Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Iron–Manganese Nanostructures
2.3. Physical and Chemical Characterization
3. Results and Discussion
3.1. Effect of Concentration on Iron–Manganese Phase
3.2. Influence of Temperature and Time on Morphology
3.2.1. Fe20Mn80—Mn-Rich System
3.2.2. Fe50Mn50—Equimolar Composition
3.2.3. Fe80Mn20—Fe-Rich System
3.3. Structure and Size of Nanoparticles
3.4. Implication of Atomic Bindings in the Phase Formation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Hui, S.; Li, Z.; Shi, Z.; Wang, Y.; Zhang, L.; Wu, H. Transition metal ions induce pH-dependent coordination bonds, ionic conductivity and in-situ magnetic particles for tailoring microwave absorption of gels. J. Mater. Sci. Technol. 2025, 239, 288–298. [Google Scholar] [CrossRef]
- Balakrishnan, P.D.; Sekar, C.; Ramesh, R.; Premkumar, T.; Kanchana, P. Solid-State synthesis of transition nanometal oxides (MnO2, Co3O4, NiO, and ZnO) for catalytic and electrochemical applications. J. Ind. Eng. Chem. 2024, 140, 434–453. [Google Scholar] [CrossRef]
- Rakshit, A.; Biswas, D.; Mondal, R.; Kabi, S.; Roy, D. Electrical conduction and optical characteristics of Li2O and Bi2O3 Co-doped zinc-phosphate glassy nanocomposites: A critical observation of mixed ionic electronic effect. Phys. B Condens. Matter 2024, 695, 416587. [Google Scholar] [CrossRef]
- Mahendra, G.; Roy, R.; Singh, A.K. VO2·xH2O nanoribbons as high-capacity cathode material for aqueous zinc-ion batteries: Electrolyte selection and performance optimization. J. Power Sources 2024, 624, 235515. [Google Scholar] [CrossRef]
- Huang, X.-T.; Sun, Y.-J.; Zhang, F.; Bai, C.-W.; Chen, F. Commercial nanomaterials in wastewater treatment: A case study on manganese oxide-activated periodate systems. Sep. Purif. Technol. 2024, 351, 127837. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, J.; Yan, L.; Wang, G.; Li, Q.; Zhou, L. Ti3O MOenes: Quantum Spin Hall Effect and Promising Semiconductors for Light-Harvesting. J. Phys. Chem. Lett. 2024, 15, 8360–8366. [Google Scholar] [CrossRef]
- Gaona-Esquivel, A.; Hernandez-M, D.S.; Hernández-Rodríguez, Y.; Cigarroa-Mayorga, O. The role of Nd as a dopant in Mn3O4NPs on the heat induction of artificial breast tissue due to the irradiation of microwaves. Mater. Chem. Phys. 2022, 292, 126822. [Google Scholar] [CrossRef]
- Wu, R.; Gao, R.; Li, Z.; Wang, J.; Wang, H.; Wu, Y.; Jiang, S.; Zhang, X.; Wang, X.; Liu, X.; et al. Nanoporous high-entropy Mn-Fe-Co-Ni amorphous oxide: Boosting oxygen evolution efficiency through electron spin-polarization. J. Mater. Sci. Technol. 2025, 238, 266–275. [Google Scholar] [CrossRef]
- Erdem, Ü.; Sarı, K.A.; Dogan, D.; Gungunes, H.; Arıcan, G.O.; Sarı, U. Fabrication and characterization of ferromagnetic FeMnCo/nanofibers for broadband electromagnetic wave absorption. J. Alloy. Compd. 2025, 1036, 181958. [Google Scholar] [CrossRef]
- Teymoori, S.M.; Alavi, S.M.; Rezaei, M. Catalytic oxidation of CO over the MOx − Co3O4 (M: Fe, mn, cu, ni, cr, and Zn) mixed oxide nanocatalysts at low temperatures. Sci. Rep. 2025, 15, 25808. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Khater, D.Z.; Amin, R.; El-Khatib, K. Nickel sulfide–transition metal sulfides bi-electrocatalyst supported on Nickel Foam for water splitting. J. Phys. Chem. Solids 2025, 207, 112906. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Sun, J.; Huo, Z.; Zhang, C.; Cheng, Z.; Cao, F.; Luo, B.; Liu, G.; Liu, X.; et al. A general and convenient strategy to construct spinel A Fe3-O4/porous carbon nanosheet (A = Co, Cu, Mn, Mg, Fe) composites as anodes for lithium ion batteries. Electrochim. Acta 2025, 538, 146927. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Huang, J.-I.; Tsai, H.-Y. Redox-induced engineering of amorphous/crystalline MnFeOx catalyst enables H2O/SO2-tolerant NOx abatement at ultra-low temperatures. J. Hazard. Mater. 2025, 489, 137618. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, S.; Yao, W.; Zhu, Y.; Qian, J.; Yang, J.; Yang, N. Design and synthesis of hierarchical MnO–Fe3O4@C/expanded graphite composite for sensitive electrochemical detection of bisphenol A. Talanta 2024, 269, 125453. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, D.; Peng, L.; Yang, Y.; Qi, K.; Yuan, D. Bimetal heterostructured nanoparticles anchored hierarchical carbon nanospheres with abundant active sites for high-performance liquid/flexible zinc-air batteries. J. Energy Storage 2025, 131, 117513. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.E. Tuning the size stability of MnFe2O4 nanoparticles: Controlling the morphology and tailoring of surface properties under the hydrothermal synthesis for functionalization with myricetin. Ceram. Int. 2021, 47, 32397–32406. [Google Scholar] [CrossRef]
- Montalto, M.; Freitas, W.d.S.; Mastronardo, E.; Ficca, V.C.; Placidi, E.; Baglio, V.; Mosca, E.; Vecchio, C.L.; Gatto, I.; Mecheri, B.; et al. Spinel-type high-entropy oxides for enhanced oxygen evolution reaction activity in anion exchange membrane water electrolyzers. Chem. Eng. J. 2025, 507, 160641. [Google Scholar] [CrossRef]
- Kogulakrishnan, K.; Nithiyanantham, S.; Mohan, R.; Giridharan, N.; Silambarasan, S.; Venkadesh, A.; Latha, V.; Gunasekaran, B.; Palaniappan, L. Structural, electrical and magnetic studies on Zn doped MnFe2O4 nanoparticles with via Sol-Gel approach. J. Mol. Struct. 2024, 1321, 140026. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, M.; Lei, Y.; Niu, H. Unconventional ice nucleation pathway induced by irregular silver iodide surfaces. Commun. Phys. 2025, 8, 7. [Google Scholar] [CrossRef]
- Guo, S.; Yu, M.; Lee, J.-K.; Qiu, M.; Yuan, D.; Hu, Z.; Zhu, C.; Wu, Y.; Shi, Z.; Ma, W.; et al. Separating nanobubble nucleation for transfer-resistance-free electrocatalysis. Nat. Commun. 2025, 16, 919. [Google Scholar] [CrossRef]
- Zürbes, K.R.; Bruns, T.M.; Mani, E.; Bandyopadhyay, S. Seed-mediated synthesis of gold nanorods with tannic acid as the reducing agent-A kinetic study. Colloids Surfaces A Physicochem. Eng. Asp. 2025, 725, 137483. [Google Scholar] [CrossRef]
- Kumar, N.; Kesari, S.; Krylova, S.; Rao, R.; Surovtsev, N.; Ishchenko, D.; Pryanichnikov, S.; Govorkova, T.; Bobin, S.; Lonchakov, A.; et al. Structural phase transition in crystalline HgSe: Low-temperature and high-pressure Raman spectroscopic investigation. J. Phys. Chem. Solids 2025, 207, 112977. [Google Scholar] [CrossRef]
- Li, X.; Zhong, L.; Li, Z.; Fu, Y.; Dong, M.; Min, X.; Zhao, S. Oxalic acid induced synthesis of renewable Ce-MnFe2O4 nanocatalysts with hybrid crystallinity for enhanced ozone decomposition. Environ. Res. 2025, 283, 122111. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Jagal, J.; Al-Omari, I.A.; Haider, M.; Gopi, C.V.M.; Obaidat, I.M.; Issa, B. Chitosan-PEG functionalized cube-shaped MnFe2O4 nanoparticles for curcumin delivery and magnetic hyperthermia against MDA-MB-231 cancer cells. Mater. Chem. Phys. 2025, 345, 131235. [Google Scholar] [CrossRef]
- Zaka, A.; Aftab, M.; Fatima, N.; Mashood, K.; Asghar, M.A.; Numan, A.; Ahmad, M.S.; Haider, A.; Iqbal, M.; Shah, W.A.; et al. MnFe2O4 thin film electrodes via AACVD: A facile route for enhanced oxygen evolution reaction. Fuel 2025, 395, 135179. [Google Scholar] [CrossRef]
- Majani, S.S.; Veena, M.A.; Hemanth Kumar, C.M.; Setty, P.B.S.; Iqbal, M.; Shivamallu, C.; Cull, C.A.; Hales, K.E.; Broadway, P.R.; Amachawadi, R.G. Sustainable synthesis of iron-doped manganese oxide nanoparticles for effective photo-accelerated detoxification of tetracycline. Sci. Rep. 2025, 15, 18081. [Google Scholar] [CrossRef]
- Collins-Martinez, V.H.; Cazares-Marroquin, J.F.; Salinas-Gutierrez, J.M.; Pantoja-Espinoza, J.C.; Lopez-Ortiz, A.; Melendez-Zaragoza, M.J. The thermodynamic evaluation and process simulation of the chemical looping steam methane reforming of mixed iron oxides. RSC Adv. 2021, 11, 684–699. [Google Scholar] [CrossRef]
- Mungse, P.; Saravanan, G.; Rayalu, S.; Labhsetwar, N. Mixed Oxides of Iron and Manganese as Potential Low-Cost Oxygen Carriers for Chemical Looping Combustion. Energy Technol. 2015, 3, 856–865. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Zhang, C.; Lao, Z.; Liu, X.; Xie, X.; Semiat, R.; Zhong, Z. Identifying the Fe3Mn3O8 phase as a superior catalyst for low-temperature catalytic oxidation of formaldehyde in air. Environ. Sci. Nano 2022, 9, 767–780. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Phan, N.H.; Do, M.H.; Ngo, K.T. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J. Hazard. Mater. 2011, 185, 653–661. [Google Scholar] [CrossRef]
- Yan, G.; Vlachos, D.G. Impact of Metal Clusters on the Lewis Acidity of Oxide Surfaces: First-Principles Calculations of Pt10/γ-Al2O3(110). J. Phys. Chem. C 2024, 128, 16996–17005. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Liang, S.; Zhang, S.; Ma, S.; Li, H.; Zhang, J.; Zheng, C. Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chem. Eng. J. 2018, 334, 216–224. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.; Gallardo-Hernández, S.; Talamás-Rohana, P. Tunable Raman scattering enhancement due to self-assembled Au nanoparticles layer on porous AAO: The influence of the alumina support. Appl. Surf. Sci. 2021, 536, 15099–15106. [Google Scholar] [CrossRef]
- Cihan, A.; Zarzycki, P.; Hao, Z. Surface Hydroxylation-Induced Electrostatic Forces Thicken Water Films on Quartz. Langmuir 2024, 40, 15099–15106. [Google Scholar] [CrossRef]
- Gabal, M.A.; Katowah, D.F.; Hussein, M.A.; Al-Juaid, A.A.; Awad, A.; Abdel-Daiem, A.M.; Saeed, A.; Hessien, M.M.; Asiri, A.M. Structural and Magnetoelectrical Properties of MFe2O4 (M = Co, Ni, Cu, Mg, and Zn) Ferrospinels Synthesized via an Egg-White Biotemplate. ACS Omega 2021, 6, 22180–22187. [Google Scholar] [CrossRef]
- Huan, V.D.; Van Quang, N.; Hanh, N.T.; Van, C.A.; Tu, N.; Trung, D.Q.; Van Du, N.; Hung, N.D.; Viet, D.X.; Bach, T.N.; et al. Dual green and red emitting Mn-doped MgAl2O4 phosphors for WLED and plant growth LED applications. J. Alloys Compd. 2025, 1027, 180621. [Google Scholar] [CrossRef]
- Feng, M.; Xu, Z.; Li, J.; Wang, N.; Lin, K.; Zhang, M. Insight into the role of reactive species on catalyst surface underlying peroxymonosulfate activation by P–Fe2MnO4 loaded on bentonite for trichloroethylene degradation. Chemosphere 2024, 357, 141943. [Google Scholar] [CrossRef]
- Oberdick, S.D.; Abdelgawad, A.; Moya, C.; Mesbahi-Vasey, S.; Kepaptsoglou, D.; Lazarov, V.K.; Evans, R.F.L.; Meilak, D.; Skoropata, E.; van Lierop, J.; et al. Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles. Sci. Rep. 2018, 8, 3425. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Ren, L.; Tu, B.; Wang, W.; Fu, Z. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part I: Optical and dielectric. J. Am. Ceram. Soc. 2021, 104, 5099–5109. [Google Scholar] [CrossRef]
- Xu, P.; Wang, H.; Ren, L.; Tu, B.; Wang, W.; Fu, Z. Theoretical study on composition-dependent properties of ZnO·nAl2O3 spinels. Part II: Mechanical and thermophysical. J. Am. Ceram. Soc. 2021, 104, 6455–6466. [Google Scholar] [CrossRef]
Sample Label According to Figure 2 | Hydrodynamic Diameter (nm) | Standard Deviation |
---|---|---|
a | 85.2 | 8.1 |
b | 93.8 | 9.2 |
c | 102.4 | 10.2 |
d | 120.5 | 12.4 |
e | 55.4 | 13.4 |
f | 148.4 | 14.6 |
g | 165.6 | 16.9 |
h | 170.5 | 15.5 |
i | 540.2 | 22.4 |
j | 90.1 | 9.2 |
k | 98.1 | 10.3 |
l | 105.2 | 11.3 |
m | 115.6 | 12.4 |
n | 65.2 | 12.0 |
o | 135.3 | 13.2 |
p | 150.5 | 14.3 |
q | 160.5 | 14.1 |
r | 170.5 | 15.2 |
s | 95.5 | 10.6 |
t | 100.0 | 10.2 |
u | 108.4 | 11.3 |
v | 118.1 | 11.3 |
w | 125.8 | 12.7 |
x | 132.9 | 13.1 |
y | 140.1 | 13.2 |
z | 150.6 | 14.5 |
zi | 75.5 | 15.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cigarroa-Mayorga, O.E.; Torres-Sandoval, I.; Munguía-Fuentes, M.d.R.; Hernández-Rodríguez, Y.M. Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method. Crystals 2025, 15, 808. https://doi.org/10.3390/cryst15090808
Cigarroa-Mayorga OE, Torres-Sandoval I, Munguía-Fuentes MdR, Hernández-Rodríguez YM. Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method. Crystals. 2025; 15(9):808. https://doi.org/10.3390/cryst15090808
Chicago/Turabian StyleCigarroa-Mayorga, Oscar Eduardo, Indira Torres-Sandoval, María del Rosario Munguía-Fuentes, and Yazmín Mariela Hernández-Rodríguez. 2025. "Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method" Crystals 15, no. 9: 808. https://doi.org/10.3390/cryst15090808
APA StyleCigarroa-Mayorga, O. E., Torres-Sandoval, I., Munguía-Fuentes, M. d. R., & Hernández-Rodríguez, Y. M. (2025). Influence of Temperature on the Structural Evolution of Iron–Manganese Oxide Nanoparticles in the Hydrothermal Method. Crystals, 15(9), 808. https://doi.org/10.3390/cryst15090808