...] Read more.
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity and photocatalytic potential as a photocatalytic membrane. The nanoparticles were synthesized using the sol–gel auto-combustion method and incorporated into PES membranes through mixed-matrix embedding (1 wt% and 3 wt%) and surface coating. X-ray diffraction confirmed the cubic spinel structure of the composite nanoparticles, which followed the second order kinetic reaction during the photodegradation–adsorption of crystal violet. The mixed-matrix membranes displayed a remarkable 170% increase in water flux and a 25% improvement in mechanical strength, accompanied by a slight decrease in contact angle at 1 wt% of nanoparticle loading. In contrast, the surface-coated membranes demonstrated a significant reduction in contact angle to 18°, indicating a highly hydrophilic surface and increased roughness. All membranes achieved high dye removal rates of 98–99%, but only the coated membrane system exhibited approximately 50% photocatalytic degradation, following mixed kinetics. These results highlight the critical importance of surface modification in advancing PES membranes, as it significantly reduces fouling and enhances water–material interaction qualities essential for future filtration and photocatalytic applications. Exploring hybrid strategies that combine both embedding and coating approaches may yield even greater synergies in membrane functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

11 pages, 2553 KiB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 181
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

16 pages, 4823 KiB  
Article
Magnetic Behavior of Co2+-Doped NiFe2O4 Nanoparticles with Single-Phase Spinel Structure
by Fatemeh Vahedrouz, Mehdi Alizadeh, Abbas Bahrami and Farnaz Heidari Laybidi
Crystals 2025, 15(7), 624; https://doi.org/10.3390/cryst15070624 - 4 Jul 2025
Viewed by 299
Abstract
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, [...] Read more.
This study reports the synthesis and characterization of CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanoparticles using a co-precipitation method. In this approach, metal ions are precipitated in the presence of a stabilizing agent, which is a common and effective method for nanoparticle preparation. The microstructure and magnetic properties were studied after calcination at 600 °C and heat treatment at 1000 °C. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the formation of a single-phase spinel structure. The average crystallite size, calculated using the (311) diffraction peak and the Scherrer equation, ranged from 13 to 19 nm. Scanning electron microscopy (SEM) showed that the nanoparticles had a spherical morphology. Thermogravimetric and differential thermal analysis (TG-DTA) revealed a three-step weight loss process. Magnetic measurements, including remanent magnetization, saturation magnetization, and coercivity, were performed using a vibrating sample magnetometer (VSM) at room temperature. The replacement of Ni2+ with Co2+ enhanced the magnetic properties, resulting in increased magnetic moment and anisotropy. These effects are attributed to changes in cation distribution, exchange interactions, surface effects, and magnetocrystalline anisotropy. Overall, Co2+ doping improved the magnetic behavior of nickel ferrite, indicating its potential for application in memory devices and magnetic recording media. Full article
Show Figures

Figure 1

34 pages, 4392 KiB  
Article
Post-Collisional Mantle Processes and Magma Evolution of the El Bola Mafic–Ultramafic Intrusion, Arabian-Nubian Shield, Egypt
by Khaled M. Abdelfadil, Hatem E. Semary, Asran M. Asran, Hafiz U. Rehman, Mabrouk Sami, A. Aldukeel and Moustafa M. Mogahed
Minerals 2025, 15(7), 705; https://doi.org/10.3390/min15070705 - 2 Jul 2025
Viewed by 541
Abstract
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate [...] Read more.
The El Bola mafic–ultramafic intrusion (EBMU) in Egypt’s Northern Eastern Desert represents an example of Neoproterozoic post-collisional layered mafic–ultramafic magmatism in the Arabian–Nubian Shield (ANS). The intrusion is composed of pyroxenite, olivine gabbro, pyroxene gabbro, pyroxene–hornblende gabbro, and hornblende-gabbro, exhibiting adcumulate to heter-adcumulate textures. Mineralogical and geochemical analyses reveal a coherent trend of fractional crystallization. Compositions of whole rock and minerals indicate a parental magma of ferropicritic affinity, derived from partial melting of a hydrous, metasomatized spinel-bearing mantle source, likely modified by subduction-related fluids. Geothermobarometric calculations yield crystallization temperatures from ~1120 °C to ~800 °C and pressures from ~5.2 to ~3.1 kbar, while oxygen fugacity estimates suggest progressive oxidation (log fO2 from −17.3 to −15.7) during differentiation. The EBMU displays Light Rare Earth element (LREE) enrichment, trace element patterns marked by Large Ion Lithophile Element (LILE) enrichment, Nb-Ta depletion and high LILE/HFSE (High Field Strength Elements) ratios, suggesting a mantle-derived source that remained largely unaffected by crustal contribution and was metasomatized by slab-derived fluids. Tectonic discrimination modeling suggests that EBMU magmatism was triggered by asthenospheric upwelling and slab break-off. Considering these findings alongside regional geologic features, we propose that the mafic–ultramafic intrusion from the ANS originated in a tectonic transition between subduction and collision (slab break-off) following the assembly of Gondwana. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 4689 KiB  
Article
Novel Core–Shell Metal Oxide Nanofibers with Advanced Optical and Magnetic Properties Deposited by Co-Axial Electrospinning
by Roman Viter, Viktor Zabolotnii, Martin Sahul, Mária Čaplovičová, Iryna Tepliakova, Viesturs Sints and Ambra Fioravanti
Nanomaterials 2025, 15(13), 1026; https://doi.org/10.3390/nano15131026 - 2 Jul 2025
Viewed by 390
Abstract
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and [...] Read more.
Co-axial electrospinning is one of the facile methods for the fabrication of core–shell metal oxides for environmental applications. Indeed, core–shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and pollutant removal via magnetic separation. This study focuses on the fabrication of novel Fe3O4-Fe2NiO4/NiO core–shell nanofibers with enhanced optical and magnetic properties using co-axial electrospinning. The aim is to optimize the fabrication parameters, particularly the amount of metal precursor in the starting solutions, to achieve well-defined core and shell structures (rather than single-phase spinels), and to investigate phase transitions, structural characteristics, as well as the optical and magnetic properties of the resulting nanofibers. Raman, XRD, and XPS results show several phases and high defect concentration in the NiO shell. The Fe3O4-Fe2NiO4/NiO core–shell nanofibers exhibit strong visible-light absorption and significant magnetization. These advanced properties highlight their potential in photocatalytic applications. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Fibers and Textiles)
Show Figures

Graphical abstract

Back to TopTop