Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = solidification segregation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 57255 KB  
Article
Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
by Jun Xiao, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei and Aimin Zhao
Metals 2025, 15(10), 1091; https://doi.org/10.3390/met15101091 - 29 Sep 2025
Abstract
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with [...] Read more.
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with comparisons made with 304 stainless steel. The effects of an Al addition and cooling rate were also explored. The results show that the solidification sequence of 310S stainless steel is L → L + γ → L + γ + δ → δ + γ, in which austenite nucleates early and grows rapidly, followed by the precipitation of a small amount of δ-ferrite in the later stages of solidification. In contrast, 304 stainless steel solidifies according to L → L + δ → L + δ + γ → δ + γ, with a rapid δ → γ transformation occurring after solidification. Compared with 304, 310S stainless steel exhibits a reduced ferrite fraction and a significantly increased σ phase content. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), while M23C6 preferentially forms at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides fast diffusion pathways for Cr but also nucleation sites. The solidification segregation sequence in 310S stainless steel is Cr > Ni > Fe, with Cr and Ni showing positive segregation and Fe showing negative segregation. The addition of Al does not alter the solidification mode of 310S stainless steel but refines austenite grains, reduces interdendritic solute enrichment, decreases segregation, lowers both the size and fraction of ferrite, and suppresses the precipitation of σ and M23C6 phases. This effect is mainly attributed to the reduction of δ/γ interfaces, which weakens the preferred nucleation sites for M23C6. Increasing the cooling rate enhances non-equilibrium solute segregation, promotes ferrite formation, inhibits the δ → γ transformation, and ultimately retains more ferrite; the intensified segregation further accelerates the δ → σ transformation. Full article
Show Figures

Graphical abstract

14 pages, 3978 KB  
Article
Research on the Solidification Structure, Properties and Composition Segregation of GCr15 Bearing Steel Under Double-Electrode Regulation
by Qinghe Xiao, Shengli Li, Siyao Liu, Jiyu Zhao, Xingang Ai, Ye Zhou, Xincheng Miao and Min Wang
Metals 2025, 15(10), 1086; https://doi.org/10.3390/met15101086 - 29 Sep 2025
Abstract
To explore the influence of double-electrode regulation technology on the solidification microstructure and properties of GCr15 bearing steel, the double-electrode insertion process was employed in this study, combined with metallographic analysis, mechanical property testing, and electron probe composition characterization. We analyzed the mechanisms [...] Read more.
To explore the influence of double-electrode regulation technology on the solidification microstructure and properties of GCr15 bearing steel, the double-electrode insertion process was employed in this study, combined with metallographic analysis, mechanical property testing, and electron probe composition characterization. We analyzed the mechanisms of solidification microstructure evolution and mechanical property improvement, as well as the composition segregation control effect, of GCr15 steel under double-electrode regulation. The results show that the double-electrode technology significantly refines the microstructure and improves the internal quality of the ingot by optimizing the temperature field and electromagnetic field distribution in the molten pool and enhancing the internal flow of the melt. The tensile strengths in the upper and middle parts were increased by 84.6% and 29.6%, respectively, which can be attributed to the uniform distribution of carbides at the grain boundaries and the reduction of segregation. Composition analysis indicates that the macroscopic segregation index of C element was decreased under the dual-electrode process. This research provides a theoretical basis and process optimization direction for the high-quality preparation of high-carbon chromium bearing steel. Full article
(This article belongs to the Special Issue Green Super-Clean Steels)
Show Figures

Figure 1

36 pages, 20557 KB  
Review
The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
by Wen-Bo Yang, Lei Zhan, Lin Liu, Fan-Xu Meng, Run Zhang, Kadiredan Tuerxun, Xing-Rui Zhao, Bai-Xin Dong, Shi-Li Shu, Tian-Shu Liu, Hong-Yu Yang, Feng Qiu and Qi-Chuan Jiang
Materials 2025, 18(17), 4206; https://doi.org/10.3390/ma18174206 - 8 Sep 2025
Viewed by 632
Abstract
The present study concentrates on the role and underlying mechanisms of in situ crystallization (employed for nanocrystal formation) in influencing the solidification microstructure and properties of aluminum alloys. By systematically analyzing the effects on α-Al refinement, silicon phase modification, and secondary phase control, [...] Read more.
The present study concentrates on the role and underlying mechanisms of in situ crystallization (employed for nanocrystal formation) in influencing the solidification microstructure and properties of aluminum alloys. By systematically analyzing the effects on α-Al refinement, silicon phase modification, and secondary phase control, as well as exploring the impact on room-temperature mechanical properties, high-temperature deformation behavior, and fatigue performance, this work reveals the potential physical mechanisms of improving mechanical properties by providing nucleation sites and inhibiting grain growth, such as fine-grain strengthening and dispersion strengthening. Moreover, stabilization of the second phase optimizes high-temperature deformation behavior, and a reduction in stress concentration improves fatigue performance. Compared with traditional microstructure control methods, in situ crystallization can achieve deeper grain refinement from micron to nanometer scale, ensuring high uniformity of grain distribution and showing good compatibility with existing processes. By defining the regulation of in situ crystallization on the microstructure and properties of aluminum alloy, the existing research provides a feasible material solution for high stress, high temperature, and high reliability. Its core significance lies in breaking through the performance bottlenecks of traditional modification technology, such as unstable refining effect, element segregation, and so on. The co-promotion of “strength–plasticity–stability” of aluminum alloys and the consideration of process compatibility and cost controllability lay a theoretical and technical foundation for the industrialization of high-performance aluminum alloys. Full article
(This article belongs to the Special Issue Processing and Characteristics of Metal Matrix Composites)
Show Figures

Figure 1

16 pages, 5201 KB  
Article
Hereditary Behavior for Center Segregation and Inclusions in Q355 Steel Slabs with Ti and Nb Addition
by Keke Tong, Ya Gao, Houxin Wang, Zhong Huang, Guoxi Wan, Dajiang Zhang and Xiurong Zuo
Materials 2025, 18(17), 4157; https://doi.org/10.3390/ma18174157 - 4 Sep 2025
Viewed by 735
Abstract
This paper investigates the effects of Ti and Nb addition with varying Mn content on the solidification macrostructure and microstructure in the continuous casting slab of Q355 steel using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron probe microanalysis. The evolution [...] Read more.
This paper investigates the effects of Ti and Nb addition with varying Mn content on the solidification macrostructure and microstructure in the continuous casting slab of Q355 steel using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron probe microanalysis. The evolution of central segregation and MnS inclusions during thermal simulation compress deformation has been clearly established using Gleeble-1500 thermal simulation tester. The results indicate that by reducing the Mn content and adding a small amount of Ti and Nb, it is possible to refine the grain and mitigate the center segregation of Q355 steel. Mn steel with 1.25% Mn and without Ti and Nb addition exhibits the most severe center segregation. The TiNb steel with 0.52% Mn and a small amount of Ti and Nb addition showed a marked improvement in the center segregation of the slab. The Nb steel with 0.56% Mn and 0.009% Nb shows the presence of thin film ferrite along prior grain boundaries surrounded by Widmanstätten ferrite, and the central segregation has not shown significant improvement. The thermal simulation samples of the three steel types inherit the characteristics of their respective casting structures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

34 pages, 22828 KB  
Article
Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach
by Yuchen Xin, Jianglu Liu, Yaming Shi, Zina Cheng, Yang Liu, Lei Gao, Huanhuan Zhang, Haohang Ji, Tianrui Han, Shenghui Guo, Shubiao Yin and Qiuni Zhao
Metals 2025, 15(8), 897; https://doi.org/10.3390/met15080897 - 11 Aug 2025
Viewed by 624
Abstract
During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), [...] Read more.
During electron beam cold hearth melting (EBCHM) of Ti-6wt%Al-4wt%V titanium alloy, aluminum volatilization causes compositional segregation in the ingot, significantly degrading material performance. Traditional methods (e.g., the Langmuir equation) struggle to accurately predict aluminum diffusion and compensation behaviors, while computational fluid dynamics (CFD), although capable of resolving multiphysics fields in the molten pool, suffer from high computational costs and insufficient research on segregation control. To address these issues, this study proposes a CFD-machine learning (backpropagation neural network, CFD-ML(BP)) approach to achieve precise prediction and optimization of aluminum segregation. First, CFD simulations are performed to obtain the molten pool’s temperature field, flow field, and aluminum concentration distribution, with model reliability validated experimentally. Subsequently, a BP neural network is trained using large-scale CFD datasets to establish an aluminum concentration prediction model, capturing the nonlinear relationships between process parameters (e.g., casting speed, temperature) and compositional segregation. Finally, optimization algorithms are applied to determine optimal process parameters, which are validated via CFD multiphysics coupling simulations. The results demonstrate that this method predicts the average aluminum concentration in the ingot with an error of ≤3%, significantly reducing computational costs. It also elucidates the kinetic mechanisms of aluminum volatilization and diffusion, revealing that non-monotonic segregation trends arise from the dynamic balance of volatilization, diffusion, convection, and solidification. Moreover, the most uniform aluminum distribution (average 6.8 wt.%, R2 = 0.002) is achieved in a double-overflow mold at a casting speed of 18 mm/min and a temperature of 2168 K. Full article
Show Figures

Figure 1

19 pages, 7447 KB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Viewed by 457
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

24 pages, 5129 KB  
Article
On the Solidification and Phase Stability of Re-Bearing High-Entropy Superalloys with Hierarchical Microstructures
by Wei-Che Hsu, Takuma Saito, Mainak Saha, Hideyuki Murakami, Taisuke Sasaki and An-Chou Yeh
Metals 2025, 15(8), 820; https://doi.org/10.3390/met15080820 - 22 Jul 2025
Viewed by 718
Abstract
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with [...] Read more.
This study presents the design and microstructural investigation of a single-crystal (SX) Re-bearing high-entropy superalloy (HESA-X1) featuring a thermally stable γ–γ′–γ hierarchical microstructure. The alloy exhibits FCC γ nanoparticles embedded within L12-ordered γ′ precipitates, themselves distributed in a γ matrix, with the suppression of detrimental topologically close-packed (TCP) phases. To elucidate solidification behavior and phase stability, Scheil–Gulliver and TC-PRISMA simulations were conducted alongside SEM and XRD analyses. Near-atomic scale analysis in 3D using Atom Probe Tomography (APT) revealed pronounced elemental partitioning, with Re strongly segregating to the γ matrix, while Al and Ti were preferentially enriched in the γ′ phase. Notably, Re demonstrated a unique partitioning behavior compared to conventional superalloys, facilitating the formation and stabilization of γ nanoparticles during two-step aging (Ag-2). These γ nanoparticles significantly contribute to improved mechanical properties. Long-term aging (up to 200 h) at 750–850 °C confirmed exceptional phase stability, with minimal coarsening of γ′ and retention of γ nanoparticles. The coarsening rate constant K of γ′ at 750 °C was significantly lower than that of Re-free HESA, confirming the diffusion-suppressing effect of Re. These findings highlight critical roles of Re in enhancing microstructural stability by reducing atomic mobility, enabling the development of next-generation HESAs with superior thermal and mechanical properties for high-temperature applications. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

25 pages, 14812 KB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 404
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

24 pages, 2492 KB  
Review
Impact of Niobium Reduction on the Microstructure and Properties of Alloy 625 Weld Overlay Claddings: A Review
by Reylina Garcia Tayactac, Mark Christian E. Manuel, Jaime P. Honra, Tiago Bohn Kaspary and Raimundo Cabral de Medeiros
Alloys 2025, 4(3), 12; https://doi.org/10.3390/alloys4030012 - 2 Jul 2025
Viewed by 584
Abstract
Alloy 625 is a widely utilized nickel-based superalloy known for its excellent mechanical strength and corrosion resistance in aggressive environments. However, its high niobium (Nb) content can lead to the formation of detrimental phases, such as Laves and MC carbides, during welding processes, [...] Read more.
Alloy 625 is a widely utilized nickel-based superalloy known for its excellent mechanical strength and corrosion resistance in aggressive environments. However, its high niobium (Nb) content can lead to the formation of detrimental phases, such as Laves and MC carbides, during welding processes, compromising the mechanical integrity and long-term performance of the weld overlay. This review systematically examines recent research findings on the implications of reducing Nb content in Alloy 625 weld overlays, particularly with respect to microstructure evolution, mechanical behavior, and corrosion performance. Key advancements, including the understanding of segregation behavior, solidification paths, and secondary phase formation, are presented based on recent studies. This paper aims to provide a discussion on the trade-offs and future directions for optimizing Alloy 625 weld overlay claddings through Nb content modification. Full article
Show Figures

Figure 1

16 pages, 6146 KB  
Article
Current-Carrying Wear Behavior of Cu–TiC Coatings Obtained Through High-Speed Laser Cladding on Conductive Slip Rings of 7075 Aluminum Alloy
by Shiya Cheng, Yuankai Zhou and Xue Zuo
Metals 2025, 15(7), 688; https://doi.org/10.3390/met15070688 - 20 Jun 2025
Viewed by 346
Abstract
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated [...] Read more.
Cu-5wt%TiC coatings were fabricated by high-speed laser cladding on the 7075 aluminum alloy substrate using various scanning speeds to improve its current-carrying wear resistance. The effects of scanning speed on the microstructure, phase, hardness, and current-carrying tribological properties of the coating were investigated using a scanning electron microscope, an X-ray diffractometer, a hardness tester, and a wear tester, respectively. The results show that the increase in scanning speed accelerates the coating’s solidification rate. Among the samples, the coating comprised of equiaxed crystals prepared at 149.7 mm/s presents the best quality, but solidification speeds that are too rapid lead to elemental segregation. The hardness of the coating also decreases with the increase in scanning speed. The coating prepared at 149.7 mm/s exhibits the best wear resistance and electrical conductivity. The wear rate of the coating prepared at 149.7 mm/s at 25 A was 4 × 10−3 mg·m−1, respectively. During the current-carrying friction process, the presence of thermal effects and arc erosion cause the worn track to be prone to oxidation, adhesion, and plastic deformation, so the current-carrying wear mechanisms of coatings at 25 A include adhesive wear, oxidation wear, and electrical damage. Full article
Show Figures

Figure 1

27 pages, 5230 KB  
Review
Advances in Solidification Processing in Steady Magnetic Field
by Shengya He, Chenglin Huang and Chuanjun Li
Materials 2025, 18(12), 2886; https://doi.org/10.3390/ma18122886 - 18 Jun 2025
Viewed by 614
Abstract
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the [...] Read more.
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the SMF to material science has evolved into an important interdisciplinary field—the Electromagnetic Processing of Materials (EPM). Therein, the implementation of the SMF for the solidification of metals and alloys has been increasingly given attention. The SMF was found to regulate nucleation, crystal growth, the distribution of solutes and structure morphology during alloy solidification via various magnetic effects, such as magnetic damping, the thermoelectric magnetic effect, magnetic orientation and magnetically controlled diffusion. In this review, we briefly summarize the main SMF effects and review recent progress in magnetic field-assisted solidification processing, including nucleation, dendritic growth, solute segregation and interfacial phenomena. Finally, future perspectives regarding controlling alloys’ solidification using an SMF are discussed. Full article
(This article belongs to the Special Issue Energy Field-Assisted Metal Forming)
Show Figures

Figure 1

17 pages, 2280 KB  
Article
Effect of PBF-LB/M Processing on the Microstructural Evolution and Local Mechanical Properties of Novel Al-Fe-Si-Cr-Ni Alloy
by Alessandra Martucci, Paolo Fino and Mariangela Lombardi
Metals 2025, 15(6), 661; https://doi.org/10.3390/met15060661 - 13 Jun 2025
Viewed by 423
Abstract
The present study aims to investigate the microstructural evolution and local mechanical properties of an AlFe18Si8Cr5Ni2 alloy processed via Powder Bed Fusion–Laser-Based Manufacturing (PBF-LB/M). Designed with a focus on sustainability, this alloy was produced by deriving the necessary elements from AlSi10Mg and 304L [...] Read more.
The present study aims to investigate the microstructural evolution and local mechanical properties of an AlFe18Si8Cr5Ni2 alloy processed via Powder Bed Fusion–Laser-Based Manufacturing (PBF-LB/M). Designed with a focus on sustainability, this alloy was produced by deriving the necessary elements from AlSi10Mg and 304L steel, two of the most widely used alloys and, consequently, among the easiest materials to source from machining scrap. By leveraging iron, chromium, and nickel from these widespread standard compositions, the alloy mitigates the detrimental effects of Fe contamination in Al-based alloys while simultaneously enhancing mechanical performance. A comprehensive investigation of the impact of rapid solidification and thermal cycling offered novel insights into phase stability, elemental distribution, and local mechanical behavior. In particular, microstructural analyses using scanning electron microscopy (SEM), field emission SEM, energy-dispersive X-ray spectroscopy, X-ray diffraction, and differential scanning calorimetry revealed significant phase modifications post PBF-LB/M processing, including Fe-rich acicular phase segregation at melt pool boundaries and enhanced strengthening phase formation. In addition, nanoindentation mapping was used to demonstrate the correlation between microstructural heterogeneity and local mechanical properties. The findings contribute to a deeper understanding of Al-Fe-Si-Cr-Ni alloy changes after the interaction with the laser, supporting the development of high-performance, sustainable Al-based materials for PBF-LB/M applications. Full article
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Effect of Aluminum Content on Solidification Process and Microsegregation of δ-TRIP Steel
by Rudong Wang, Yanhui Sun and Heng Cui
Metals 2025, 15(6), 587; https://doi.org/10.3390/met15060587 - 25 May 2025
Viewed by 611
Abstract
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the [...] Read more.
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the product. In this study, thermodynamic calculations and microsegregation model analysis were employed to investigate the effects of Al addition on the solidification path, peritectic reaction range, equilibrium partition coefficients, and microsegregation behavior of δ-TRIP steel. The results show that with an increase in the Al content, the carbon content range in which δ ferrite is retained without complete transformation during the solid-state phase transition becomes broader. Simultaneously, the carbon concentration range of the peritectic zone expands. The segregation of the C, Si, Mn, P, and S elements increases with increasing Al content, whereas the segregation of Al decreases as the Al content increases. Under non-equilibrium solidification conditions, unlike equilibrium solidification, the temperature difference between the solid and liquid phases initially increases, then decreases, and subsequently levels off with further Al addition. This study provides information for the composition design and production process optimization of δ-TRIP steel, and the research results can provide a reference for similar high-aluminum, low-density steels. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

18 pages, 5565 KB  
Article
Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel
by Jianghua Xiang, Hui Yang and Changling Zhuang
Crystals 2025, 15(6), 493; https://doi.org/10.3390/cryst15060493 - 22 May 2025
Viewed by 503
Abstract
The phase composition and morphological characteristics of eutectic carbides are key factors affecting the wear resistance and fatigue life of high-speed steel. In this study, a combination of experimental characterization and thermodynamic calculations was used to systematically reveal the dynamic regulation mechanism of [...] Read more.
The phase composition and morphological characteristics of eutectic carbides are key factors affecting the wear resistance and fatigue life of high-speed steel. In this study, a combination of experimental characterization and thermodynamic calculations was used to systematically reveal the dynamic regulation mechanism of cooling rate on eutectic carbides in M2Al high-speed steel. The results indicate that within a cooling rate range of 5 to 225 °C/min, the steel always contains a small amount of face-centered cubic-structured MC-type eutectic carbides and a large number of hexagonal close-packed structured M2C-type eutectic carbides. The three-dimensional morphology of MC-type eutectic carbides is smooth and rod-like, and is insensitive to the cooling rate, while the three-dimensional morphology of M2C-type eutectic carbides evolves from lamellar to dendritic with an increasing cooling rate. The increase in cooling rate significantly reduces the average size of eutectic carbides, increases the total area fraction, and improves the distribution uniformity. Additionally, the increase in cooling rate also promotes the significant refinement of secondary dendrites in M2Al high-speed steel, and the relationship between secondary dendrite arm spacing and cooling rate is λSDAS=149.42CR0.39. Finally, combining thermodynamic calculations with kinetic analysis, this study found that the formation of eutectic carbides is dominated by the segregation of elements such as V, Mo, and C during the final stage of solidification, while the chemical composition and three-dimensional morphological evolution of M2C-type eutectic carbides are synergistically controlled by the diffusion and competitive growth of elements such as W, Mo, and C in austenite. This study provides a theoretical basis for the solidification process and eutectic carbide control of M2Al high-speed steel. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

20 pages, 10924 KB  
Article
Macroscopic Simulation Study on Inhomogeneity of Small Billet Continuous Casting Mold
by Zhijun Ding, Zisheng Li, Shaohui Han, Hanwen Kou, Xing Huang, Jiabao Liang, Yuekai Xue, Shuhuan Wang and Xin Yao
Processes 2025, 13(5), 1415; https://doi.org/10.3390/pr13051415 - 6 May 2025
Viewed by 448
Abstract
In the steel industry, small billets have become the main type of billet for steel production due to the efficiency of the continuous casting process. However, the segregation that occurs during solidification remains a significant issue affecting billet quality. This study conducted a [...] Read more.
In the steel industry, small billets have become the main type of billet for steel production due to the efficiency of the continuous casting process. However, the segregation that occurs during solidification remains a significant issue affecting billet quality. This study conducted a macroscopic segregation analysis on 172 mm × 172 mm small square billets and investigated the influence of various process parameters on the distribution of carbon within the cast billets. The results showed that an increase in superheat led to a 0.036% rise in the carbon difference and an increase in the central segregation value from 0.357% to 0.364%. Increasing the cooling intensity resulted in a 0.037% rise in the carbon difference and a decrease in the negative segregation value from 0.266% to 0.250%. Higher casting speeds caused the carbon difference to reach a minimum of 0.107% at a speed of 1.6 m·min−1, while the central segregation value reached its lowest point of 0.353% at a casting speed of 2.6 m·min−1. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop