A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Waste-Based Fertilizers Characterization
2.2.1. Sample Preparation
2.2.2. Raw Materials Characterization
2.2.3. WBFs Characterization
2.3. Weight Loss in Water
2.4. Kinetics of Nutrient Release
2.5. Agronomic Performances
2.6. Antimicrobial Properties
3. Results
3.1. Weight Loss in Water
3.2. Kinetics of Nutrient Release
- %(N), % (P2O5), % (K2O) = initial % (w/w) of N, P2O5, and K2O in the fertilizer.
- rN(t), rP2O5(t), K2O(t) = fractions (%) of N, P2O5, and K2O that have been released at time t, with respect to the initial content (% (w/w)) of each single nutrient.
- TNC = Total Nutrient Content
3.3. Agronomic Performances
- GI = growth index (%).
- md = average measured weight of foliar biomass after 21 days for plants given a specific dose of fertilizer
- mr = average measured weight of foliar biomass after 21 days for the unfertilized reference.
3.4. Antimicrobial Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SRFs | Slow-release fertilizers |
WBF | Waste-based fertilizers |
ABPs | Animal Byproducts |
LD | Soil organic matter |
NUE | Nutrient use efficiency |
XRF | X-Ray Fluorescence |
L.O.I. | Loss on ignition |
SSA | Specific surface area |
BET | Brunauer–Emmett–Teller |
SEM | Scanning Electron Microscopy |
CA | Citric acid |
AA | Acetic acid |
PCU | Polymer-coated urea |
HA | Hydroxyapatite |
PSB | Phosphate-solubilizing bacteria |
References
- Khush, G.S. Green revolution: Preparing for the 21st century. Genome 1999, 42, 645–655. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, H.; Yi, H. Impact of Fertilizer on Crop Yield and C:N:P Stoichiometry in Arid and Semi-Arid Soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Prashar, P.; Shah, S. Impact of Fertilizers and Pesticides on Soil Microfl ora in Agriculture. Sustain. Agric. Rev. 2016, 19, 331–362. [Google Scholar] [CrossRef]
- Luo, S.; Gao, Q.; Wang, S.; Tian, L.; Zhou, Q.; Li, X.; Tian, C. Long-term fertilization and residue return affect soil stoichiometry characteristics and labile soil organic matter fractions. Pedosphere 2020, 30, 703–713. [Google Scholar] [CrossRef]
- Allam, M.; Radicetti, E.; Quintarelli, V.; Petroselli, V.; Marinari, S.; Mancinelli, R. Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis. Agriculture 2022, 12, 464. [Google Scholar] [CrossRef]
- Pahalvi, H.; Majeed, L.; Rashid, S.; Nisar, B.; Kamili, A. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Springer: Cham, Switzerland, 2021; Volume 2, pp. 1–20. ISBN 978-3-030-61009-8. [Google Scholar]
- Aziz, T.; Maqsood, M.A.; Kanwal, S.; Hussain, S.; Ahmad, H.R.; Sabir, M. Fertilizers and Environment: Issues and Challenges. In Crop Production and Global Environmental Issues; Hakeem, K.R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 575–598. ISBN 978-3-319-23162-4. [Google Scholar]
- Oyetunji, O.; Bolan, N.; Hancock, G. A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. J. Environ. Manag. 2022, 317, 115395. [Google Scholar] [CrossRef]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control. Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Kanter, D.; Bartolini, F.; Kugelberg, S.; Leip, A.; Oenema, O.; Uwizeye, A. Nitrogen pollution policy beyond the farm. Nat. Food 2019, 1, 27–32. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Rai, M.; Ribeiro, C.; Mattoso, L.; Duran, N. (Eds.) Nanotechnologies in Food and Agriculture; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14023-0. [Google Scholar]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Atares, S.; García, C.; Zotarelli, L.; San Bautista, A.; Vicente, O. Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants 2020, 9, 1183. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 2014, 5, 3858. [Google Scholar] [CrossRef]
- Follett, R.; Hatfield, J. Nitrogen in the Environment: Sources, Problems, and Management. Sci. World J. 2001, 1 (Suppl. 2), 920–926. [Google Scholar] [CrossRef]
- Galloway, J.; Schlesinger, W.; Levy, H.; Michaels, A.; Schnoor, J. Nitrogen fixation: Anthropogenic enhancement-environmental. Glob. Biogeochem. Cycles 1995, 9, 235–252. [Google Scholar] [CrossRef]
- Bi, S.; Barinelli, V.; Sobkowicz, M.J. Degradable Controlled Release Fertilizer Composite Prepared via Extrusion: Fabrication, Characterization, and Release Mechanisms. Polymers 2020, 12, 301. [Google Scholar] [CrossRef]
- Wesolowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Sławiński, C.; Klimczyk, M.; Supryn, G.; Schimmelpfennig, L. New slow-release fertilizers—Economic, legal and practical aspects: A Review. Int. Agrophysics 2021, 35, 11–24. [Google Scholar] [CrossRef]
- Jeyanayagam, S.; Hahn, T.; Fergen, R.; Boltz, J. Nutrient Recovery, an Emerging Component of a Sustainable Biosolids Management Program. Proc. Water Environ. Fed. 2012, 2012, 1078–1088. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed]
- Aziz, T.; Maqsood, M.; Ali, M.; Ahmed, I.; Cheema, M. Phosphorus utilization by six Brassica cultivars (Brassica juncea L.) from tri-calcium phosphate; A relatively insoluble p compound. Pak. J. Bot. 2006, 38, 1529–1538. [Google Scholar]
- Bennett, E.; Carpenter, S.; Caraco, N. Human Impact on Erodable Phosphorus and Eutrophication: A Global Perspective. BioScience 2009, 51, 227–234. [Google Scholar] [CrossRef]
- Geissler, B.; Hermann, L.; Mew, M.C.; Steiner, G. Striving Toward a Circular Economy for Phosphorus: The Role of Phosphate Rock Mining. Minerals 2018, 8, 395. [Google Scholar] [CrossRef]
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus recovery and recycling—Closing the loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutr. Cycl. Agroecosyst. 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Javied, S.; Mehmood, T.; Chaudhry, M.M.; Tufail, M.; Irfan, N. Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem. J. 2009, 91, 94–99. [Google Scholar] [CrossRef]
- Suciu, N.A.; De Vivo, R.; Rizzati, N.; Capri, E. Cd content in phosphate fertilizer: Which potential risk for the environment and human health? Curr. Opin. Environ. Sci. Health 2022, 30, 100392. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Nakachew, K.; Yigermal, H.; Assefa, F.; Gelaye, Y.; Ali, S. Review on enhancing the efficiency of fertilizer utilization: Strategies for optimal nutrient management. Open Agric. 2024, 9, 20220356. [Google Scholar] [CrossRef]
- Dovzhenko, A.P.; Yapryntseva, O.A.; Sinyashin, K.O.; Doolotkeldieva, T.; Zairov, R.R. Recent progress in the development of encapsulated fertilizers for time-controlled release. Heliyon 2024, 10, e34895. [Google Scholar] [CrossRef]
- Ramli, R.A. Slow release fertilizer hydrogels: A review. Polym. Chem. 2019, 10, 6073–6090. [Google Scholar] [CrossRef]
- Naik, M.R.; Kumar, B.K.; Manasa, K. Polymer coated fertilizers as advance technique in nutrient management. Asian J. SOIL Sci. 2017, 12, 228–232. [Google Scholar] [CrossRef]
- Lubkowski, K.; Smorowska, A.; Sawicka, M.; Wróblewska, E.; Dzienisz, A.; Kowalska, M.; Sadłowski, M. Ethylcellulose as a coating material in controlled-release fertilizers. J. Chem. Technol. 2019, 21, 52–58. [Google Scholar] [CrossRef]
- Timilsena, Y.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced Efficiency Fertilizers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- Fu, J.; Wang, C.; Chen, X.; Huang, Z.; Chen, D. Classification research and types of slow controlled release fertilizers (SRFs) used—A review. Commun. Soil Sci. Plant Anal. 2018, 49, 2219–2230. [Google Scholar] [CrossRef]
- Li, X.; Li, Z. Global Trends and Current Advances in Slow/Controlled-Release Fertilizers: A Bibliometric Analysis from 1990 to 2023. Agriculture 2024, 14, 1502. [Google Scholar] [CrossRef]
- Govil, S.; Van Duc Long, N.; Escribà-Gelonch, M.; Hessel, V. Controlled-release fertiliser: Recent developments and perspectives. Ind. Crops Prod. 2024, 219, 119160. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 2021, 267, 129185. [Google Scholar] [CrossRef]
- Mansouri, H.; Ait Said, H.; Noukrati, H.; Oukarroum, A.; Ben Youcef, H.; Perreault, F. Advances in Controlled Release Fertilizers: Cost-Effective Coating Techniques and Smart Stimuli-Responsive Hydrogels. Adv. Sustain. Syst. 2023, 7, 2300149. [Google Scholar] [CrossRef]
- Mandal, M.; Singh Lodhi, R.; Chourasia, S.; Das, S.; Das, P. A Review on Sustainable Slow-Release N, P, K Fertilizer Hydrogels for Smart Agriculture. Chempluschem 2025, 90, e202400643. [Google Scholar] [CrossRef]
- Kareem, S.A.; Dere, I.; Gungula, D.T.; Andrew, F.P.; Saddiq, A.M.; Adebayo, E.F.; Tame, V.T.; Kefas, H.M.; Joseph, J.; Patrick, D.O. Synthesis and Characterization of Slow-Release Fertilizer Hydrogel Based on Hydroxy Propyl Methyl Cellulose, Polyvinyl Alcohol, Glycerol and Blended Paper. Gels 2021, 7, 262. [Google Scholar] [CrossRef]
- Song, Y.; Ma, L.; Duan, Q.; Xie, H.; Dong, X.; Zhang, H.; Yu, L. Development of Slow-Release Fertilizers with Function of Water Retention Using Eco-Friendly Starch Hydrogels. Molecules 2024, 29, 4835. [Google Scholar] [CrossRef]
- Hermida, L.; Agustian, J. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ. Technol. Innov. 2019, 13, 113–121. [Google Scholar] [CrossRef]
- Daitx, T.S.; Giovanela, M.; Carli, L.N.; Mauler, R.S. Biodegradable polymer/clay systems for highly controlled release of NPK fertilizer. Polym. Adv. Technol. 2019, 30, 631–639. [Google Scholar] [CrossRef]
- Sharma, V.K.; Singh, R.P. Organic matrix based slow release fertilizer enhances plant growth, nitrate assimilation and seed yield of Indian mustard (Brassica juncea L.). J. Environ. Biol. 2011, 32, 619–624. [Google Scholar]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Khan, M.A.; Mingzhi, W.; Lim, B.-K.; Lee, J.-Y. Utilization of waste paper for an environmentally friendly slow-release fertilizer. J. Wood Sci. 2008, 54, 158–161. [Google Scholar] [CrossRef]
- Chawakitchareon, P.; Anuwattana, R.; Buates, J. Production of Slow Release Fertilizer from Waste Materials. In Advanced Materials; Parinov, I.A., Chang, S.-H., Topolov, V.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 129–137. [Google Scholar]
- Galamini, G.; Ferretti, G.; Rosinger, C.; Huber, S.; Mentler, A.; Diaz–Pines, E.; Faccini, B.; Keiblinger, K.M. Potential for agricultural recycling of struvite and zeolites to improve soil microbial physiology and mitigate CO2 emissions. Geoderma 2025, 453, 117149. [Google Scholar] [CrossRef]
- Galamini, G.; Ferretti, G.; Medoro, V.; Eftekhari, N.; Favero, M.; Faccini, B.; Coltorti, M. Applying Natural and K-Enriched Zeolite Before Struvite Precipitation Improved the Recovery of NH4+ from Liquid Digestate and the Reagent Use Efficiency. Int. J. Environ. Res. 2024, 18, 44. [Google Scholar] [CrossRef]
- Mancho, C.; Diez-Pascual, S.; Alonso, J.; Gil-Díaz, M.; Lobo, M.C. Assessment of Recovered Struvite as a Safe and Sustainable Phosphorous Fertilizer. Environments 2023, 10, 22. [Google Scholar] [CrossRef]
- Ferretti, G.; Galamini, G.; Medoro, V.; Faccini, B. Amount and speciation of N leached from a sandy soil fertilized with urea, liquid digestate, struvite and NH4-enriched chabazite zeolite-tuff. Soil. Use Manag. 2023, 39, 456–473. [Google Scholar] [CrossRef]
- Galamini, G.; Ferretti, G.; Rosinger, C.; Huber, S.; Medoro, V.; Mentler, A.; Díaz-Pinés, E.; Gorfer, M.; Faccini, B.; Keiblinger, K.M. Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution. Chemosphere 2023, 317, 137881. [Google Scholar] [CrossRef] [PubMed]
- Beijer, S.; Salgueiro-Gonzalez, N.; Castiglioni, S.; Gerlein, J.C.; Scheer, P.; de Jong, G.B.; Slootweg, J.C. Phosphate Recovery at “A Campingflight to Lowlands Paradise”: Organic Micropollutant Uptake and Environmental Risk Assessment. Sustain. Circ. NOW 2025, 2, a25398742. [Google Scholar] [CrossRef]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Sci. Total Environ. 2021, 756, 143726. [Google Scholar] [CrossRef]
- Smol, M.; Preisner, M.; Bianchini, A.; Rossi, J.; Hermann, L.; Schaaf, T.; Kruopienė, J.; Pamakštys, K.; Klavins, M.; Ozola-Davidane, R.; et al. Strategies for Sustainable and Circular Management of Phosphorus in the Baltic Sea Region: The Holistic Approach of the InPhos Project. Sustainability 2020, 12, 2567. [Google Scholar] [CrossRef]
- European Sustainable Phosphorous Platform European Sustainable Phosphorus Platform—Struvite Precipitation. Available online: https://www.phosphorusplatform.eu/activities/p-recovery-technology-inventory?view=article&id=2292:struvite-precipitation&catid=93:nutrient-recovery-technology-catalogue (accessed on 18 April 2025).
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Jędrejek, D.; Levic, J.; Wallace, J.; Oleszek, W. Animal by-products for feed: Characteristics, European regulatory framework, and potential impacts on human and animal health and the environment. J. Anim. Feed. Sci. 2016, 25, 189–202. [Google Scholar] [CrossRef]
- Charitidis, P.J.; Eftaxias, A.; Voudrias, E.A.; Diamantis, V. The Evaluation and Optimization of a Decentralized Incineration Facility for Animal By-Products: Performance, Cost Analysis and Resource Recovery. Processes 2024, 12, 1847. [Google Scholar] [CrossRef]
- Someus, E.; Pugliese, M. Concentrated Phosphorus Recovery from Food Grade Animal Bones. Sustainability 2018, 10, 2349. [Google Scholar] [CrossRef]
- Möller, K. Assessment of Alternative Phosphorus Fertilizers for Organic Farming: Meat and Bone Meal. Factsheet, 2015. Available online: https://orgprints.org/29505 (accessed on 6 February 2025).
- Campos, P.V.; Angélica, R.; Faria, L.; Paz, S. Phosphorus Recovery from Wastewater Aiming Fertilizer Production: Struvite Precipitation Optimization Using a Sequential Plackett–Burman and Doehlert Design. Processes 2023, 11, 2664. [Google Scholar] [CrossRef]
- Piash, M.I.; Uemura, K.; Itoh, T.; Iwabuchi, K. Meat and bone meal biochar can effectively reduce chemical fertilizer requirements for crop production and impart competitive advantages to soil. J. Environ. Manag. 2023, 336, 117612. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef]
- Ciavatta, C.; Govi, M.; Sitti, L.; Gessa, C. Influence of blood meal organic fertilizer on soil organic matter: A laboratory study. J. Plant Nutr. 1997, 20, 1573–1591. [Google Scholar] [CrossRef]
- Nogalska, A.; Załuszniewska, A. The Effect of Meat and Bone Meal (MBM) on Crop Yields, Nitrogen Content and Uptake, and Soil Mineral Nitrogen Balance. Agronomy 2021, 11, 2307. [Google Scholar] [CrossRef]
- Tosti, G.; Farneselli, M.; Benincasa, P.; Guiducci, M. Nitrogen Fertilization Strategies for Organic Wheat Production: Crop Yield and Nitrate Leaching. Agron. J. 2016, 108, 770–781. [Google Scholar] [CrossRef]
- Nazifa, T.H.; Saady, N.M.C.; Bazan, C.; Zendehboudi, S.; Aftab, A.; Albayati, T.M. Anaerobic Digestion of Blood from Slaughtered Livestock: A Review. Energies 2021, 14, 5666. [Google Scholar] [CrossRef]
- Regulation—1069/2009—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2009/1069/oj (accessed on 23 June 2025).
- Spångberg, J.; Hansson, P.-A.; Tidåker, P.; Jönsson, H. Environmental impact of meat meal fertilizer vs. chemical fertilizer. Resour. Conserv. Recycl. 2011, 55, 1078–1086. [Google Scholar] [CrossRef]
- Barbieri, L.; Andreola, F.; Bellucci, D.; Cannillo, V.; Lancellotti, I.; Lugari, A.; Rincon, J.M.; Romero, M.; Sola, A. Preliminary studies on the valorization of animal flour ash for the obtainment of active glasses. Ceram. Int. 2014, 40, 5619–5628. [Google Scholar] [CrossRef]
- Farias, R.D.; Garcia, C.M.; Palomino, T.C.; Andreola, F.; Lancellotti, I.; Barbieri, L. Valorization of agro-industrial wastes in lightweight aggregates for agronomic use: Preliminary study. Environ. Eng. Manag. J. 2017, 16, 1691–1700. [Google Scholar] [CrossRef]
- Barbi, S.; Barbieri, F.; Andreola, F.; Lancellotti, I.; Barbieri, L.; Montorsi, M. Preliminary Study on Sustainable NPK Slow-Release Fertilizers Based on Byproducts and Leftovers: A Design-of-Experiment Approach. ACS Omega 2020, 5, 27154–27163. [Google Scholar] [CrossRef] [PubMed]
- Barbi, S.; Barbieri, F.; Andreola, F.; Lancellotti, I.; Garcia, C.M.; Palomino, T.C.; Montorsi, M.; Barbieri, L. Design and characterization of controlled release pk fertilizers from agro-residues. Environ. Eng. Manag. J. 2020, 19, 1669–1676. [Google Scholar] [CrossRef]
- Barbi, S.; Barbieri, F.; Bertacchini, A.; Barbieri, L.; Montorsi, M. Effects of Different LED Light Recipes and NPK Fertilizers on Basil Cultivation for Automated and Integrated Horticulture Methods. Appl. Sci. 2021, 11, 2497. [Google Scholar] [CrossRef]
- Righi, C.; Barbieri, F.; Sgarbi, E.; Maistrello, L.; Bertacchini, A.; Andreola, F.N.; D’Angelo, A.; Catauro, M.; Barbieri, L. Suitability of Porous Inorganic Materials from Industrial Residues and Bioproducts for Use in Horticulture: A Multidisciplinary Approach. Appl. Sci. 2022, 12, 5437. [Google Scholar] [CrossRef]
- Torrisi, B.; Trinchera, A.; Rea, E.; Allegra, M.; Roccuzzo, G.; Intrigliolo, F. Effects of organo-mineral glass-matrix based fertilizers on citrus Fe chlorosis. Eur. J. Agron. 2013, 44, 32–37. [Google Scholar] [CrossRef]
- Schwaeble, C.F.; Pott, R.W.M.; Goosen, N.J. The effect of sodium alginate, lignosulfonate and bentonite binders on agglomeration performance and mechanical strength of micro-fine agricultural lime pellets. Part. Sci. Technol. 2021, 39, 820–831. [Google Scholar] [CrossRef]
- Gezerman, A.O.; Corbacioglu, B.D. Effects of Fertilizer Compositions Containing Calcium Lignosulfonate and Silicic Acid as an Alternative to Organic Fertilizers to Prevent Caking and Degradation. In Fertilizer Technology II: Biofertilizers; Chemical Technology Series; Studium Press LLC.: Houston, TX, USA, 2015; pp. 424–451. [Google Scholar]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Official Journal of the European Union, L 170, 25 June 2019. pp. 1–114. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 28 February 2024).
- Italian Government. Decreto Legislativo 29 Aprile 2010, n. 75, Riordino e Revisione Della Disciplina in Materia di Fertilizzanti, a Norma Dell’articolo 13 Della Legge 7 Luglio 2009, n. 88; Gazzetta Ufficiale n. 121, 26 maggio 2010. Available online: https://www.gazzettaufficiale.it/eli/id/2010/05/26/010G0096/sg (accessed on 3 March 2024).
- CNR–IRSA. Q 64 App II, Volume 3; Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche: Rome, Italy, 1986; Available online: https://www.irsa.cnr.it/wp/wp-content/uploads/2022/04/Vol2_Sez_4000_InorganiciNonMetallici.pdf (accessed on 10 January 2024).
- Bailey, G.W.; Shevchenko, S.M.; Yu, Y.S.; Kamermans, H. Combining Scanning Tunneling Microscopy and Computer Simulation of Humic Substances: Citric Acid, a Model. Soil Sci. Soc. Am. J. 1997, 61, 92–101. [Google Scholar] [CrossRef]
- ISO 18644:2016; Fertilizers and Soil Conditioners—Controlled-Release Fertilizers—General Requirements. International Organization for Standardization: Geneva, Switzerland, 2016.
- Regione Lombardia. Decisione DGR n. 7/12764 del 16 Aprile 2003, Pubblicata in Bollettino Ufficiale Della Regione Lombardia n. SS 1° del 13 Maggio 2003—All. B.; 2003. Available online: https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/suolo-e-territorio-1/uso-dei-fanghi-di-depurazione-in-agricoltura-attivita-di-controllo-e-vigilanza-del-territorio/files/LOMBARDIA_DGR_12764_2003_Linee_guida_Compostaggio.pdf (accessed on 5 April 2024).
- Vertuccio, L.; Guadagno, L.; D’Angelo, A.; Viola, V.; Raimondo, M.; Catauro, M. Sol-Gel Synthesis of Caffeic Acid Entrapped in Silica/Polyethylene Glycol Based Organic-Inorganic Hybrids: Drug Delivery and Biological Properties. Appl. Sci. 2023, 13, 2164. [Google Scholar] [CrossRef]
- Catauro, M.; D’Angelo, A.; Fiorentino, M.; Pacifico, S.; Latini, A.; Brutti, S.; Vecchio Ciprioti, S. Thermal, spectroscopic characterization and evaluation of antibacterial and cytotoxicity properties of quercetin-PEG-silica hybrid materials. Ceram. Int. 2023, 49, 14855–14863. [Google Scholar] [CrossRef]
- Niu, R.; Zhuang, Y.; Lali, M.N.; Zhao, L.; Xie, J.; Xiong, H.; Wang, Y.; He, X.; Shi, X.; Zhang, Y. Root Reduction Caused Directly or Indirectly by High Application of Nitrogen Fertilizer Was the Main Cause of the Decline in Biomass and Nitrogen Accumulation in Citrus Seedlings. Plants 2024, 13, 938. [Google Scholar] [CrossRef]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef]
- Reyes, D.C.; Ma, Z.; Romero, J.J. The Antimicrobial Properties of Technical Lignins and Their Derivatives-A Review. Polymers 2024, 16, 2181. [Google Scholar] [CrossRef] [PubMed]
- Neethu, C.B.; Vardhanan, Y.S. Development of Slow-Release Fertilizer from Animal Origin Wastes: Sustainable Organic Agricultural Perspective. Curr. Agric. Res. J. 2023, 11, 69–77. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Cai, Y.; Jiang, P.; Yu, B. Co-incorporation of hydrotalcite and starch into biochar-based fertilizers for the synthesis of slow-release fertilizers with improved water retention. Biochar 2023, 5, 44. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The Significance of Microbial Transformation of Nitrogen Compounds in the Light of Integrated Crop Management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R. Nitrogen Availability from High-nitrogen-containing Organic Fertilizers. HortTechnology 2006, 16, 39–42. [Google Scholar] [CrossRef]
- Yang, X.; Geng, J.; Li, C.; Zhang, M.; Tian, X. Cumulative release characteristics of controlled-release nitrogen and potassium fertilizers and their effects on soil fertility, and cotton growth. Sci. Rep. 2016, 6, 39030. [Google Scholar] [CrossRef]
- Chan, W.I.; Lo, K.V.; Liao, P.H. Solubilization of blood meal to be used as a liquid fertilizer. J. Environ. Sci. Health B 2007, 42, 417–422. [Google Scholar] [CrossRef]
- Miles, J.; Peet, M. Maintaining Nutrient Balances in Systems Utilizing Soluble Organic Fertilizers; Organic Farming Research; Horticultural Science Department North Carolina State University: Raleigh, NC, USA, 2002. [Google Scholar]
- Båth, B.; Otabbong, E. Availability of phosphorus in greenhouse cropping systems with tomatoes—Influence of soil and citric acid. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2013, 63, 483–488. [Google Scholar] [CrossRef]
- Ghumman, A.S.M.; Shamsuddin, R.; Sabir, R.; Waheed, A.; Sami, A.; Almohamadi, H. Synthesis and performance evaluation of slow-release fertilizers produced from inverse vulcanized copolymers obtained from industrial waste. RSC Adv. 2023, 13, 7867–7876. [Google Scholar] [CrossRef]
- Neto, J.F.D.; Fernandes, J.V.; Rodrigues, A.M.; Menezes, R.R.; Neves, G.d.A. New Urea Controlled-Release Fertilizers Based on Bentonite and Carnauba Wax. Sustainability 2023, 15, 6002. [Google Scholar] [CrossRef]
- Sarhan, N.; Arafa, E.G.; Elgiddawy, N.; Elsayed, K.N.M.; Mohamed, F. Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers. Sci. Rep. 2024, 14, 15032. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef] [PubMed]
- Sterba, J.H.; Steinhauser, G.; Bichler, M. Cation-exchange properties of pumice: Taking a sip from a volcanic cocktail. J. Radioanal. Nucl. Chem. 2008, 276, 175–178. [Google Scholar] [CrossRef]
- Duarte, L.M.; Xavier, L.V.; Rossati, K.F.; de Oliveira, V.A.; Schimicoscki, R.S.; Neto, C.N.d.Á.; Mendes, G.d.O. Potassium extraction from the silicate rock Verdete using organic acids. Sci. Agric. 2021, 79, e20200164. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Tian, D.; Yang, L.; Bai, H. Preparation of Slow-Release Fertilizer from Fly Ash and Its Slow-Release and Metal Immobilization Properties. Sustainability 2023, 15, 11346. [Google Scholar] [CrossRef]
- Wijayanti, I.; Benjakul, S.; Saetang, J.; Prodpran, T.; Sookchoo, P. Soluble bio-calcium from Asian sea bass bone prepared with organic acids: Solubility and physiochemical characteristics. Biomass Conv. Bioref. 2024, 15, 5595–5605. [Google Scholar] [CrossRef]
- Schütze, E.; Gypser, S.; Freese, D. Kinetics of Phosphorus Release from Vivianite, Hydroxyapatite, and Bone Char Influenced by Organic and Inorganic Compounds. Soil Syst. 2020, 4, 15. [Google Scholar] [CrossRef]
- Espinoza, A.L.d.F.; Raniro, H.R.; Leite, C.N.; Pavinato, P.S. Physico-Chemical Properties and Phosphorus Solubilization of Organomineral Fertilizers Derived from Sewage Sludge. Soil Syst. 2023, 7, 100. [Google Scholar] [CrossRef]
- Pan, L.; Cai, B. Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects. Microorganisms 2023, 11, 2904. [Google Scholar] [CrossRef]
- Adnan, M.; Shah, Z.; Fahad, S.; Arif, M.; Alam, M.; Khan, I.A.; Mian, I.A.; Basir, A.; Ullah, H.; Arshad, M.; et al. Phosphate-Solubilizing Bacteria Nullify the Antagonistic Effect of Soil Calcification on Bioavailability of Phosphorus in Alkaline Soils. Sci. Rep. 2017, 7, 16131. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation (European Commission). A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy; Updated Bioeconomy Strategy; European Commission: Brussels, Belgium, 2018. [Google Scholar] [CrossRef]
Fertilizer | N [% w/w] | P—P2O5 [% w/w] | K—K2O [% w/w] |
---|---|---|---|
WBF4 | 5.2 | 8.8 | 8.1 |
WBF5 | 6.2 | 6.1 | 7.3 |
WBF6 | 5.9 | 6.4 | 5.4 |
(a) | ||||||||||
PUMICE SCRAPS | SSA [m2/g] | Humidity [% (w/w)] | L.O.I. [% (w/w)] | |||||||
20.1 | 3.2 | 4.3 | ||||||||
BONE MEAL | SSA [m2/g] | Humidity [% (w/w)] | L.O.I. [% (w/w)] | |||||||
0.71 | 8.1 | 57.3 | ||||||||
LIQUID BLOOD | Ash conten [% (w/w)] | Humidity [% (w/w)] | L.O.I. [% (w/w)] | |||||||
>0.1 | 73.3 | <99.9 | ||||||||
DRY BLOOD | Ash content [% (w/w)] | Humidity [% (w/w)] | L.O.I. [% (w/w)] | |||||||
>0.1 | 13.7 | <99.9 | ||||||||
(b) | ||||||||||
PUMICE SCRAPS | ||||||||||
b SiO2 | b Al2O3 | b P2O5 | b TiO2 | b Fe2O3 | b Na2O | b K2O | b CaO | b MgO | b SO3 | b F |
60.5 | 17.2 | 0.1 | 0.4 | 3.2 | 2.7 | 7.5 | 2.4 | 0.9 | - | - |
BONE MEAL | ||||||||||
b SiO2 | b Al2O3 | b P2O5 | b TiO2 | b Fe2O3 | b Na2O | b K2O | b CaO | b MgO | b SO3 | b F |
- | - | 17.1 | - | - | 0.7 | 0.1 | 23.7 | 0.6 | 0.3 | - |
a N | a C | a H | a S | |||||||
6.76 | 27.59 | 4.4 | - | |||||||
c N (Organic + ammonia) | ||||||||||
6.8 | ||||||||||
LIQUID BLOOD | ||||||||||
a N | a C | a H | a S | |||||||
12.25 | 46.17 | 6.39 | 0.77 | |||||||
c N (Organic + ammonia) | ||||||||||
13.9 | ||||||||||
DRY BLOOD | ||||||||||
a N | a C | a H | a S | |||||||
14.99 | 53.01 | 7.09 | 0.26 | |||||||
c N (Organic + ammonia) | ||||||||||
14.7 |
Fertilizer | NTotal [% (w/w)] | N-NH4+ [% (w/w)] | N-NO3− [% (w/w)] | Norganic [% (w/w)] |
---|---|---|---|---|
WBF4 | 4.8 | - | 0.4 | 4.4 |
WBF5 | 5.8 | - | 1.2 | 5 |
WBF6 | 6.1 | - | 0.6 | 5.4 |
Fertilizer | P2O5Total [% (w/w)] | P2O5MA [% (w/w)] | ||
WBF4 | 8.2 | 8.8 | ||
WBF5 | 5.9 | 6.3 | ||
WBF6 | 5.7 | 6.1 | ||
Fertilizer | K2OTotal [% (w/w)] | |||
WBF4 | 8.5 | |||
WBF5 | 7.3 | |||
WBF6 | 5.4 | |||
Fertilizer | Humidity [% (w/w)] | L.O.I. [% (w/w)] | SSA [m2/g] | |
WBF4 | 4.9 | 37.2 | 0.9 | |
WBF5 | 13.2 | 47.2 | 3.5 | |
WBF6 | 11.9 | 45.1 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, M.; Malavasi, G.; Malferrari, D.; Galamini, G.; Catauro, M.; Viola, V.; Marani, F.; Barbieri, L. A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances. Materials 2025, 18, 3492. https://doi.org/10.3390/ma18153492
Napolitano M, Malavasi G, Malferrari D, Galamini G, Catauro M, Viola V, Marani F, Barbieri L. A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances. Materials. 2025; 18(15):3492. https://doi.org/10.3390/ma18153492
Chicago/Turabian StyleNapolitano, Martina, Gianluca Malavasi, Daniele Malferrari, Giulio Galamini, Michelina Catauro, Veronica Viola, Fabrizio Marani, and Luisa Barbieri. 2025. "A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances" Materials 18, no. 15: 3492. https://doi.org/10.3390/ma18153492
APA StyleNapolitano, M., Malavasi, G., Malferrari, D., Galamini, G., Catauro, M., Viola, V., Marani, F., & Barbieri, L. (2025). A New High-Efficiency Fertilization System from Waste Materials for Soil Protection: Material Engineering, Chemical-Physical Characterization, Antibacterial and Agronomic Performances. Materials, 18(15), 3492. https://doi.org/10.3390/ma18153492