Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,064)

Search Parameters:
Keywords = spectral angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance, optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

27 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 86
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

32 pages, 3675 KiB  
Article
Gibbs Quantum Fields Computed by Action Mechanics Recycle Emissions Absorbed by Greenhouse Gases, Optimising the Elevation of the Troposphere and Surface Temperature Using the Virial Theorem
by Ivan R. Kennedy, Migdat Hodzic and Angus N. Crossan
Thermo 2025, 5(3), 25; https://doi.org/10.3390/thermo5030025 - 22 Jul 2025
Viewed by 151
Abstract
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow [...] Read more.
Atmospheric climate science lacks the capacity to integrate thermodynamics with the gravitational potential of air in a classical quantum theory. To what extent can we identify Carnot’s ideal heat engine cycle in reversible isothermal and isentropic phases between dual temperatures partitioning heat flow with coupled work processes in the atmosphere? Using statistical action mechanics to describe Carnot’s cycle, the maximum rate of work possible can be integrated for the working gases as equal to variations in the absolute Gibbs energy, estimated as sustaining field quanta consistent with Carnot’s definition of heat as caloric. His treatise of 1824 even gave equations expressing work potential as a function of differences in temperature and the logarithm of the change in density and volume. Second, Carnot’s mechanical principle of cooling caused by gas dilation or warming by compression can be applied to tropospheric heat–work cycles in anticyclones and cyclones. Third, the virial theorem of Lagrange and Clausius based on least action predicts a more accurate temperature gradient with altitude near 6.5–6.9 °C per km, requiring that the Gibbs rotational quantum energies of gas molecules exchange reversibly with gravitational potential. This predicts a diminished role for the radiative transfer of energy from the atmosphere to the surface, in contrast to the Trenberth global radiative budget of ≈330 watts per square metre as downwelling radiation. The spectral absorptivity of greenhouse gas for surface radiation into the troposphere enables thermal recycling, sustaining air masses in Lagrangian action. This obviates the current paradigm of cooling with altitude by adiabatic expansion. The virial-action theorem must also control non-reversible heat–work Carnot cycles, with turbulent friction raising the surface temperature. Dissipative surface warming raises the surface pressure by heating, sustaining the weight of the atmosphere to varying altitudes according to latitude and seasonal angles of insolation. New predictions for experimental testing are now emerging from this virial-action hypothesis for climate, linking vortical energy potential with convective and turbulent exchanges of work and heat, proposed as the efficient cause setting the thermal temperature of surface materials. Full article
Show Figures

Figure 1

19 pages, 3374 KiB  
Article
The Influence of Viewing Geometry on Hyperspectral-Based Soil Property Retrieval
by Yucheng Gao, Lixia Ma, Zhongqi Zhang, Xianzhang Pan, Ziran Yuan, Changkun Wang and Dongsheng Yu
Remote Sens. 2025, 17(14), 2510; https://doi.org/10.3390/rs17142510 - 18 Jul 2025
Viewed by 176
Abstract
Hyperspectral technology has been widely applied to the retrieval of soil properties, such as soil organic matter (SOM) and particle size distribution (PSD). However, most previous studies have focused on hyperspectral data acquired from the nadir direction, and the influence of viewing geometry [...] Read more.
Hyperspectral technology has been widely applied to the retrieval of soil properties, such as soil organic matter (SOM) and particle size distribution (PSD). However, most previous studies have focused on hyperspectral data acquired from the nadir direction, and the influence of viewing geometry on hyperspectral-based soil property retrieval remains unclear. In this study, bidirectional reflectance factors (BRFs) were collected at 48 different viewing angles for 154 soil samples with varying SOM contents and PSDs. SOM and PSD were then retrieved using combinations of ten spectral preprocessing methods (raw reflectance, Savitzky–Golay filter (SG), first derivative (D1), second derivative (D2), standard normal variate (SNV), multiplicative scatter correction (MSC), SG + D1, SG + D2, SG + SNV, and SG + MSC), one sensitive wavelength selection method, and three retrieval algorithms (partial least squares regression (PLSR), support vector machine (SVM), and convolutional neural networks (CNNs)). The influence of viewing geometry on the selection of spectral preprocessing methods, retrieval algorithms, sensitive wavelengths, and retrieval accuracy was systematically analyzed. The results showed that soil BRFs are influenced by both soil properties and viewing angles. The viewing geometry had limited effects on the choice of preprocessing method and retrieval algorithm. Among the preprocessing methods, D1, SG + D1, and SG + D2 outperformed the others, while PLSR achieved a higher accuracy than SVM and CNN when retrieving soil properties. The selected sensitive wavelengths for both SOM and PSD varied slightly with viewing angle and were mainly located in the near-infrared region when using BRFs from multiple viewing angles. Compared with single-angle data, multi-angle BRFs significantly improved retrieval performance, with the R2 increasing by 11% and 15%, and RMSE decreasing by 16% and 30% for SOM and PSD, respectively. The optimal viewing zenith angle ranged from 10° to 20° for SOM and around 40° for PSD. Additionally, backward viewing directions were more favorable than forward directions, with the optimal viewing azimuth angles being 0° for SOM and 90° for PSD. These findings provide useful insights for improving the accuracy of soil property retrieval using multi-angle hyperspectral observations. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

14 pages, 465 KiB  
Article
Quantum W-Type Entanglement in Photonic Systems with Environmental Decoherence
by Kamal Berrada and Smail Bougouffa
Symmetry 2025, 17(7), 1147; https://doi.org/10.3390/sym17071147 - 18 Jul 2025
Viewed by 244
Abstract
Preserving quantum entanglement in multipartite systems under environmental decoherence is a critical challenge for quantum information processing. In this work, we investigate the dynamics of W-type entanglement in a system of three photons, focusing on the effects of Markovian and non-Markovian decoherence regimes. [...] Read more.
Preserving quantum entanglement in multipartite systems under environmental decoherence is a critical challenge for quantum information processing. In this work, we investigate the dynamics of W-type entanglement in a system of three photons, focusing on the effects of Markovian and non-Markovian decoherence regimes. Using the lower bound of concurrence (LBC) as a measure of entanglement, we analyze the time evolution of the LBC for photons initially prepared in a W state under the influence of dephasing noise. We explore the dependence of entanglement dynamics on system parameters such as the dephasing angle and refractive-index difference, alongside environmental spectral properties. Our results, obtained within experimentally feasible parameter ranges, reveal how the enhancement of entanglement preservation can be achieved in Markovian and non-Markovian regimes according to the system parameters. These findings provide valuable insights into the robustness of W-state entanglement in tripartite photonic systems and offer practical guidance for optimizing quantum protocols in noisy environments. Full article
Show Figures

Figure 1

14 pages, 1722 KiB  
Article
Spectrum-Based Method for Detecting Seepage in Concrete Cracks of Dams
by Jinmao Tang, Yifan Xu, Zhenchao Liu, Xile Wang, Shuai Niu, Dongyang Han and Xiaobin Cao
Water 2025, 17(14), 2130; https://doi.org/10.3390/w17142130 - 17 Jul 2025
Viewed by 173
Abstract
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify [...] Read more.
Cracks and seepage in dam structures pose a serious risk to their safety, yet traditional inspection methods often fall short when it comes to detecting shallow or early-stage fractures. This study proposes a new approach that uses spectral response analysis to quickly identify signs of seepage in concrete dams. Researchers developed a three-layer model—representing the concrete, a seepage zone, and water—to better understand how cracks affect the way electrical signals behave, thereby inverting the state of the dam based on how electrical signals behave in actual engineering measurements. Through computer simulations and lab experiments, the team explored how changes in the resistivity and thickness of the seepage layer, along with the resistivity of surrounding water, influence key indicators like impedance and signal angle. The results show that the “spectrum-based method” can effectively detect seepage in concrete cracks of dams, and the measurement method of the “spectral quadrupole method” based on the “spectrum-based method” is highly sensitive to these variations, making it a promising tool for spotting early seepage. Field tests backed up the lab findings, confirming that this method is significantly better than traditional techniques at detecting cracks less than a meter deep and identifying early signs of water intrusion. It could provide dam inspectors with a more reliable way to monitor structural health and prevent potential failures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 4717 KiB  
Article
Seismic Response Characteristics of High-Speed Railway Hub Station Considering Pile-Soil Interactions
by Ning Zhang and Ziwei Chen
Buildings 2025, 15(14), 2466; https://doi.org/10.3390/buildings15142466 - 14 Jul 2025
Viewed by 173
Abstract
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to [...] Read more.
As a key transportation infrastructure, it is of great significance to ensure the seismic safety of the high-speed railway hub station. Taking Changde high-speed railway hub station as background, a comprehensive 3D numerical model of the high-speed railway station structure is proposed to consider the engineering geological characteristics of the site, soil nonlinearity, and pile-soil interactions. The results show that the hub station structural system, considering pile-soil interaction, presents the ‘soft-upper-rigid-down’ characteristics as a whole, and the natural vibration is lower than that of the station structure with a rigid foundation assumption. Under the action of three strong seismic motions, the nonlinear site seismic effect is significant, the surface acceleration is significantly enlarged, and decreases with the buried depth. The interaction between pile and soil is related to the nonlinear seismic effect of the site, which deforms together to resist the foundation deformation caused by the strong earthquake motions, and the depth range affected by the interaction between the two increases with the increase of the intensity of earthquake motion. Among the three kinds of input earthquake motions, the predominant frequency of the Kobe earthquake is the closest to the natural vibration of the station structure system, followed by the El Centro earthquake. Moreover, the structures above the foundation of the high-speed railway hub station structural system are more sensitive to the spectral characteristics of Taft waves and El Centro waves compared to the site soil. This is also the main innovation point of this study. The existence of the roof leads to the gradual amplification of the seismic response of the station frame structure with height, and the seismic response amplification at the connection between the roof and the frame structure is the largest. The maximum story drift angle at the top floor of the station structure is also greater than that at the bottom floor. Full article
Show Figures

Figure 1

18 pages, 8486 KiB  
Article
An Efficient Downwelling Light Sensor Data Correction Model for UAV Multi-Spectral Image DOM Generation
by Siyao Wu, Yanan Lu, Wei Fan, Shengmao Zhang, Zuli Wu and Fei Wang
Drones 2025, 9(7), 491; https://doi.org/10.3390/drones9070491 - 11 Jul 2025
Viewed by 187
Abstract
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral [...] Read more.
The downwelling light sensor (DLS) is the industry-standard solution for generating UAV-based digital orthophoto maps (DOMs). Current mainstream DLS correction methods primarily rely on angle compensation. However, due to the temporal mismatch between the DLS sampling intervals and the exposure times of multispectral cameras, as well as external disturbances such as strong wind gusts and abrupt changes in flight attitude, DLS data often become unreliable, particularly at UAV turning points. Building upon traditional angle compensation methods, this study proposes an improved correction approach—FIM-DC (Fitting and Interpolation Model-based Data Correction)—specifically designed for data collection under clear-sky conditions and stable atmospheric illumination, with the goal of significantly enhancing the accuracy of reflectance retrieval. The method addresses three key issues: (1) field tests conducted in the Qingpu region show that FIM-DC markedly reduces the standard deviation of reflectance at tie points across multiple spectral bands and flight sessions, with the most substantial reduction from 15.07% to 0.58%; (2) it effectively mitigates inconsistencies in reflectance within image mosaics caused by anomalous DLS readings, thereby improving the uniformity of DOMs; and (3) FIM-DC accurately corrects the spectral curves of six land cover types in anomalous images, making them consistent with those from non-anomalous images. In summary, this study demonstrates that integrating FIM-DC into DLS data correction workflows for UAV-based multispectral imagery significantly enhances reflectance calculation accuracy and provides a robust solution for improving image quality under stable illumination conditions. Full article
Show Figures

Figure 1

30 pages, 5294 KiB  
Article
Non-Invasive Bioelectrical Characterization of Strawberry Peduncles for Post-Harvest Physiological Maturity Classification
by Jonnel Alejandrino, Ronnie Concepcion, Elmer Dadios, Ryan Rhay Vicerra, Argel Bandala, Edwin Sybingco, Laurence Gan Lim and Raouf Naguib
AgriEngineering 2025, 7(7), 223; https://doi.org/10.3390/agriengineering7070223 - 8 Jul 2025
Viewed by 274
Abstract
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) [...] Read more.
Strawberry post-harvest losses are estimated at 50%, due to improper handling and harvest timing, necessitating the use of non-invasive methods. This study develops a non-invasive in situ bioelectrical spectroscopy for strawberry peduncles. Based on traditional assessments and invasive metrics, 100 physiologically ripe (PR) and 100 commercially mature (CM) strawberries were distinguished. Spectra from their peduncles were measured from 1 kHz to 1 MHz, collecting four parameters (magnitude (Z(f)), phase angle (θ(f)), resistance (R(f)), and reactance (X(f))), resulting in 80,000 raw data points. Through systematic spectral preprocessing, Bode and Cole–Cole plots revealed a distinction between PR and CM strawberries. Frequency selection identified seven key frequencies (1, 5, 50, 75, 100, 250, 500 kHz) for deriving 37 engineered features from spectral, extrema, and derivative parameters. Feature selection reduced these to 6 parameters: phase angle at 50 kHz (θ (50 kHz)); relaxation time (τ); impedance ratio (|Z1k/Z250k|); dispersion coefficient (α); membrane capacitance (Cm); and intracellular resistivity (ρi). Four algorithms (TabPFN, CatBoost, GPC, EBM) were evaluated with Monte Carlo cross-validation with five iterations, ensuring robust evaluation. CatBoost achieved the highest accuracy at 93.3% ± 2.4%. Invasive reference metrics showed strong correlations with bioelectrical parameters (r = 0.74 for firmness, r = −0.71 for soluble solids). These results demonstrate a solution for precise harvest classification, reducing post-harvest losses without compromising marketability. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

23 pages, 5328 KiB  
Article
TSSA-NBR: A Burned Area Extraction Method Based on Time-Series Spectral Angle with Full Spectral Shape
by Dongyi Liu, Yonghua Qu, Xuewen Yang and Qi Zhao
Remote Sens. 2025, 17(13), 2283; https://doi.org/10.3390/rs17132283 - 3 Jul 2025
Viewed by 341
Abstract
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific [...] Read more.
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific spectral bands while neglecting full spectral shape information, which encapsulates overall spectral characteristics. This limitation compromises adaptability to diverse vegetation types and environmental conditions, particularly across varying spatial scales. To address these challenges, we propose the time-series spectral-angle-normalized burn index (TSSA-NBR). This unsupervised BA extraction method integrates normalized spectral angle and normalized burn ratio (NBR) to leverage full spectral shape and temporal features derived from Sentinel-2 time-series data. Seven globally distributed study areas with diverse climatic conditions and vegetation types were selected to evaluate the method’s adaptability and scalability. Evaluations compared Sentinel-2-derived BA with moderate-resolution products and high-resolution PlanetScope-derived BA, focusing on spatial scale and methodological performance. TSSA-NBR achieved a Dice Coefficient (DC) of 87.81%, with commission (CE) and omission errors (OE) of 8.52% and 15.58%, respectively, demonstrating robust performance across all regions. Across diverse land cover types, including forests, grasslands, and shrublands, TSSA-NBR exhibited high adaptability, with DC values ranging from 0.53 to 0.97, CE from 0.03 to 0.27, and OE from 0.02 to 0.61. The method effectively captured fire scars and outperformed band-specific and threshold-dependent approaches by integrating spectral shape features with fire indices, establishing a data-driven framework for BA detection. These results underscore its potential for fire monitoring and broader applications in detecting surface anomalies and environmental disturbances, advancing global ecological monitoring and management strategies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

32 pages, 1277 KiB  
Article
Distributed Prediction-Enhanced Beamforming Using LR/SVR Fusion and MUSIC Refinement in 5G O-RAN Systems
by Mustafa Mayyahi, Jordi Mongay Batalla, Jerzy Żurek and Piotr Krawiec
Appl. Sci. 2025, 15(13), 7428; https://doi.org/10.3390/app15137428 - 2 Jul 2025
Viewed by 338
Abstract
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are [...] Read more.
Low-latency and robust beamforming are vital for sustaining signal quality and spectral efficiency in emerging high-mobility 5G and future 6G wireless networks. Conventional beam management approaches, which rely on periodic Channel State Information feedback and static codebooks, as outlined in 3GPP standards, are insufficient in rapidly varying propagation environments. In this work, we propose a Dominance-Enforced Adaptive Clustered Sliding Window Regression (DE-ACSW-R) framework for predictive beamforming in O-RAN Split 7-2x architectures. DE-ACSW-R leverages a sliding window of recent angle of arrival (AoA) estimates, applying in-window change-point detection to segment user trajectories and performing both Linear Regression (LR) and curvature-adaptive Support Vector Regression (SVR) for short-term and non-linear prediction. A confidence-weighted fusion mechanism adaptively blends LR and SVR outputs, incorporating robust outlier detection and a dominance-enforced selection regime to address strong disagreements. The Open Radio Unit (O-RU) autonomously triggers localised MUSIC scans when prediction confidence degrades, minimising unnecessary full-spectrum searches and saving delay. Simulation results demonstrate that the proposed DE-ACSW-R approach significantly enhances AoA tracking accuracy, beamforming gain, and adaptability under realistic high-mobility conditions, surpassing conventional LR/SVR baselines. This AI-native modular pipeline aligns with O-RAN architectural principles, enabling scalable and real-time beam management for next-generation wireless deployments. Full article
Show Figures

Figure 1

16 pages, 11512 KiB  
Article
Itinerant and Correlated Nature of Altermagnetic MnTe Single Crystal Studied by Photoemission and Inverse-Photoemission Spectroscopies
by Kazi Golam Martuza, Yogendra Kumar, Hiroshi Yamaguchi, Shiv Kumar, Masashi Arita, Hitoshi Sato, Shin-ichiro Ideta and Kenya Shimada
Materials 2025, 18(13), 3103; https://doi.org/10.3390/ma18133103 - 1 Jul 2025
Viewed by 349
Abstract
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the [...] Read more.
Occupied and unoccupied electronic states of altermagnetic MnTe(0001) single crystals were studied by photoemission and inverse-photoemission spectroscopies after establishing a reproducible surface cleaning procedure involving repeated sputtering and annealing cycles. The angle-resolved photoemission spectroscopy (ARPES) exhibited a hole-like band dispersion centered at the Γ¯ point, which was consistent with the reported ARPES results and our density functional theory (DFT) calculations with the on-site Coulomb interaction U. The observed Mn 3d↑-derived peak at −3.5 eV, however, significantly deviated from the DFT + U calculations. Meanwhile, the Mn 3d↓-derived peak at +3.0 eV observed by inverse-photoemission spectroscopy agreed well with the DFT + U results. Based on simulations of the spectral function employing an w-dependent model self-energy, we found significant relaxation effects in the electron-removal process, while such effects were negligible in the electron-addition process. Our study provides a comprehensive picture of electronic states, forming a solid foundation for understanding the magnetic and transport properties of MnTe. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

23 pages, 8890 KiB  
Article
Alteration Information Extraction and Mineral Prospectivity Mapping in the Laozhaiwan Area Using Multisource Remote Sensing Data
by Qi Chen, Dayu Cai, Zhifang Zhao, Xiaoguang Yang, Yilong Wang, Xiao Jiang, Lei Xu, Haichuan Duan, Yang He, Xiaoxiao Zhang, Yiyang Wang and Ting Xu
Remote Sens. 2025, 17(13), 2178; https://doi.org/10.3390/rs17132178 - 25 Jun 2025
Viewed by 446
Abstract
Gold is a vital strategic resource for many countries. The Laozhaiwan area is an important gold resource base in Yunnan Province and even nationwide. Conducting mineral resource exploration in this region to increase gold reserves is of great significance. The application of remote [...] Read more.
Gold is a vital strategic resource for many countries. The Laozhaiwan area is an important gold resource base in Yunnan Province and even nationwide. Conducting mineral resource exploration in this region to increase gold reserves is of great significance. The application of remote sensing technology in mineral resource exploration is a green and efficient technical approach, which has been widely utilized in the field of mineral resource prospecting. This study selects the Laozhaiwan area in the southeastern part of Yunnan Province as the research region. Linear and ring structures were extracted using the remote sensing visual interpretation method based on Sentinel-2A multispectral data. Additionally, Sentinel-2A, ASTER, and ZY1-02D data were used to extract iron-stained, hydroxyl, silicification, and limonite alteration information through Principal Component Analysis (PCA) and Spectral Angle Mapper (SAM) methods. Additionally, 50 linear structures and 12 ring structures were extracted. A comprehensive analysis of geological data reveals that alteration minerals and linear-ring structures are closely related to mineralization, providing valuable indicators for mineral resource exploration. By comprehensively analyzing the alteration information and remote sensing interpretation results of the linear-ring structures, two prospective areas for mineral exploration were delineated. Field investigations and petrographic studies confirmed the reliability of remote sensing technology in mineral exploration. The mineral exploration method based on multi-source remote sensing technology can clearly reflect various alteration information and linear-ring structural data. It provides remote sensing geological insights for geological survey work and has great application potential in the field of mineral resource exploration. Full article
Show Figures

Figure 1

22 pages, 2561 KiB  
Article
JPSS-4 VIIRS Pre-Launch Calibration Performance and Assessment
by Amit Angal, David Moyer, Xiaoxiong Xiong, Daniel Link, Thomas Schwarting, Jeff McIntire, Qiang Ji and Chengbo Sun
Remote Sens. 2025, 17(13), 2146; https://doi.org/10.3390/rs17132146 - 23 Jun 2025
Viewed by 292
Abstract
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing [...] Read more.
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing and building instruments, spacecraft, ground systems, and launching into orbit. While three VIIRS instruments are currently on-orbit, spacecraft integration of the two VIIRS instruments planned for launch on the JPSS-3 and -4 spacecraft is ongoing. The latest build in the series, set to be launched on the JPSS-4 platform, recently completed its main ground calibration program at the vendor facility. This program covered a comprehensive series of performance metrics designed to ensure that the instrument can maintain its calibration successfully on-orbit. In this paper, we present the results from the radiometric calibration process, which includes metrics such as dynamic range, signal-to-noise ratio, noise equivalent differential temperature, polarization sensitivity, scattered light response, relative spectral response, response versus scan angle, and crosstalk. All key metrics have met or exceeded their design requirements, with some minor exceptions. Also included are comparisons with previous VIIRS instruments, as well as a description of their expected performance once on-orbit. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

12 pages, 2832 KiB  
Article
Dual-Color and High-Energy X-Ray Kirkpatrick–Baez Microscope for Laser Plasma Research
by Mingtao Li, Jiapeng Shi, Mingxun Wang, Jie Xu, Xin Wang, Baozhong Mu, Jianjun Dong, Kuan Ren, Wei Liu, Xing Zhang and Dong Yang
Photonics 2025, 12(7), 630; https://doi.org/10.3390/photonics12070630 - 20 Jun 2025
Viewed by 268
Abstract
High-energy X-ray diagnostic systems are crucial for understanding hotspot high-density area asymmetry, fuel mixing, and other phenomena in inertial confinement fusion. To meet the demand for hotspot electron temperature measurements, we developed a high-energy dual-channel Kirkpatrick–Baez microscope. This microscope is characterized by a [...] Read more.
High-energy X-ray diagnostic systems are crucial for understanding hotspot high-density area asymmetry, fuel mixing, and other phenomena in inertial confinement fusion. To meet the demand for hotspot electron temperature measurements, we developed a high-energy dual-channel Kirkpatrick–Baez microscope. This microscope is characterized by a dual high-energy response and high spatial resolution, enabling the observation of fine structures in high-density regions of a hotspot. Spectral drift was effectively mitigated by optimizing the grazing incidence angle, and the spatial and spectral domains were coupled through experimental alignment. Herein, we describe the optical design of the proposed microscope. Furthermore, we performed simulations and backlight imaging to validate the performance of the proposed system. The results show that the spatial resolution was better than 3 μm in the center and better than 6.5 μm in a field of view of 300 μm. The spectral response efficiencies at 11.4 and 17.48 keV were 7.41 × 10−8 and 5.77 × 10−8 sr, which deviate from the theoretical values by 3.01% and 6.79%, respectively. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

Back to TopTop