Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = spindle assembly checkpoint (SAC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6095 KiB  
Article
Targeting APC/C Ubiquitin E3-Ligase Activation with Pyrimidinethylcarbamate Apcin Analogues for the Treatment of Breast Cancer
by Maria Kapanidou, Natalie L. Curtis, Sandra S. Diaz-Minguez, Sandra Agudo-Alvarez, Alfredo Rus Sanchez, Ammar Mayah, Rosette Agena, Paul Brennan, Paula Morales, Raul Benito-Arenas, Agatha Bastida and Victor M. Bolanos-Garcia
Biomolecules 2024, 14(11), 1439; https://doi.org/10.3390/biom14111439 - 12 Nov 2024
Cited by 2 | Viewed by 1722
Abstract
Activation of the ubiquitin ligase APC/C by the protein Cdc20 is an essential requirement for proper cell division in higher organisms, including humans. APC/C is the ultimate effector of the Spindle Assembly Checkpoint (SAC), the signalling system that monitors the proper attachment of [...] Read more.
Activation of the ubiquitin ligase APC/C by the protein Cdc20 is an essential requirement for proper cell division in higher organisms, including humans. APC/C is the ultimate effector of the Spindle Assembly Checkpoint (SAC), the signalling system that monitors the proper attachment of chromosomes to microtubules during cell division. Defects in this process result in genome instability and cancer. Interfering with APC/C substrate ubiquitylation in cancer cells delays mitotic exit, which induces cell death. Therefore, impairing APC/C function represents an opportunity for the treatment of cancer and malignancies associated with SAC dysregulation. In this study, we report a new class of pyrimidinethylcarbamate apcin analogues that interfere with APC/C activity in 2D and 3D breast cancer cells. The new pyrimidinethylcarbamate apcin analogues exhibited higher cytotoxicity than apcin in all breast cancer cell subtypes investigated, with much lower cytotoxicity observed in fibroblasts and RPE-1 cells. Further molecular rationalisation of apcin and its derivatives was conducted using molecular docking studies. These structural modifications selected from the in silico studies provide a rational basis for the development of more potent chemotypes to treat highly aggressive breast cancer and possibly other aggressive tumour types of diverse tissue origins. Full article
(This article belongs to the Collection Feature Papers in Chemical Biology)
Show Figures

Figure 1

39 pages, 2469 KiB  
Review
Exploring the Therapeutic Implications of Co-Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer
by Mafalda Calheiros-Lobo, João P. N. Silva, Bárbara Pinto, Luís Monteiro, Patrícia M. A. Silva and Hassan Bousbaa
Pharmaceutics 2024, 16(9), 1196; https://doi.org/10.3390/pharmaceutics16091196 - 11 Sep 2024
Cited by 2 | Viewed by 1953
Abstract
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading [...] Read more.
Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC’s genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80–90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates. Full article
Show Figures

Figure 1

13 pages, 2960 KiB  
Article
Overexpression of BubR1 Mitotic Checkpoint Protein Predicts Short Survival and Influences the Progression of Cholangiocarcinoma
by Nongnapas Pokaew, Piya Prajumwongs, Kulthida Vaeteewoottacharn, Sopit Wongkham, Chawalit Pairojkul and Kanlayanee Sawanyawisuth
Biomedicines 2024, 12(7), 1611; https://doi.org/10.3390/biomedicines12071611 - 19 Jul 2024
Viewed by 1454
Abstract
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This [...] Read more.
Budding Uninhibited by Benzimidazole-Related 1 (BubR1) or BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential component of the spindle assembly checkpoint (SAC), which controls chromosome separation during mitosis. Overexpression of BubR1 has been associated with the progression of various cancers. This study demonstrated that high expression of BubR1 correlated with cholangiocarcinogenesis in a hamster cholangiocarcinoma (CCA) model and was associated with shorter survival in patients with CCA. Co-expression of BubR1 and MPS1, which is a SAC-related protein, indicated a shorter survival rate in patients with CCA. Knockdown of BubR1 expression by specific siRNA (siBubR1) significantly decreased cell proliferation and colony formation while inducing apoptosis in CCA cell lines. In addition, suppression of BubR1 inhibited migration and invasion abilities via epithelial–mesenchymal transition (EMT). A combination of siBubR1 and chemotherapeutic drugs showed synergistic effects in CCA cell lines. Taken together, this finding suggested that BubR1 had oncogenic functions, which influenced CCA progression. Suppression of BubR1 might be an alternative option for CCA treatment. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

14 pages, 1376 KiB  
Review
Chromosome Division in Early Embryos—Is Everything under Control? And Is the Cell Size Important?
by Adela Horakova, Marketa Konecna and Martin Anger
Int. J. Mol. Sci. 2024, 25(4), 2101; https://doi.org/10.3390/ijms25042101 - 9 Feb 2024
Cited by 2 | Viewed by 3287
Abstract
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the [...] Read more.
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 4725 KiB  
Article
Maximizing Anticancer Response with MPS1 and CENPE Inhibition Alongside Apoptosis Induction
by Bárbara Pinto, João P. N. Silva, Patrícia M. A. Silva, Daniel José Barbosa, Bruno Sarmento, Juliana Carvalho Tavares and Hassan Bousbaa
Pharmaceutics 2024, 16(1), 56; https://doi.org/10.3390/pharmaceutics16010056 - 29 Dec 2023
Cited by 4 | Viewed by 2443
Abstract
Antimitotic compounds, targeting key spindle assembly checkpoint (SAC) components (e.g., MPS1, Aurora kinase B, PLK1, KLP1, CENPE), are potential alternatives to microtubule-targeting antimitotic agents (e.g., paclitaxel) to circumvent resistance and side effects associated with their use. They can be classified into mitotic blockers, [...] Read more.
Antimitotic compounds, targeting key spindle assembly checkpoint (SAC) components (e.g., MPS1, Aurora kinase B, PLK1, KLP1, CENPE), are potential alternatives to microtubule-targeting antimitotic agents (e.g., paclitaxel) to circumvent resistance and side effects associated with their use. They can be classified into mitotic blockers, causing SAC-induced mitotic arrest, or mitotic drivers, pushing cells through aberrant mitosis by overriding SAC. These drugs, although advancing to clinical trials, exhibit unsatisfactory cancer treatment outcomes as monotherapy, probably due to variable cell fate responses driven by cyclin B degradation and apoptosis signal accumulation networks. We investigated the impact of inhibiting anti-apoptotic signals with the BH3-mimetic navitoclax in lung cancer cells treated with the selective CENPE inhibitor GSK923295 (mitotic blocker) or the MPS1 inhibitor BAY1217389 (mitotic driver). Our aim was to steer treated cancer cells towards cell death. BH3-mimetics, in combination with both mitotic blockers and drivers, induced substantial cell death, mainly through apoptosis, in 2D and 3D cultures. Crucially, these synergistic concentrations were less toxic to non-tumor cells. This highlights the significance of combining BH3-mimetics with antimitotics, either blockers or drivers, which have reached the clinical trial phase, to enhance their effectiveness. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

16 pages, 1147 KiB  
Review
Apoptosis as a Barrier against CIN and Aneuploidy
by Johannes G. Weiss, Filip Gallob, Patricia Rieder and Andreas Villunger
Cancers 2023, 15(1), 30; https://doi.org/10.3390/cancers15010030 - 21 Dec 2022
Cited by 3 | Viewed by 3350
Abstract
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68–90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy [...] Read more.
Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68–90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the “aneuploidy paradox” that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy. Full article
(This article belongs to the Special Issue Insights on Mechanisms of Cell Death in Cancer Cells)
Show Figures

Figure 1

17 pages, 4898 KiB  
Article
Computational Biology Dynamics of Mps1 Kinase Molecular Interactions with Isoflavones Reveals a Chemical Scaffold with Potential to Develop New Therapeutics for the Treatment of Cancer
by Lauren Pugh, Alisha Pancholi, Priscila Celeste Purat, Sandra Agudo-Alvarez, Raúl Benito-Arenas, Agatha Bastida and Victor M. Bolanos-Garcia
Int. J. Mol. Sci. 2022, 23(22), 14228; https://doi.org/10.3390/ijms232214228 - 17 Nov 2022
Cited by 3 | Viewed by 3064
Abstract
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in [...] Read more.
The protein kinase Mps1 (monopolar spindle 1) is an important regulator of the Spindle Assembly Checkpoint (SAC), the evolutionary conserved checkpoint system of higher organisms that monitors the proper bipolar attachment of all chromosomes to the mitotic spindle during cell division. Defects in the catalytic activity and the transcription regulation of Mps1 are associated with genome instability, aneuploidy, and cancer. Moreover, multiple Mps1 missense and frameshift mutations have been reported in a wide range of types of cancer of different tissue origin. Due to these features, Mps1 arises as one promising drug target for cancer therapy. In this contribution, we developed a computational biology approach to study the dynamics of human Mps1 kinase interaction with isoflavones, a class of natural flavonoids, and compared their predicted mode of binding with that observed in the crystal structure of Mps1 in complex with reversine, a small-sized inhibitor of Mps1 and Aurora B kinases. We concluded that isoflavones define a chemical scaffold that can be used to develop new Mps1 inhibitors for the treatment of cancer associated with Mps1 amplification and aberrant chromosome segregation. In a broader context, the present report illustrates how modern chemoinformatics approaches can accelerate drug development in oncology. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in UK)
Show Figures

Figure 1

16 pages, 3461 KiB  
Article
BUBR1 as a Prognostic Biomarker in Canine Oral Squamous Cell Carcinoma
by Leonor Delgado, Luís Monteiro, Patrícia Silva, Hassan Bousbaa, Fernanda Garcez, João Silva, Paula Brilhante-Simões, Isabel Pires and Justina Prada
Animals 2022, 12(22), 3082; https://doi.org/10.3390/ani12223082 - 9 Nov 2022
Cited by 3 | Viewed by 2634
Abstract
Chromosomal instability (CIN) plays a key role in the carcinogenesis of several human cancers and can be related to the deregulation of core components of the spindle assembly checkpoint (SAC) including BUBR1 protein kinase. These proteins have been related to tumor development and [...] Read more.
Chromosomal instability (CIN) plays a key role in the carcinogenesis of several human cancers and can be related to the deregulation of core components of the spindle assembly checkpoint (SAC) including BUBR1 protein kinase. These proteins have been related to tumor development and poor survival rates in human patients with oral squamous cell carcinoma (OSCC). To investigate the expression of the SAC proteins BUBR1, BUB3 and SPINDLY and also Ki-67 in canine OSCC, we performed an immunohistochemical evaluation in 60 canine OSCCs and compared them with clinical and pathological variables. BUBR1, Ki-67, BUB3 and SPINDLY protein expressions were detected in all cases and classified as with a high-expression extent score in 31 (51.7%) cases for BUBR1, 33 (58.9%) cases for BUB3 and 28 (50.9%) cases for SPINDLY. Ki-67 high expression was observed in 14 (25%) cases. An independent prognostic value for BUBR1 was found, where high BUBR1 expression was associated with lower survival (p = 0.012). These results indicate that BUBR1 expression is an independent prognostic factor in these tumors, suggesting the potential use for clinical applications as a prognostic biomarker and also as a pharmacological target in canine OSCC. Full article
Show Figures

Figure 1

19 pages, 1823 KiB  
Review
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome
by Marco A. Andonegui-Elguera, Rodrigo E. Cáceres-Gutiérrez, Alejandro López-Saavedra, Fernanda Cisneros-Soberanis, Montserrat Justo-Garrido, José Díaz-Chávez and Luis A. Herrera
Int. J. Mol. Sci. 2022, 23(15), 8704; https://doi.org/10.3390/ijms23158704 - 5 Aug 2022
Cited by 10 | Viewed by 5330
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is [...] Read more.
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability. Full article
Show Figures

Figure 1

16 pages, 3739 KiB  
Article
Yeast Kinesin-5 Motor Protein CIN8 Promotes Accurate Chromosome Segregation
by Delaney Sherwin, Abigail Huetteman and Yanchang Wang
Cells 2022, 11(14), 2144; https://doi.org/10.3390/cells11142144 - 7 Jul 2022
Cited by 2 | Viewed by 3509
Abstract
Accurate chromosome segregation depends on bipolar chromosome–microtubule attachment and tension generation on chromosomes. Incorrect chromosome attachment results in chromosome missegregation, which contributes to genome instability. The kinetochore is a protein complex that localizes at the centromere region of a chromosome and mediates chromosome–microtubule [...] Read more.
Accurate chromosome segregation depends on bipolar chromosome–microtubule attachment and tension generation on chromosomes. Incorrect chromosome attachment results in chromosome missegregation, which contributes to genome instability. The kinetochore is a protein complex that localizes at the centromere region of a chromosome and mediates chromosome–microtubule interaction. Incorrect chromosome attachment leads to checkpoint activation to prevent anaphase onset. Kinetochore detachment activates the spindle assembly checkpoint (SAC), while tensionless kinetochore attachment relies on both the SAC and tension checkpoint. In budding yeast Saccharomyces cerevisiae, kinesin-5 motor proteins Cin8 and Kip1 are needed to separate spindle pole bodies for spindle assembly, and deletion of CIN8 causes lethality in the absence of SAC. To study the function of Cin8 and Kip1 in chromosome segregation, we constructed an auxin-inducible degron (AID) mutant, cin8-AID. With this conditional mutant, we first confirmed that cin8-AID kip1∆ double mutants were lethal when Cin8 is depleted in the presence of auxin. These cells arrested in metaphase with unseparated spindle pole bodies and kinetochores. We further showed that the absence of either the SAC or tension checkpoint was sufficient to abolish the cell-cycle delay in cin8-AID mutants, causing chromosome missegregation and viability loss. The tension checkpoint-dependent phenotype in cells with depleted Cin8 suggests the presence of tensionless chromosome attachment. We speculate that the failed spindle pole body separation in cin8 mutants could increase the chance of tensionless syntelic chromosome attachments, which depends on functional tension checkpoint for survival. Full article
Show Figures

Figure 1

11 pages, 1502 KiB  
Review
BUB3, beyond the Simple Role of Partner
by Patrícia M. A. Silva and Hassan Bousbaa
Pharmaceutics 2022, 14(5), 1084; https://doi.org/10.3390/pharmaceutics14051084 - 18 May 2022
Cited by 14 | Viewed by 4138
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 [...] Read more.
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume II))
Show Figures

Figure 1

12 pages, 1377 KiB  
Article
Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts
by Danilo Cilluffo, Roberta Flavia Chiavetta, Serena Bivona, Flavia Contino, Claudia Coronnello, Salvatore Feo, Aldo Di Leonardo and Viviana Barra
Genes 2021, 12(9), 1322; https://doi.org/10.3390/genes12091322 - 26 Aug 2021
Cited by 3 | Viewed by 2812
Abstract
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore–microtubule attachments jeopardize chromosome stability, leading to aneuploidy, [...] Read more.
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore–microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore–microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial–mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells. Full article
(This article belongs to the Special Issue Molecular Insights into Centromere Assembly and Dysfunction)
Show Figures

Figure 1

45 pages, 10628 KiB  
Review
Second-Generation Antimitotics in Cancer Clinical Trials
by Pedro Novais, Patrícia M. A. Silva, Isabel Amorim and Hassan Bousbaa
Pharmaceutics 2021, 13(7), 1011; https://doi.org/10.3390/pharmaceutics13071011 - 2 Jul 2021
Cited by 39 | Viewed by 5727
Abstract
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged [...] Read more.
Mitosis represents a promising target to block cancer cell proliferation. Classical antimitotics, mainly microtubule-targeting agents (MTAs), such as taxanes and vinca alkaloids, are amongst the most successful anticancer drugs. By disrupting microtubules, they activate the spindle assembly checkpoint (SAC), which induces a prolonged delay in mitosis, expected to induce cell death. However, resistance, toxicity, and slippage limit the MTA’s effectiveness. With the desire to overcome some of the MTA’s limitations, mitotic and SAC components have attracted great interest as promising microtubule-independent targets, leading to the so-called second-generation antimitotics (SGAs). The identification of inhibitors against most of these targets, and the promising outcomes achieved in preclinical assays, has sparked the interest of academia and industry. Many of these inhibitors have entered clinical trials; however, they exhibited limited efficacy as monotherapy, and failed to go beyond phase II trials. Combination therapies are emerging as promising strategies to give a second chance to these SGAs. Here, an updated view of the SGAs that reached clinical trials is here provided, together with future research directions, focusing on inhibitors that target the SAC components. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume II))
Show Figures

Figure 1

22 pages, 7731 KiB  
Article
Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma
by Paula Aldaz, Jaione Auzmendi-Iriarte, Maika Durántez, Irene Lasheras-Otero, Estefania Carrasco-Garcia, M. Victoria Zelaya, Laura Bragado, Ana Olías-Arjona, Larraitz Egaña, Nicolás Samprón, Idoia Morilla, Marta Redondo-Muñoz, Mikel Rico, Massimo Squatrito, Marta Maria-Alonso, Joaquín Fernández-Irigoyen, Enrique Santamaria, Iñaki M. Larráyoz, Claudia Wellbrock, Ander Matheu and Imanol Arozarenaadd Show full author list remove Hide full author list
Cancers 2021, 13(2), 361; https://doi.org/10.3390/cancers13020361 - 19 Jan 2021
Cited by 12 | Viewed by 4108
Abstract
(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of [...] Read more.
(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of DEXA on GBM cells. We tested the efficacy of tyrosine kinase inhibitors in vitro and in vivo. (3) Results: We confirm in our patient cohort that administration of DEXA correlates with worse overall survival and shorter time to relapse. In GBM cells and glioma stem-like cells (GSCs) DEXA down-regulates genes controlling G2/M and mitotic-spindle checkpoints, and it enables cells to override the spindle assembly checkpoint (SAC). Concurrently, DEXA up-regulates Platelet Derived Growth Factor Receptor (PDGFR) signalling, which stimulates expression of anti-apoptotic regulators BCL2L1 and MCL1, required for survival during extended mitosis. Importantly, the protective potential of DEXA is dependent on intact tyrosine kinase signalling and ponatinib, sunitinib and dasatinib, all effectively overcome the radio-protective and pro-proliferative activity of DEXA. Moreover, we discovered that DEXA-induced signalling creates a therapeutic vulnerability for sunitinib in GSCs and GBM cells in vitro and in vivo. (4) Conclusions: Our results reveal a novel DEXA-induced mechanism in GBM cells and provide a rationale for revisiting the use of tyrosine kinase inhibitors for the treatment of GBM. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

17 pages, 3546 KiB  
Article
A Pyranoxanthone as a Potent Antimitotic and Sensitizer of Cancer Cells to Low Doses of Paclitaxel
by Fábio França, Patrícia M. A. Silva, José X. Soares, Ana C. Henriques, Daniela R. P. Loureiro, Carlos M. G. Azevedo, Carlos M. M. Afonso and Hassan Bousbaa
Molecules 2020, 25(24), 5845; https://doi.org/10.3390/molecules25245845 - 10 Dec 2020
Cited by 8 | Viewed by 3145
Abstract
Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors [...] Read more.
Microtubule-targeting agents (MTAs) remain a gold standard for the treatment of several cancer types. By interfering with microtubules dynamic, MTAs induce a mitotic arrest followed by cell death. This antimitotic activity of MTAs is dependent on the spindle assembly checkpoint (SAC), which monitors the integrity of the mitotic spindle and proper chromosome attachments to microtubules in order to ensure accurate chromosome segregation and timely anaphase onset. However, the cytotoxic activity of MTAs is restrained by drug resistance and/or toxicities, and had motivated the search for new compounds and/or alternative therapeutic strategies. Here, we describe the synthesis and mechanism of action of the xanthone derivative pyranoxanthone 2 that exhibits a potent anti-growth activity against cancer cells. We found that cancer cells treated with the pyranoxanthone 2 exhibited persistent defects in chromosome congression during mitosis that were not corrected over time, which induced a prolonged SAC-dependent mitotic arrest followed by massive apoptosis. Importantly, pyranoxanthone 2 was able to potentiate apoptosis of cancer cells treated with nanomolar concentrations of paclitaxel. Our data identified the potential of the pyranoxanthone 2 as a new potent antimitotic with promising antitumor potential, either alone or in combination regimens. Full article
(This article belongs to the Special Issue Nature-Inspired Antitumor Agents)
Show Figures

Graphical abstract

Back to TopTop