Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,484)

Search Parameters:
Keywords = solute leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3224 KiB  
Article
Design of Experiments Approach for Efficient Heavy Metals Stabilization Using Metakaolin-Based Geopolymers
by Raffaele Emanuele Russo, Elisa Santoni, Martina Fattobene, Mattia Giovini, Francesco Genua, Cristina Leonelli, Isabella Lancellotti, Ana Herrero and Mario Berrettoni
Molecules 2025, 30(15), 3235; https://doi.org/10.3390/molecules30153235 (registering DOI) - 1 Aug 2025
Abstract
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, [...] Read more.
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, metal concentration, anion type, and alkaline solution aging time, which have not been previously studied. A Design of Experiments approach was employed to study the effect of factors on metal leaching behavior and to better understand the underlying immobilization mechanisms. The analysis revealed that higher Na/Al ratios significantly enhance geopolymerization and reduce metal release, as supported by FTIR spectral shifts and decreased shoulder intensity. Notably, aging time had an influence on chromium behavior due to its effect on early silicate network formation, which can hinder the incorporation of chromium species. All tested formulations achieved metal immobilization rates of 98.8% or higher for both chromium and nickel. Overall, this study advances our understanding of geopolymer-based heavy metal immobilization. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 (registering DOI) - 1 Aug 2025
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

23 pages, 5351 KiB  
Article
Hydrometallurgical Leaching of Copper and Cobalt from a Copper–Cobalt Ore by Aqueous Choline Chloride-Based Deep Eutectic Solvent Solutions
by Emmanuel Anuoluwapo Oke, Yorkabel Fedai and Johannes Hermanus Potgieter
Minerals 2025, 15(8), 815; https://doi.org/10.3390/min15080815 (registering DOI) - 31 Jul 2025
Abstract
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four [...] Read more.
The sustainable recovery of valuable metals such as Cu and Co from ores is a pressing need considering environmental and economic challenges. Therefore, this study evaluates the effectiveness of deep eutectic solvents (DESs) as alternative leaching agents for Cu and Co extraction. Four DESs were prepared using choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and oxalic acid (OA), ethylene glycol (EG), urea (U) and thiourea (TU) as hydrogen bond donors (HBDs). Leaching experiments were conducted with DESs supplemented with 30 wt.% water at varying temperatures, various solid-to-liquid ratios, and time durations. The ChCl:OA DES demonstrated the highest leaching efficiencies among the DESs tested on pure CuO and CoO, achieving 89.2% for Cu and 92.4% for Co (60 °C, 400 rpm, 6 h, −75 + 53 µm particle size, and 1:10 solid-to-liquid ratio). In addition, the dissolution kinetics, analysed using the shrinking core model (SCM), showed that the leaching process was mainly controlled by surface chemical reactions. The activation energy values for Cu and Co leaching were 46.8 kJ mol−1 and 51.4 kJ mol−1, respectively, supporting a surface chemical control mechanism. The results highlight the potential of ChCl:OA as a sustainable alternative for metal recovery. Full article
Show Figures

Graphical abstract

16 pages, 4530 KiB  
Article
A Novel Selective Oxygen Pressure Leaching for Zinc Extraction from Hemimorphite in Acid-Free Solutions
by Tong Wang, Yubo Zeng, Shuang Zhang, Chen Chen, Yang Li, Wenhui Ma and Hongwei Ni
Metals 2025, 15(8), 858; https://doi.org/10.3390/met15080858 (registering DOI) - 31 Jul 2025
Abstract
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon [...] Read more.
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon and iron. The effect of leaching conditions, including Fe/Zn molar ratio, leaching temperature, pressure, and reaction time, on the leaching efficiency of zinc, Fe, and Si was investigated systematically. The results showed that the molar ratio of Fe/Zn and leaching temperature play a pivotal role in determining the leaching efficiency rate of Zn. Under the optimized leaching conditions (Fe/Zn molar ratio = 6:1, 150 °C, 1.8 × 106 Pa, and leaching time of 2 h), the leaching efficiency of Zn reached 98.80% and the leaching efficiencies of Fe and Si were 0.76% and 16.80%, respectively. In addition, the shrinking core model was established to represent the relationship between the rate control step and the leaching conditions. The leaching process was controlled by chemical reaction and diffusion, and the activation energy of the leaching process is 97.14 kJ/mol. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

21 pages, 5166 KiB  
Article
Investigation of a Volcanic Rock-Derived Coagulant for Water Purification: A Study of Its Preparation Process
by Lei Zhou, Zhangrui Yang, Xiaoyong Liu, Xiaoben Yang, Xuewen Wu, Yong Zhou and Guocheng Zhu
Water 2025, 17(15), 2279; https://doi.org/10.3390/w17152279 - 31 Jul 2025
Abstract
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. [...] Read more.
Volcanic rock is a natural mineral material which has garnered interest for its potential application in water treatment due to its unique physicochemical properties. In this study, we prepared a polysilicate aluminum chloride (PSAC) coagulant using volcanic rock which exhibited good coagulation–flocculation performance. Further investigation into the influence of synthetic parameters, such as calcination temperature, reaction time, and alkali types, on the structure and performance of a volcanic rock-derived coagulant was conducted. Techniques including Scanning Electron Microscopy, Energy-Dispersive Spectroscopy, Fourier-Transform Infrared Spectroscopy, and X-Ray Diffraction were utilized to characterize it. Also, a ferron-complexation timed spectrophotometric method was used to study the distribution of aluminum species in the coagulant. Results indicated that the volcanic rock that was treated with acidic and alkaline solutions had the potential to form PSAC with Al-OH, Al-O-Si, Fe-OH, and Fe-O-Si bonds, which influenced the coagulation–flocculation efficiency. An acid leaching temperature of 90 °C, 8 mL of 2 mol/L NaOH, a reaction time of 0.5 h, and a reaction temperature of 60 °C were conducive to the preparation. A higher temperature could result in a higher proportion of Alb species, and, at 100 °C, the Ala, Alc, and Alb were 29%, 24%, and 47%, respectively, achieving a residual turbidity lower than 1 NTU at an appropriate dosage, as well as a reduction of over 0.1 to 0.018 in the level of UV254. The findings of this study provide a feasible method to prepare a flocculant using volcanic rock. Further application is expected to yield good results in wastewater/water treatment. Full article
Show Figures

Figure 1

17 pages, 1261 KiB  
Article
Innovative Valorization of Wood Panel Waste into Activated Biochar for Efficient Phenol Adsorption
by Aziz Bentis, Laura Daniela Ceron Daza, Mamadou Dia, Ahmed Koubaa and Flavia Lega Braghiroli
Appl. Sci. 2025, 15(15), 8518; https://doi.org/10.3390/app15158518 (registering DOI) - 31 Jul 2025
Abstract
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar [...] Read more.
Construction and demolition byproducts include substantial amounts of wood panel waste (WPW) that pose environmental challenges. They also create opportunities for sustainable resource recovery. This study investigates the potential of WPW-derived biochar as an efficient adsorbent for phenol removal from aqueous solutions. Biochar was produced via pyrolysis at 450 °C and subsequent activation at 750, 850, and 950 °C. The biochar’s physicochemical properties, including surface area, pore volume, and elemental composition, were characterized using advanced methods, including BET analysis, elemental analysis, and adsorption isotherm analysis. Activated biochar demonstrated up to nine times higher adsorption capacity than raw biochar, with a maximum of 171.9 mg/g at 950 °C under optimal conditions: pH of 6 at 25 °C, initial phenol concentration of 200 mg/L, and biochar dosage of 1 g/L of solution for 48 h. Kinetic and isotherm studies revealed that phenol adsorption followed a pseudo-second-order model and fit the Langmuir isotherm, indicating chemisorption and monolayer adsorption mechanisms. Leaching tests confirmed the biochar’s environmental safety, with heavy metal concentrations well below regulatory limits. Based on these findings, WPW biochar offers a promising, eco-friendly solution for wastewater treatment in line with circular economy and green chemistry principles. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 (registering DOI) - 31 Jul 2025
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 5172 KiB  
Article
Sustainable Metal Recovery from Photovoltaic Waste: A Nitric Acid-Free Leaching Approach Using Sulfuric Acid and Ferric Sulfate
by Payam Ghorbanpour, Pietro Romano, Hossein Shalchian, Francesco Vegliò and Nicolò Maria Ippolito
Minerals 2025, 15(8), 806; https://doi.org/10.3390/min15080806 - 30 Jul 2025
Abstract
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in [...] Read more.
In recent years, recovering precious and base metals such as silver and copper from end-of-life products has become a fundamental factor in the sustainable development of many countries. This not only supports environmental goals but is also a profitable economic activity. Therefore, in this study, we investigate the recovery of silver and copper from an end-of-life photovoltaic panel powder using an alternative leaching system containing sulfuric acid and ferric sulfate instead of nitric acid-based leaching systems, which are susceptible to producing hazardous gases such as NOx. To obtain this goal, a series of experiments were designed with the Central Composite Design (CCD) approach using Response Surface Methodology (RSM) to evaluate the effect of reagent concentrations on the leaching rate. The leaching results showed that high recovery rates of silver (>85%) and copper (>96%) were achieved at room temperature using a solution containing only 0.2 M sulfuric acid and 0.15 M ferric sulfate. Analysis of variance was applied to the leaching data for silver and copper recovery, resulting in two statistical models that predict the leaching efficiency based on reagent concentrations. Results indicate that the models are statistically significant due to their high R2 (0.9988 and 0.9911 for Ag and Cu, respectively) and the low p-value of 0.0043 and 0.0003 for Ag and Cu, respectively. The models were optimized to maximize the dissolution of silver and copper using Design Expert software. Full article
(This article belongs to the Special Issue Recycling of Mining and Solid Wastes)
Show Figures

Figure 1

12 pages, 1939 KiB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

21 pages, 3812 KiB  
Article
Recovery of Iron, Silver and Lead from Zinc Ferrite Residue
by Peter Iliev, Biserka Lucheva, Nadezhda Kazakova and Vladislava Stefanova
Materials 2025, 18(15), 3522; https://doi.org/10.3390/ma18153522 - 27 Jul 2025
Viewed by 275
Abstract
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals [...] Read more.
The present article aims to develop a technological scheme for processing zinc ferrite residue, which typically forms during the leaching of zinc calcine. This semi-product is currently processed through the Waelz process, the main disadvantage of which is the loss of precious metals with the Waelz clinker. The experimental results of numerous experiments and analyses have verified a technological scheme including the following operations: sulfuric acid leaching of zinc ferrite residue under atmospheric conditions; autoclave purification of the resulting productive solution to obtain hematite; chloride leaching of lead and silver from the insoluble residue, which was produced in the initial operation; and cementation with zinc powder of lead and silver from the chloride solution. Utilizing such an advanced methodology, the degree of zinc leaching is 98.30% at a sulfuric acid concentration of 200 g/L, with a solid-to-liquid ratio of 1:10 and a temperature of 90 °C. Under these conditions, 96.40% Cu and 92.72% Fe form a solution. Trivalent iron in the presence of seeds at a temperature of 200 °C precipitates as hematite. In chloride extraction with 250 g/L NaCl, 1 M HCl, and a temperature of 60 °C, the leaching degree of lead is 96.79%, while that of silver is 84.55%. In the process of cementation with zinc powder, the degree of extraction of lead and silver in the cement precipitate is 98.72% and 97.27%, respectively. When implementing this scheme, approximately 15% of the insoluble residue remains, containing 1.6% Pb and 0.016% Ag. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 2723 KiB  
Article
Study on Harmless Treatment and Performance of Phosphogypsum-Based Inorganic Cementing Material
by Hui Xiang, Chenyang Dong, Hao Wu, Xiaodi Hu, Bo Gao, Zhiwei Fan, Jiuming Wan, Yuan Ma and Hongtao Guan
Infrastructures 2025, 10(8), 196; https://doi.org/10.3390/infrastructures10080196 - 25 Jul 2025
Viewed by 220
Abstract
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to [...] Read more.
Phosphogypsum, a by-product of phosphate fertilizer production, was predominantly used as a supplementary additive in recycled construction materials. However, there are few detailed studies on utilizing phosphogypsum as the primary component in inorganic cementing materials while achieving cost-effective detoxification. This study aimed to develop a harmless phosphogypsum-based inorganic cementing material (PICM) mainly based on phosphogypsum, in which cement, quicklime, and a stabilizer were used as additives. Harmful ions and acidity were first detected through X-ray fluorescence and ion chromatography and then harmlessly treated with quicklime. Compaction parameters, mechanical performance, X-ray diffraction analysis, moisture, and freezing resistance were characterized successively. The results illustrated that fluoride and phosphate ions were the primary soluble contaminants, whose leaching solution concentration can be reduced to 15.31 mg/L and undetectable with 2% quicklime through the mass proportion of phosphogypsum added and mixed. Meanwhile, the corresponding pH value was also raised to over 8. Cement content and quicklime were positively correlated with PICM’s maximum dry density. PICM with 25% cement and 2.5% stabilizer presented the highest unconfined compression strength, and flexural strength did not show significant regularity. PICM was mainly composed of quartz, gypsum, ettringite, and calcite, whose content decreased as cement content and quicklime content increased. Stabilizer, quicklime and cement content were positively correlated with PICM’s freezing and moisture resistance. Full article
(This article belongs to the Section Sustainable Infrastructures)
Show Figures

Figure 1

26 pages, 2995 KiB  
Article
A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
by Martina Napolitano, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani and Luisa Barbieri
Materials 2025, 18(15), 3492; https://doi.org/10.3390/ma18153492 - 25 Jul 2025
Viewed by 271
Abstract
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and [...] Read more.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale. The formulations were evaluated through release tests in 2% citric acid solution simulating the acidic conditions of the rhizosphere, and in acetic acid to assess potential nutrient leaching under acid rain conditions. The results showed a progressive cumulative release of macronutrients (NPKs), ranging from approximately 8% at 24 h to 73% after 90 days for the most effective formulation (WBF6). Agronomic trials on lettuce confirmed the effectiveness of WBF6, resulting in significant biomass increases compared with both the untreated control and a conventional fertilizer. The use of livestock waste and minerals facilitated the development of a scalable product aligned with the principles of sustainable agriculture. The observed release behavior, combined with the simplicity of production, positions these formulations as a promising alternative to conventional slow-release fertilizers. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

18 pages, 2688 KiB  
Article
Eco-Friendly Leaching of Spent Lithium-Ion Battery Black Mass Using a Ternary Deep Eutectic Solvent System Based on Choline Chloride, Glycolic Acid, and Ascorbic Acid
by Furkan Nazlı, Işıl Hasdemir, Emircan Uysal, Halide Nur Dursun, Utku Orçun Gezici, Duygu Yesiltepe Özçelik, Fırat Burat and Sebahattin Gürmen
Minerals 2025, 15(8), 782; https://doi.org/10.3390/min15080782 - 25 Jul 2025
Viewed by 323
Abstract
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, [...] Read more.
Lithium-ion batteries (LiBs) are utilized in numerous applications due to advancements in technology, and the recovery of end-of-life (EoL) LiBs is imperative for environmental and economic reasons. Pyrometallurgical and hydrometallurgical methods have been used in the recovery of metals such as Li, Co, and Ni in the EoL LiBs. Hydrometallurgical methods, which have been demonstrated to exhibit higher recovery efficiency and reduced energy consumption, have garnered increased attention in recent research. Inorganic acids, including HCl, HNO3, and H2SO4, as well as organic acids such as acetic acid and citric acid, are employed in the hydrometallurgical recovery of these metals. It is imperative to acknowledge the environmental hazards posed by these acids. Consequently, solvometallurgical processes, which involve the use of organic solvents with minimal or no water, are gaining increasing attention as alternative or complementary techniques to conventional hydrometallurgical processes. In the context of solvent systems that have been examined for a range of solvometallurgical methods, deep eutectic solvents (DESs) have garnered particular interest due to their low toxicity, biodegradable nature, tunable properties, and efficient metal recovery potential. In this study, the leaching process of black mass containing graphite, LCO, NMC, and LMO was carried out in a short time using the ternary DES system. The ternary DES system consists of choline chloride (ChCl), glycolic acid (GLY), and ascorbic acid (AA). As a result of the leaching process of cathode powders in the black mass without any pre-enrichment process, Li, Co, Ni, and Mn elements passed into solution with an efficiency of over 95% at 60 °C and within 1 h. Moreover, the kinetics of the leaching process was investigated, and Density Functional Theory (DFT) calculations were used to explain the leaching mechanism. Full article
Show Figures

Figure 1

16 pages, 2322 KiB  
Article
Reducing Marine Ecotoxicity and Carbon Burden: A Life Cycle Assessment Study of Antifouling Systems
by Trent Kelly, Emily M. Hunt, Changxue Xu and George Tan
Processes 2025, 13(8), 2356; https://doi.org/10.3390/pr13082356 - 24 Jul 2025
Viewed by 257
Abstract
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high [...] Read more.
Marine biofouling significantly impacts the performance and longevity of polymer-based marine structures, particularly those designed for hydrodynamic applications such as Vortex-Induced Vibration suppression systems. Traditional antifouling solutions rely on copper-based multilayer coatings, which present challenges including mechanical vulnerability (e.g., chipping and scratching), high material and labor demands, and environmental concerns such as volatile organic compound emissions and copper leaching. Recent developments in material science have introduced an alternative system involving the direct incorporation of copper oxide (Cu2O) into high-density polyethylene (HDPE) during the molding process. This study conducts a comparative life cycle assessment (LCA) of two antifouling integration methods—System 1 (traditional coating-based) and System 2 (Cu2O-impregnated HDPE)—evaluating their environmental impact across production, application, use, and end-of-life stages. The functional unit used for this study was 1 square meter for a time period of five years. Using ISO 14040-compliant methodology and data from Ecoinvent and OpenLCA, three impact categories were assessed: global warming potential (GWP), cumulative energy demand (CED), and marine aquatic ecotoxicity Potential (MAETP). The results indicate that System 2 outperforms System 1 in GWP (4.42 vs. 5.65 kg CO2-eq), CED (75.3 vs. 91.0 MJ-eq), and MAETP (327,002 vs. 469,929 kg 1,4-DCB-eq) per functional unit over a five-year lifespan, indicating a 21.8%, 17.3%, and 30.4% reduction in the key impact factors, respectively. These results suggest that direct Cu2O incorporation offers a more environmentally sustainable and mechanically resilient antifouling strategy, supporting the potential of embedded antifouling systems to shift industry practices toward more sustainable marine infrastructure. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

16 pages, 1658 KiB  
Article
Environmentally Friendly Chelation for Enhanced Algal Biomass Deashing
by Agyare Asante, George Daramola, Ryan W. Davis and Sandeep Kumar
Phycology 2025, 5(3), 32; https://doi.org/10.3390/phycology5030032 - 23 Jul 2025
Viewed by 250
Abstract
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its [...] Read more.
High ash content in algal biomass limits its suitability for biofuel production by reducing combustion efficiency and increasing fouling. This study presents a green deashing strategy using nitrilotriacetic acid (NTA) and deionized (DI) water to purify Scenedesmus algae, which was selected for its high ash removal potential. The optimized sequential treatment (DI, NTA chelation, and DI+NTA treatment at 90–130 °C) achieved up to 83.07% ash removal, reducing ash content from 15.2% to 3.8%. Elevated temperatures enhanced the removal of calcium, magnesium, and potassium, while heavy metals like lead and copper were reduced below detection limits. CHN analysis confirmed minimal loss of organic content, preserving biochemical integrity. Unlike traditional acid leaching, this method is eco-friendly after three cycles. The approach offers a scalable, sustainable solution to improve algal biomass quality for thermochemical conversion and supports circular bioeconomy goals. Full article
Show Figures

Graphical abstract

Back to TopTop