Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (412)

Search Parameters:
Keywords = sonic conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1365 KiB  
Article
Generation of Formates Following 20 kHz Sonication of DSPE-mPEG2000 PEGylated Phospholipid Micelles
by Perouza Parsamian and Paul Pantano
Pharmaceutics 2025, 17(8), 1008; https://doi.org/10.3390/pharmaceutics17081008 (registering DOI) - 1 Aug 2025
Abstract
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a [...] Read more.
Background: Previous research has demonstrated that 20 kHz probe or 37 kHz bath sonication of poloxamers comprising polypropylene glycol (PPG) and polyethylene glycol (PEG) blocks can generate degradation byproducts that are toxic to mammalian cells and organisms. Herein, an investigation of a PEGylated phospholipid micelle was undertaken to identify low-molecular-weight sonolytic degradation byproducts that could be cytotoxic. The concern here lies with the fact that sonication is a frequently employed step in drug delivery manufacturing processes, during which PEGylated phospholipids can be subjected to shear forces and other extreme oxidative and thermal conditions. Methods: Control and 20 kHz-sonicated micelles of DSPE-mPEG2000 were analyzed using dynamic light scattering (DLS) and zeta potential analyses to study colloidal properties, matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectroscopy (MS) and proton nuclear magnetic resonance (1H-NMR) spectroscopy to study the structural integrity of DSPE-mPEG2000, and 1H-NMR spectroscopy and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection to quantitate the formation of low-molecular-weight degradation byproducts. Results: MALDI-TOF-MS analyses of 20 kHz-sonicated DSPE-mPEG2000 revealed the loss of ethylene glycol moieties in accordance with depolymerization of the PEG chain; 1H-NMR spectroscopy showed the presence of formate, a known oxidative/thermal degradation product of PEG; and HPLC-UV showed that the generation of formate was dependent on 20 kHz probe sonication time between 5 and 60 min. Conclusions: It was found that 20 kHz sonication can degrade the PEG chain of DSPE-mPEG2000, altering the micelle’s PEG corona and generating formate, a known ocular toxicant. Full article
Show Figures

Figure 1

19 pages, 3999 KiB  
Article
Optimised Twin Fluid Atomiser Design for High-Viscosity, Shear-Thinning Fluids
by Marvin Diamantopoulos and Christoph Hochenauer
Appl. Sci. 2025, 15(14), 7992; https://doi.org/10.3390/app15147992 - 17 Jul 2025
Viewed by 189
Abstract
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic [...] Read more.
This study explores the optimisation of nozzle design for external twin fluid, single-stage atomisation in handling high-viscosity, shear-thinning polydimethylsiloxane (PDMS). A single PDMS grade was employed and atomised using unheated sonic air and the viscosity was varied by the fluid temperature. A systematic experimental approach was used, varying nozzle geometry—specifically apex angle, gas nozzle diameter, and number of gas nozzles—to identify the optimal nozzle configuration (ONC). The spray qualities of the nozzle configurations were evaluated via high-speed imaging at 75,000 FPS. Shadowgraphy was employed for the optical characterisation of the spray, determining the optimal volumetric air-to-liquid ratio (ALR), a key parameter influencing energy efficiency and operational cost, and for assessing droplet size distributions under varying ALR and viscosity of PDMS. The ONC yielded a Sauter mean diameter d32 of 570 × 10−6m, at an ALR of 8532 and a zero-shear viscosity of 15.9 Pa s. The results are relevant for researchers and engineers developing twin fluid atomisation systems for challenging industrial fluids with similar physical properties, such as those in wastewater treatment and coal–water slurry atomisation (CWS). This study provides design guidelines for external twin fluid atomisers to enhance atomisation efficiency under such conditions. Full article
Show Figures

Figure 1

19 pages, 4240 KiB  
Article
Sonication-Assisted Surface Erosion and Its Impact on the Flotation of Ultrafine Smithsonite
by Weiguang Zhou, Weiwei Cao, Haobin Wei, Shulan Shi, Chenwei Li and Liuyang Dong
Metals 2025, 15(7), 731; https://doi.org/10.3390/met15070731 - 30 Jun 2025
Viewed by 306
Abstract
Regulating the dissolution and interfacial behavior of minerals via external force fields is considered a promising strategy for enhancing the flotation of soluble minerals. This study explored the potential of ultrasound-assisted pulp conditioning in improving ultrafine smithsonite flotation. Specifically, we systematically evaluated the [...] Read more.
Regulating the dissolution and interfacial behavior of minerals via external force fields is considered a promising strategy for enhancing the flotation of soluble minerals. This study explored the potential of ultrasound-assisted pulp conditioning in improving ultrafine smithsonite flotation. Specifically, we systematically evaluated the effects of ultrasonic pretreatment (UP) on the physicochemical properties of smithsonite suspensions (focusing on surface erosion behavior) and assessed subsequent flotation performance using flotation tests and modern analytical techniques. It has been found that UP can significantly modify smithsonite suspension characteristics, including particle morphology, ionic composition, electrokinetic properties, and pulp pH. Flotation results demonstrate that UP yields higher recovery compared to traditional stirring (TS) conditioning, especially at medium-to-high sodium oleate (NaOL) concentrations. Comparative analysis reveals that ultrasonic-assisted dissolution and ion-selective migration are the main factors driving improved flotation performance. Unlike TS, UP promotes greater zinc ion release, facilitates the dissolution–hydrolysis–precipitation equilibrium, generates more and finer nanoparticles in the bulk phase, and induces the deposition of hydrozincite on smithsonite surfaces. These changes increase active zinc sites for more stable NaOL adsorption, thereby enhancing the flotation of ultrafine smithsonite particles. Full article
(This article belongs to the Special Issue State of the Art in Flotation and Separation of Metallic Minerals)
Show Figures

Figure 1

23 pages, 5310 KiB  
Article
Ecoacoustic Baseline of a Successional Subarctic Ecosystem Post-Glaciation Amidst Climate Change in South-Central Alaska
by Timothy C. Mullet and Almo Farina
Diversity 2025, 17(7), 443; https://doi.org/10.3390/d17070443 - 23 Jun 2025
Viewed by 277
Abstract
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units [...] Read more.
As climate change alters subarctic ecosystems and human activities in Alaska, ecological baselines are critical for long-term conservation. We applied an ecoacoustic approach to characterize the ecological conditions of a rapidly deglaciating region in Kenai Fjords National Park, Alaska. Using automated recording units deployed at increasing distances from a road, we collected over 120,000 one-minute audio samples during the tourist seasons of 2021 and 2022. Ecoacoustic indices—Sonic Heterogeneity Index (SHItf), Spectral Sonic Signature (SSS), Weighted Proportion of Occupied Frequencies (wPOF), and Normalized Difference Sonic Heterogeneity Index (NDSHI)—were used to measure spatio-temporal patterns of the sonoscape. Results revealed higher sonic heterogeneity near the road attributed to technophony (vehicles) and geophony (wind) that spanned across the frequency spectrum, masking mid-high frequency biophony. Seasonal phenology and diel variations reflected ecological and human rhythms, including biophony from the dawn chorus from May–June, technophony from vehicle-based tourism from July–September, and decreased sonic activity in the form of geophonic ambience in October. Low-frequency geophonies were prevalent throughout the sonoscape with more natural sounds at greater distances from the road. Our findings demonstrate the benefits of using ecoacoustic methods to assess ecosystem dynamics for establishing ecological baselines useful for future comparisons in rapidly changing environments. Full article
(This article belongs to the Special Issue Wildlife in Natural and Altered Environments)
Show Figures

Figure 1

23 pages, 1098 KiB  
Article
Separation of Bioactive Compounds from Pfaffia glomerata: Drying, Green Extraction, and Physicochemical Properties
by Marcela Moreira Terhaag, Ana Catarina Mosquera dos Santos, Daniel Gonzaga de Lima, Otavio Akira Sakai, Giselle Giovanna do Couto de Oliveira, Cristiane Mengue Feniman Moritz, Bogdan Demczuk Junior, Jorcilene dos Santos Silva, Suelen Pereira Ruiz, Maria Graciela Iecher Faria, Beatriz Cervejeira Bolanho Barros and Erica Marusa Pergo Coelho
Separations 2025, 12(6), 164; https://doi.org/10.3390/separations12060164 - 17 Jun 2025
Viewed by 378
Abstract
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and [...] Read more.
Leaves (LV), stems (STs), and inflorescences (IFs) of Pfaffia glomerata are usually discarded despite containing various bioactive compounds, especially β-ecdysone saponin. The objective was to optimize by desirability (DI) the ultrasound-assisted extraction (UAE) of bioactive compounds (total phenolics (TPCs), antioxidant activity (AA), and total saponins) from the aerial parts (LV, ST, and IF) of P. glomerata. Ideal drying conditions were determined and the drying kinetics were evaluated. LV, STs, and IFs were dried and extracted (0.06 g/mL 80% EtOH) in a USS (6 cm × 12 mm, pulse 3/6 s) by Central Composite Design (CCD), varying sonication power (140–560 W) and time (11–139 min), with TPC, AA by DPPH, and total saponin content as responses. The DI indicated that the higher TPC, AA, and saponin levels were obtained at 136.5 min and 137.87 W (STs), and 138.6 min and 562.32 W (LV and IFs). IF extracts contained higher saponin, TPCs, and AA. Higher β-ecdysone levels (3.90 mg g−1) were present in the leaves. Several phenolics were detected in area parts of P. glomerata, the most abundant being p-coumaric acid (LV) and nicotinic acid (STs and IFs). These compounds provide potential health benefits. Phytol was found in all extracts. Extracts by UAE from leaves have antibacterial potential, with demonstrated inhibitory effects against S. aureus, E. coli, L. monocytogenes, S. Typhi, and P. aeruginosa, and presented bactericidal effects against E. coli, L. monocytogenes, and S. Typhi. Aerial parts of P. glomerata can be used to obtain extracts by UAE rich in bioactive compounds, providing complete utilization of the plant and sustainability to cultivation. This work represents the first report on the application of ecofriendly UAE techniques to extract bioactive compounds from the aerial parts of Brazilian ginseng. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

20 pages, 2727 KiB  
Article
Mechanochemical Effects of High-Intensity Ultrasound on Dual Starch Modification of Mango Cotyledons
by Ramiro Torres-Gallo, Ricardo Andrade-Pizarro, Diego F. Tirado, Andrés Chávez-Salazar and Francisco J. Castellanos-Galeano
AgriEngineering 2025, 7(6), 190; https://doi.org/10.3390/agriengineering7060190 - 13 Jun 2025
Viewed by 514
Abstract
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. [...] Read more.
The starch modification of mango cotyledons with both single ultrasound (US) and dual (US followed by octenyl succinic anhydride, OSA) was optimized by response surface methodology (RSM). The mechanochemical effects of ultrasound on amylose content, particle size, and dual modification efficiency were assessed. In addition, the structural, thermal, morphological, and functional properties were evaluated. After optimization with single US (41 min and 91% sonication intensity), sonication induced starch granule fragmentation, altering amorphous and partially crystalline regions, which increased amylose content (34%), reduced particle size (Dx50 = 12 μm), and modified granule surface morphology. The dual modification (the subsequent OSA reaction lasted 4.6 h under the same conditions) reached a degree of substitution of 0.02 and 81% efficiency, imparting amphiphilic properties to the starch. OSA groups were mainly incorporated into amorphous and surface regions, which decreased crystallinity, gelatinization temperature, and enthalpy. The synergistic effect of the modification with US and OSA in the dual modification significantly improved the solubility and swelling power of starch, resulting in better dispersion, functionality in aqueous systems, and chemical reactivity. These findings highlight the potential of dual modification to transform mango cotyledon starch into a versatile ingredient in the food industry as a thickener, a stabilizer in soups and sauces, an emulsifier, a carrier of bioactive and edible films; in the cosmetic industry as a gelling and absorbent agent; and in the pharmaceutical industry for the controlled release of drugs. Furthermore, valorizing mango cotyledons supports circular economy principles, promoting sustainable and value-added food product development. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

28 pages, 5945 KiB  
Article
Liposomal Encapsulation of Carob (Ceratonia siliqua L.) Pulp Extract: Design, Characterization, and Controlled Release Assessment
by Aleksandra A. Jovanović, Dragana Dekanski, Milena D. Milošević, Ninoslav Mitić, Aleksandar Rašković, Nikola Martić and Andrea Pirković
Pharmaceutics 2025, 17(6), 776; https://doi.org/10.3390/pharmaceutics17060776 - 13 Jun 2025
Viewed by 491
Abstract
Background: Carob (Ceratonia siliqua L.) pulp flour is primarily used in the food industry. As a rich source of bioactive compounds, particularly polyphenols, it holds promise for pharmaceutical formulation research and development. Objectives: This study focused on developing liposomal particles loaded with [...] Read more.
Background: Carob (Ceratonia siliqua L.) pulp flour is primarily used in the food industry. As a rich source of bioactive compounds, particularly polyphenols, it holds promise for pharmaceutical formulation research and development. Objectives: This study focused on developing liposomal particles loaded with carob pulp extract using the proliposome method, followed by modifications through UV irradiation and sonication. Methods: The resulting liposomes were analyzed for encapsulation efficiency, vesicle size, polydispersity index (PDI), mobility, zeta potential, viscosity, surface tension, density, antioxidant activity, FT-IR spectra, and release kinetics under simulated gastrointestinal conditions. In addition, nanoparticle tracking analysis and transmission electron microscopy (TEM) were used for liposomal characterization. Results: The findings revealed a high encapsulation efficiency across all samples (>70%). The particle size and PDI measurements confirmed the presence of a multilamellar and uniform liposomal system before post-processing modifications. The medium value of zeta potential suggested a moderately electrostatically stabilized liposomal suspension. The sonicated liposomes demonstrated a higher concentration of vesicles in comparison to non-treated and UV-irradiated samples. TEM analysis revealed purified liposomal vesicles with preserved structural integrity. Encapsulation, as well as UV irradiation and sonication of liposomes, did not diminish the extract’s anti-DPPH activity. However, the ABTS radical scavenging potential of the pure extract was significantly lower compared to its encapsulated counterparts. UV irradiation and sonication notably reduced the anti-ABTS capacity of the extract-liposome system. Monitoring the release of bioactive compounds demonstrated controlled delivery from liposomal particles under simulated gastrointestinal conditions. Conclusions: Overall, liposomal formulations of carob pulp extract exhibit significant potential for further development as a functional food ingredient or for use in the prevention and treatment of various diseases. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

26 pages, 3748 KiB  
Review
Mechanical Properties of Medical Microbubbles and Echogenic Liposomes—A Review
by Hussain Alsadiq and Zahra Alhay
Micromachines 2025, 16(5), 588; https://doi.org/10.3390/mi16050588 - 17 May 2025
Viewed by 767
Abstract
Lipid-shelled microbubbles (MBs) and echogenic liposomes (ELIPs) have been proposed as acoustofluidic theranostic agents after having been proven to be efficient in diagnostics as ultrasonic contrast agents. Their mechanical properties—such as shell stiffness, friction, and resonance frequency—are critical to their performance, stability, oscillatory [...] Read more.
Lipid-shelled microbubbles (MBs) and echogenic liposomes (ELIPs) have been proposed as acoustofluidic theranostic agents after having been proven to be efficient in diagnostics as ultrasonic contrast agents. Their mechanical properties—such as shell stiffness, friction, and resonance frequency—are critical to their performance, stability, oscillatory dynamics, and response to sonication. A precise characterization of these properties is essential for optimizing their biomedical applications, however the current methods vary significantly in their sensitivity and accuracy. This review examines the experimental and theoretical methodologies used to quantify the mechanical properties of MBs and ELIPs, discusses how each approach estimates shell stiffness and friction, and outlines the strengths and limitations inherent to each technique. Additionally, the effects of parameters such as temperature and lipid composition on MB and ELIP mechanical behavior are examined. Four characterization methods are analyzed, including frequency-dependent attenuation, optical observation, atomic force microscopy (AFM), and laser scattering, their advantages and limitations are critically assessed. Additionally, the factors that influence the mechanical properties of the MBs and ELIPs, such as temperature and lipid composition, are examined. Frequency-dependent attenuation was shown to provide reliable shell elasticity estimates but is influenced by nonlinear oscillations, AFM confirms that microbubble stiffness is size-dependent with smaller bubbles exhibiting higher shell stiffness, and theoretical models such as modified Rayleigh–Plesset equations increasingly incorporate viscoelastic shell properties to improve prediction accuracy. However, many of these models still assume radial symmetry and neglect inter-bubble interactions, which can lead to inaccurate elasticity values when applied to dense suspensions. In such cases, using modified frameworks like the Sarkar model, which incorporates damping and surface tension explicitly, may provide more reliable estimates under nonlinear conditions. Additionally, lipid composition and temperature significantly affect shell mechanics, with higher temperatures generally reducing stiffness. On the other hand, inconsistencies in experimental protocols hinder direct comparison across studies, highlighting the need for standardized characterization methods and improved computational modeling. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

18 pages, 4677 KiB  
Article
CsCBDAS2-Driven Enhancement of Cannabinoid Biosynthetic Genes Using a High-Efficiency Transient Transformation System in Cannabis sativa ‘Cheungsam’
by Sang-Cheol Baek, Sang-Yoon Jeon, Bo-Hyun Byun, Da-Hoon Kim, Ga-Ram Yu, Hyuck Kim and Dong-Woo Lim
Plants 2025, 14(10), 1460; https://doi.org/10.3390/plants14101460 - 14 May 2025
Viewed by 573
Abstract
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such [...] Read more.
Cannabis sativa produces pharmacologically valuable cannabinoids. In this study, we developed and optimized a transient transformation system using Cannabis sativa ‘Cheungsam’ to facilitate gene functional analysis. Various experimental conditions, including plant developmental stages, light conditions, Agrobacterium strains, tissue types, and physical treatments such as sonication and vacuum infiltration, were systematically evaluated using GUS histochemical staining and qPCR analysis. Among these, 7-day-old seedlings cultured under dark conditions and transformed with the GV3101 strain exhibited high transformation efficiency. Leaf tissue showed a higher GUS staining proportion and GUS staining area compared to hypocotyl and cotyledon tissues. The application of a combination of sonication and vacuum infiltration techniques resulted in the most intense GUS expression. Using the optimized protocol, we introduced a recombinant vector carrying CsCBDAS2, a key gene in cannabidiol (CBD) biosynthesis. qPCR analysis revealed that CsCBDAS2 overexpression led to significant upregulation of multiple upstream CBD biosynthetic genes (CsOAC, CsGOT, CsPT1, CsPT4, CsCBDAS1, and CsCBDAS2) and the transcription factor (TF) CsWRKY20, suggesting coordinated co-expression and potential involvement of a transcriptional feedback loop. These results demonstrate the effectiveness of our transient transformation system and provide insights into the regulatory mechanisms of cannabinoid biosynthesis in cannabis. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

25 pages, 4600 KiB  
Article
Cannabidiol-Loaded Retinal Organoid-Derived Extracellular Vesicles Protect Oxidatively Stressed ARPE-19 Cells
by Peggy Arthur, Sangeetha Kandoi, Anil Kalvala, Breana Boirie, Aakash Nathani, Mounika Aare, Santanu Bhattacharya, Tanmay Kulkarni, Li Sun, Deepak A. Lamba, Yan Li and Mandip Singh
Biomedicines 2025, 13(5), 1167; https://doi.org/10.3390/biomedicines13051167 - 10 May 2025
Viewed by 736
Abstract
Background/Objectives: Age-related macular degeneration (AMD) is the third leading cause of irreversible blindness in elderly individuals aged over 50 years old. Oxidative stress plays a crucial role in the etiopathogenesis of multifactorial AMD disease. The phospholipid bilayer EVs derived from the culture-conditioned medium [...] Read more.
Background/Objectives: Age-related macular degeneration (AMD) is the third leading cause of irreversible blindness in elderly individuals aged over 50 years old. Oxidative stress plays a crucial role in the etiopathogenesis of multifactorial AMD disease. The phospholipid bilayer EVs derived from the culture-conditioned medium of human induced pluripotent stem cell (hiPSC) differentiated retinal organoids aid in cell-to-cell communication, signaling, and extracellular matrix remodeling. The goal of the current study is to establish and evaluate the encapsulation of a hydrophobic compound, cannabidiol (CBD), into retinal organoid-derived extracellular vesicles (EVs) for potential therapeutic use in AMD. Methods: hiPSC-derived retinal organoid EVs were encapsulated with CBD via sonication (CBD-EVs), and structural features were elucidated using atomic force microscopy, nanoparticle tracking analysis, and small/microRNA (miRNA) sequencing. ARPE-19 cells and oxidative-stressed (H2O2) ARPE-19 cells treated with CBD-EVs were assessed for cytotoxicity, apoptosis (MTT assay), reactive oxygen species (DCFDA), and antioxidant proteins (immunohistochemistry and Western blot). Results: Distinct miRNA cargo were identified in early and late retinal organoid-derived EVs, implicating their roles in retinal development, differentiation, and functionality. The therapeutic effects of CBD-loaded EVs on oxidative-stressed ARPE-19 cells showed greater viability, decreased ROS production, downregulated expression of inflammation- and apoptosis-related proteins, and upregulated expression of antioxidants by Western blot and immunocytochemistry. Conclusions: miRNAs are both prognostic and predictive biomarkers and can be a target for developing therapy since they regulate RPE physiology and diseases. Our findings indicate that CBD-EVs could potentially alleviate the course of AMD by activating the targeted proteins linked to the adenosine monophosphate kinase (AMPK) pathway. Implicating the use of CBD-EVs represents a novel frontline to promote long-term abstinence from drugs and pharmacotherapy development in treating AMD. Full article
(This article belongs to the Special Issue Therapeutic Potential for Cannabis and Cannabinoids, 3rd Edition)
Show Figures

Figure 1

19 pages, 3189 KiB  
Article
Enhancement of Microencapsulation of Rapeseed Oil Bioactive Compounds in Alginate Through Sonication
by Cristina-Emanuela Enascuta, Elena-Emilia Sirbu, Diana Pasarin, Andra Ionela Ghizdareanu, Raluca Senin, Ioana Silvia Hosu, Ana-Mihaela Gavrilă, Bianca-Ana-Maria Burdusel and Vasile Lavric
Foods 2025, 14(10), 1692; https://doi.org/10.3390/foods14101692 - 10 May 2025
Viewed by 548
Abstract
The microencapsulation of bioactive compounds from rapeseed oil using sodium alginate, in the presence and absence of an ultrasonic (US) field, is reported. A Box–Behnken experimental design is used to investigate the influence of process parameters on the microencapsulation yield; then, the response [...] Read more.
The microencapsulation of bioactive compounds from rapeseed oil using sodium alginate, in the presence and absence of an ultrasonic (US) field, is reported. A Box–Behnken experimental design is used to investigate the influence of process parameters on the microencapsulation yield; then, the response surface methodology is applied, to find their values ensuring its optimum yield. The operating parameters investigated are the ratio of sodium alginate to rapeseed oil, the microencapsulation time and the concentration of the calcium chloride solution. The US bath was used at its nominal power, and the microencapsulation temperature was kept at 20 °C, with a thermostat, for all experiments. A detailed study on the comparison of the two microencapsulation techniques (in the presence and absence of the US field) was carried out. Good results were obtained in the presence of the US field for optimal conditions, when the microencapsulation yield was 90.25 ± 0.02%, higher than the microencapsulation process performed in the absence of the US field, 87.11 ± 0.02%. The results also showed that the use of the US field (optimal conditions) led to an increase in encapsulation efficiency, total phenolic content and antioxidant capacity (76.56 ± 0.02%, 324.85 ± 0.01 mg GAE/g and 57.05 ± 0.12 mg/mL). The physicochemical description of microcapsules was performed using modern characterization methods. These results indicate that by increasing the microencapsulation yield of bioactive compounds through sonication, the process aims to achieve a uniform size distribution of microcapsules. Full article
Show Figures

Figure 1

14 pages, 2420 KiB  
Article
High-Performance Anion Exchange Chromatography Electrochemical Determination of Uric Acid as a Contamination Marker
by Kevin C. Honeychurch
Sci 2025, 7(2), 40; https://doi.org/10.3390/sci7020040 - 1 Apr 2025
Viewed by 595
Abstract
This study presents the first instance of determining environmental uric acid in urban dust using high-performance anion exchange chromatography coupled with electrochemical detection. The optimum chromatographic conditions were identified as a 10 mm × 4.6 mm, 10 µm anion exchange column with a [...] Read more.
This study presents the first instance of determining environmental uric acid in urban dust using high-performance anion exchange chromatography coupled with electrochemical detection. The optimum chromatographic conditions were identified as a 10 mm × 4.6 mm, 10 µm anion exchange column with a mobile phase of pH 8 50 mM phosphate buffer. Cyclic voltametric investigations over a pH range of 2 to 12 showed that uric acid gave a single diffusion-controlled peak. Hydrodynamic voltametric studies of uric acid using a mobile phase of 50 mM pH 8.0 phosphate buffer over the range 0.0 V to +1.4 V (vs. stainless steel) showed a similar single oxidation wave, which plateaued at potentials more positive than +0.7 V (vs. stainless steel). An applied potential of +0.90 V (vs. stainless steel) was chosen for further investigations, and a linear range of 0.10 to 100 mg/L was obtained, with a detection limit of 0.866 mg/L based on a signal-to-noise ratio of 3. Dust wipe samples were extracted in pH 8, 50 mM phosphate buffer with the aid of sonication. Recoveries of 99.6% (% CV = 4.52%) were achieved for the dust wipe fortified with 16.8 µg of uric acid. Nitrate, nitrite, chloride, acetate, and sulfate ions were found not to interfere. The dust wipe samples were found to have uric acid levels of between 32.6 µg/m2 and 3.98 mg/m2. Full article
Show Figures

Graphical abstract

17 pages, 1732 KiB  
Article
Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications
by Mahsa Farrokhi, Ines N. Ramos and Cristina L. M. Silva
Foods 2025, 14(7), 1094; https://doi.org/10.3390/foods14071094 - 21 Mar 2025
Viewed by 573
Abstract
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising [...] Read more.
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising corn starch, rice flour, and other ingredients, was treated at hydration levels of 15% and 25% (w/w) under controlled conditions (10 min of sonication at 20 °C) and compared to a non-sonicated control. Sonication reduced the water absorption capacity (WAC) and swelling power (SP) while increasing the oil absorption capacity (OAC) and water solubility (WSI). Thermal analysis revealed lower gelatinization enthalpy, indicating structural modifications induced by cavitation. Structural assessments (XRD and FTIR) confirmed minimal alterations in crystallinity and short-range order. Rheological studies demonstrated an enhanced elasticity in the gel structure, especially at 15% hydration, while a morphological analysis via SEM highlighted particle fragmentation and surface roughening. These findings demonstrate the potential of ultrasound to modify gluten-free flours for improved functionality and diverse applications in gluten-free product development. Full article
Show Figures

Figure 1

29 pages, 3639 KiB  
Article
Ultrasound-Assisted Deep Eutectic Solvent Extraction of Antioxidant and Anti-Colorectal Cancer Proteins from Spirulina Biomass: Process Intensification, Characterization, and Bioactivity Evaluation
by May Thu Zin, Thida Kaewkod, Supakit Chaipoot, Gochakorn Kanthakat, Yan-Yu Chen, Benjamas Cheirsilp and Sirasit Srinuanpan
Antioxidants 2025, 14(3), 365; https://doi.org/10.3390/antiox14030365 - 19 Mar 2025
Cited by 2 | Viewed by 1442
Abstract
Spirulina, a cyanobacterial biomass, is renowned for its high protein content and bioactive compounds, making it a promising candidate for health-promoting applications. This study explores the ultrasound-assisted deep eutectic solvent (DES) extraction technique for isolating antioxidants and anticancer proteins from Spirulina biomass, [...] Read more.
Spirulina, a cyanobacterial biomass, is renowned for its high protein content and bioactive compounds, making it a promising candidate for health-promoting applications. This study explores the ultrasound-assisted deep eutectic solvent (DES) extraction technique for isolating antioxidants and anticancer proteins from Spirulina biomass, aiming to enhance extraction efficiency and preserve protein bioactivity. The extraction process was optimized using response surface methodology (RSM), varying parameters such as biomass concentration, sonication amplitude, and extraction duration. The optimized extraction conditions—5% biomass concentration, 40% sonication amplitude, and 22-minute extraction—achieved a high protein yield of 80.62%, with a protein concentration of 442.88 mg/g extract and an essential amino acid content of 39.91%. The extracted proteins exhibited remarkable bioactivity, including strong antioxidant properties, with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 0.25 mg GAE/g, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity of 0.58 mg TE/g, and ferric reducing antioxidant power (PFRAP) of 9.63 mg gallic acid equivalent (GAE)/g. Additionally, the protein extract displayed selective cytotoxicity against colorectal cancer cell lines, with half-maximal inhibitory concentration (IC50) values of 10.25 mg/mL for Caco-2 and 15.40 mg/mL for HT-29 cells, while maintaining low toxicity towards normal Vero cells. Apoptosis rates of 70.43% in Caco-2 and 51.33% in HT-29 cells further confirm the anticancer potential of the extract. The functional properties of the extracted protein, including high foaming capacity (100%), emulsifying capacity (94.05%), and digestibility (85.77%), underscore its potential for diverse applications in food, pharmaceutical, and nutraceutical industries. This eco-friendly and efficient extraction approach aligns with sustainable development goals and offers a viable strategy for harnessing Spirulina’s bioactive potential. Full article
(This article belongs to the Special Issue Green Extraction of Antioxidant from Natural Source)
Show Figures

Figure 1

12 pages, 2139 KiB  
Article
Biofilm Growth on Different Materials Used in Contemporary Femoral Head Prosthesis: An In Vitro Study
by Yonggyun Moon, Jaeyoung Hong, Sookyung Choi, Hyoungtae Kim, Hong Moon Sohn and Suenghwan Jo
J. Clin. Med. 2025, 14(5), 1722; https://doi.org/10.3390/jcm14051722 - 4 Mar 2025
Viewed by 843
Abstract
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral [...] Read more.
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral head prostheses made of three different materials—cobalt–chrome, oxinium, and ceramic—were inoculated with either Staphylococcus aureus or Pseudomonas aeruginosa in separate experiments, with each pathogen tested independently. The samples were cultured under shaking conditions at 37 °C for 96 h to promote biofilm formation. Scanning electron microscopy (SEM) was used to confirm the presence of biofilms, and adherent biofilms were quantified by counting colony-forming units (CFUs) after sonication. Additionally, crystal violet staining was performed to assess biofilm distribution on the femoral head surfaces. Statistical analyses compared CFU counts across the different materials. Results: The mean CFU counts for S. aureus were 7.6 × 105 ± 9.7 × 104 for cobalt–chrome, 6.9 × 105 ± 3.6 × 105 for oxinium, and 1.1 × 106 ± 3.0 × 105 for ceramic femoral head prostheses. For P. aeruginosa, the CFU counts were 2.3 × 106 ± 7.2 × 105, 3.7 × 106 ± 2.5 × 106, and 2.2 × 106 ± 8.9 × 105, respectively. Regardless of the bacterial strain, differences among the three materials were within one log range, and no statistical significance was observed. While biofilms were confirmed using SEM, limited adherence was observed on the bearing surface, with the biofilm predominantly localized in the taper hole. Conclusions: The findings suggest that the material used in contemporary femoral head prostheses has minimal impact on bacterial biofilm formation. Surgeons’ choice of femoral head prosthesis material should base their material selection on factors other than PJI prevention. Full article
(This article belongs to the Special Issue Clinical Advances in Orthopedic Infections)
Show Figures

Figure 1

Back to TopTop