The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
Abstract
1. Introduction
1.1. Aluminum (Al) Alloy
1.2. Modification and Inoculation of Aluminum Alloy
1.3. Research Background and Significance of In Situ Crystallization for Nanocrystal Formation
2. Theoretical Basis of Formation of Nanocrystalline Structures by In Situ Crystallization
2.1. Principle of Thermodynamics and Kinetics of Crystallization of Amorphous Alloys
2.2. Definition, Properties, and Formation Mechanism of Nanocrystals
2.3. Nanocrystalline Microstructure in Aluminum Matrix Composites
2.4. Application and Development of In Situ Crystallization in Materials Science
3. Study on Microstructure Control of Cast Aluminum Alloy
3.1. Refinement of α-Al and Control of Dendritic Morphology in Cast Aluminum Alloys
3.2. Modification and Refinement of Primary Silicon in Cast Aluminum Alloys
3.3. Modification and Control of Eutectic Silicon in Cast Aluminum Alloys
3.4. Compound Modification Control in Cast Aluminum Alloy
3.5. Control of the Second Phase in Cast Aluminum Alloy
4. In Situ Crystallization Formation of Nanocrystalline Structures: Cast Aluminum Alloy Microstructure Control Mechanism and Regulation
4.1. Formation Mechanism of In Situ Nanocrystals
4.2. Regularity and Mechanism of Amorphous In Situ Nanocrystals Regulating Alpha-Al and Si Phases
4.3. Manufacturing Technology for the Formation of Nanocrystals by In Situ Crystallization
5. Solidification Microstructure, Strengthening, and Toughening of Aluminum Alloy Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
5.1. Solidification Microstructure of Aluminum Alloy Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
5.2. Mechanical Properties and Strengthening Mechanism of Inoculated Aluminum Alloy Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
5.3. Fatigue Behavior of Inoculated Aluminum Alloy Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization
6. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Zhang, X.; Peng, H.-L.; Han, X.; Yang, H.-Y.; Li, T.-T.; Zhu, L.; Zhang, S.; Qiu, F.; Bai, Z.-H.; et al. In situ nanocrystals manipulate solidification behavior and microstructures of hypereutectic Al-Si alloys by Zr-based amorphous alloys. J. Mater. Res. Technol. 2020, 9, 4644–4654. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Luo, Q.; Peng, L.; Li, Q. Effectively refining Al-10Si alloy via Al-Ti-Nb-B refiner with Nb2O5. J. Mater. Sci. Technol. 2024, 176, 204–210. [Google Scholar] [CrossRef]
- Zuo, L.; Ye, B.; Feng, J.; Kong, X.; Jiang, H.; Ding, W. Microstructure, tensile properties and creep behavior of Al-12Si-3.5Cu-2Ni-0.8Mg alloy produced by different casting technologies. J. Mater. Sci. Technol. 2018, 34, 1222–1228. [Google Scholar] [CrossRef]
- Yang, Y.; Geng, K.; Li, S.; Bermingham, M.; Misra, R.D.K. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting. J. Mater. Sci. Technol. 2022, 110, 84–95. [Google Scholar] [CrossRef]
- Lin, C.; Wu, S.; Lü, S.; Wu, H.; Chen, H. Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al−Si alloy with rheo-squeeze casting. Trans. Nonferrous Met. Soc. China 2019, 29, 253–262. [Google Scholar] [CrossRef]
- Li, S.; Yue, X.; Li, Q.; Peng, H.; Dong, B.; Liu, T.; Yang, H.; Fan, J.; Shu, S.; Qiu, F.; et al. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Czerwinski, F. Aluminum alloys for electrical engineering: A review. J. Mater. Sci. 2024, 59, 14847–14892. [Google Scholar] [CrossRef]
- Starke, E.A.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Song, C.-R.; Dong, B.-X.; Zhang, S.-Y.; Yang, H.-Y.; Liu, L.; Kang, J.; Meng, J.; Luo, C.-J.; Wang, C.-G.; Cao, K.; et al. Recent progress of Al–Mg alloys: Forming and preparation process, microstructure manipulation and application. J. Mater. Res. Technol. 2024, 31, 3255–3286. [Google Scholar] [CrossRef]
- Li, Y.-L.; Dong, B.-X.; Yang, H.-Y.; Luo, D.; Shu, S.-L.; Wang, Z.-F.; Kang, J.; Meng, J.; Luo, C.-J.; Wang, C.-G.; et al. Competitive and collaborative relationship between Al–3P and TiB2 nanoparticles in the microstructure manipulation of eutectic Al–Si alloys. J. Mater. Res. Technol. 2025, 35, 2713–2725. [Google Scholar] [CrossRef]
- Chua, C.; An, J.; Chua, C.K.; Kuo, C.-N.; Sing, S.L. Microstructure control for inoculated high-strength aluminum alloys fabricated by additive manufacturing: A state-of-the-art review. Prog. Mater. Sci. 2025, 154, 101502. [Google Scholar] [CrossRef]
- Kürnsteiner, P.; Bajaj, P.; Gupta, A.; Wilms, M.B.; Weisheit, A.; Li, X.; Leinenbach, C.; Gault, B.; Jägle, E.A.; Raabe, D. Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys. Addit. Manuf. 2020, 32, 100910. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y. Effect of laser remelting on printability, microstructure and mechanical performance of Al-Mg-Sc-Zr alloy produced by laser powder bed fusion. J. Alloys Compd. 2023, 963, 171287. [Google Scholar] [CrossRef]
- Loh, L.-E.; Chua, C.-K.; Yeong, W.-Y.; Song, J.; Mapar, M.; Sing, S.-L.; Liu, Z.-H.; Zhang, D.-Q. Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. Int. J. Heat Mass Transf. 2015, 80, 288–300. [Google Scholar] [CrossRef]
- Ma, S.; Shang, Z.; Shang, A.; Zhang, P.; Tang, C.; Huang, Y.; Leung, C.L.A.; Lee, P.D.; Zhang, X.; Wang, X. Additive manufacturing enabled synergetic strengthening of bimodal reinforcing particles for aluminum matrix composites. Addit. Manuf. 2023, 70, 103543. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhou, Z.; Zhan, Q. Enhanced strength and ductility in Al-Zn-Mg-Cu alloys fabricated by laser powder bed fusion using a synergistic grain-refining strategy. J. Mater. Sci. Technol. 2022, 124, 41–52. [Google Scholar] [CrossRef]
- Spierings, A.B.; Dawson, K.; Voegtlin, M.; Palm, F.; Uggowitzer, P.J. Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting. CIRP Ann. 2016, 65, 213–216. [Google Scholar] [CrossRef]
- Stopyra, W.; Gruber, K.; Smolina, I.; Kurzynowski, T.; Kuźnicka, B. Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking. Addit. Manuf. 2020, 35, 101270. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, K.; Kairy, S.K.; Palm, F.; Wu, X.; Rometsch, P.A. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al–Mg–Sc–Zr alloy fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 732, 41–52. [Google Scholar] [CrossRef]
- Jiang, Q.; Ward, M.D. Crystallization under nanoscale confinement. Chem. Soc. Rev. 2014, 43, 2066–2079. [Google Scholar] [CrossRef] [PubMed]
- Martucci, A.; Aversa, A.; Manfredi, D.; Bondioli, F.; Biamino, S.; Ugues, D.; Lombardi, M.; Fino, P. Low-Power Laser Powder Bed Fusion Processing of Scalmalloy®. Materials 2022, 15, 3123. [Google Scholar] [CrossRef]
- Martin, J.H.; Yahata, B.D.; Hundley, J.M.; Mayer, J.A.; Schaedler, T.A.; Pollock, T.M. 3D printing of high-strength aluminium alloys. Nature 2017, 549, 365–369. [Google Scholar] [CrossRef]
- Mehta, B.; Nyborg, L.; Frisk, K.; Hryha, E. Al–Mn–Cr–Zr-based alloys tailored for powder bed fusion-laser beam process: Alloy design, printability, resulting microstructure and alloy properties. J. Mater. Res. 2022, 37, 1256–1268. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Shi, J. Microstructure and mechanical properties of laser DED produced crack-free Al 7075 alloy: Effect of process parameters and heat treatment. Mater. Sci. Eng. A 2022, 857, 144075. [Google Scholar] [CrossRef]
- Mirandola, P.; Lunetto, V.; Novel, D.; Barozzi, M.; Bellutti, P.; De Maddis, M.; Russo Spena, P. Strength and microstructure of friction stir welded additively manufactured Scalmalloy® in as-welded and heat-treated conditions. J. Manuf. Process. 2023, 97, 1–11. [Google Scholar] [CrossRef]
- Ha, J.-M.; Hillmyer, M.A.; Ward, M.D. Thermotropic Properties of Organic Nanocrystals Embedded in Ultrasmall Crystallization Chambers. J. Phys. Chem. B 2005, 109, 1392–1399. [Google Scholar] [CrossRef]
- Cantaert, B.; Beniash, E.; Meldrum, F.C. Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation. Chem. A Eur. J. 2013, 19, 14918–14924. [Google Scholar] [CrossRef]
- Nagalingam, S.; Vasudevan, S.; Ramasamy, P.; Laddha, G.S. Studies on two-dimensional nucleation. J. Cryst. Growth 1982, 57, 387–390. [Google Scholar] [CrossRef]
- Tai, C.Y.; Wu, J.-F.; Rousseau, R.W. Interfacial supersaturation, secondary nucleation, and crystal growth. J. Cryst. Growth 1992, 116, 294–306. [Google Scholar] [CrossRef]
- Cadoret, R.; Hottier, F. Mechanism of Si polycrystalline growth on a Si3N4 substrate from SiH4/H2 at reduced pressures. J. Cryst. Growth 1983, 64, 583–592. [Google Scholar] [CrossRef]
- Duran, H.; Steinhart, M.; Butt, H.-J.; Floudas, G. From Heterogeneous to Homogeneous Nucleation of Isotactic Poly(propylene) Confined to Nanoporous Alumina. Nano Lett. 2011, 11, 1671–1675. [Google Scholar] [CrossRef]
- Woo, E.; Huh, J.; Jeong, Y.G.; Shin, K. From Homogeneous to Heterogeneous Nucleation of Chain Molecules under Nanoscopic Cylindrical Confinement. Phys. Rev. Lett. 2007, 98, 136103. [Google Scholar] [CrossRef]
- Hamilton, B.D.; Ha, J.-M.; Hillmyer, M.A.; Ward, M.D. Manipulating Crystal Growth and Polymorphism by Confinement in Nanoscale Crystallization Chambers. Acc. Chem. Res. 2012, 45, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Vekilov, P.G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2010, 2, 2346–2357. [Google Scholar] [CrossRef]
- Si, H.; Zhao, X.; Liao, Q.; Zhang, Y. Design and tailoring of patterned ZnO nanostructures for perovskite light absorption modulation. Int. J. Miner. Metall. Mater. 2024, 31, 855–861. [Google Scholar] [CrossRef]
- Zhang, A.; Zhou, X.; Gu, R.; Xia, Z. Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals. Int. J. Miner. Metall. Mater. 2024, 31, 1456–1461. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, F.; Dong, B.-X.; Gao, X.; Shu, S.-L.; Yang, H.-Y.; Jiang, Q.-C. Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles. Mater. Sci. Eng. A 2020, 777, 139081. [Google Scholar] [CrossRef]
- Lu, Q.; Han, H.; Sun, W.; Zhang, X.; Wang, W.; Zhang, B.; Chen, W.; Zou, Q. Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite. Int. J. Miner. Metall. Mater. 2024, 31, 1198–1207. [Google Scholar] [CrossRef]
- Bunk, W.G.J. (Ed.) Advanced Structural and Functional Materials; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Siegel, R.W. Cluster-Assembled Nanophase Materials. Annu. Rev. Mater. Sci. 1991, 21, 559–578. [Google Scholar] [CrossRef]
- Greer, A.L. Metallic Glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM international: Almere, The Netherlands, 1993. [Google Scholar]
- Bai, Z.; Qiu, F.; Zhang, T.; Jiang, Q. A New Approach to Refine Grains in Al Alloys. Adv. Eng. Mater. 2015, 17, 796–801. [Google Scholar] [CrossRef]
- Bai, Z.; Qiu, F.; Chi, J.; Zhang, T.; Jiang, Q. Microstructure evolution and mechanical properties of Al–Cu alloys inoculated by FeBSi metallic glass. Mater. Des. 2015, 67, 130–135. [Google Scholar] [CrossRef]
- Bai, Z.; Qiu, F.; Xue, J.; Zhang, B.; Jiang, Q. Simultaneously increasing strength and ductility of the Al–Cu alloys inoculated by Zr-based metallic glass. Mater. Charact. 2015, 100, 36–40. [Google Scholar] [CrossRef]
- Yao, X.-Y.; Qiu, F.; Yang, H.-Y.; Shu, S.-L.; Li, T.-T.; Jiang, Q.-C. Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys. Mater. Charact. 2022, 194, 112408. [Google Scholar] [CrossRef]
- Chen, N.; Frank, R.; Asao, N.; Louzguine-Luzgin, D.V.; Sharma, P.; Wang, J.Q.; Xie, G.Q.; Ishikawa, Y.; Hatakeyama, N.; Lin, Y.C.; et al. Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 2011, 59, 6433–6440. [Google Scholar] [CrossRef]
- Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S.P.; Proffit, D.E.; Mason, T.O. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment. Materials 2010, 3, 4892–4914. [Google Scholar] [CrossRef] [PubMed]
- Herzer, G. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 1992, 112, 258–262. [Google Scholar] [CrossRef]
- Li, J.; Deepak, F.L. In Situ Kinetic Observations on Crystal Nucleation and Growth. Chem. Rev. 2022, 122, 16911–16982. [Google Scholar] [CrossRef]
- Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. New Method of Eutectic Silicon Modification in Cast Al–Si Alloys. Inter Met. 2017, 11, 475–493. [Google Scholar] [CrossRef]
- Hegde, S.; Prabhu, K.N. Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 2008, 43, 3009–3027. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Y.; Wen, C.; Du, J. Effect of Sr modification on microstructure and thermal conductivity of hypoeutectic Al−Si alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
- Li, M.; Omura, N.; Murakami, Y.; Matsui, I.; Tada, S. A comparative study of the primary phase formation in Al–7 wt% Si and Al–17 wt% Si alloys solidified by electromagnetic stirring processing. Mater. Today Commun. 2020, 24, 101146. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, C.; Liao, H.; Jiang, J.; Ma, A. Joint effect of micro-sized Si particles and nano-sized dispersoids on the flow behavior and dynamic recrystallization of near-eutectic Al–Si based alloys during hot compression. J. Alloys Compd. 2021, 856, 158072. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K.; Wang, B.; Liang, T.; Han, J.; Wang, J. Accelerating pore nucleation and eutectic Si growth kinetics by increasing Cu and Sc for Al-Si-Mg alloys: In-situ observation. J. Alloys Compd. 2021, 869, 159173. [Google Scholar] [CrossRef]
- Alemdag, Y.; Karabiyik, S.; Mikhaylovskaya, A.V.; Kishchik, M.S.; Purcek, G. Effect of multi-directional hot forging process on the microstructure and mechanical properties of Al–Si based alloy containing high amount of Zn and Cu. Mater. Sci. Eng. A 2021, 803, 140709. [Google Scholar] [CrossRef]
- Lao, X.; Xu, X.; Jiang, W.; Liang, J.; Miao, L. Influences of Al metal and Al–Si alloys on in-situ synthesis of SiC nanowhiskers in porous Al2O3–SiC composites obtained by carbothermal reduction. J. Alloys Compd. 2021, 854, 157182. [Google Scholar] [CrossRef]
- Jeon, J.H.; Shin, J.H.; Bae, D.H. Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Mater. Sci. Eng. A 2019, 748, 367–370. [Google Scholar] [CrossRef]
- Lu, R.; Zheng, S.; Teng, J.; Hu, J.; Fu, D.; Chen, J.; Zhao, G.; Jiang, F.; Zhang, H. Microstructure, mechanical properties and deformation characteristics of Al-Mg-Si alloys processed by a continuous expansion extrusion approach. J. Mater. Sci. Technol. 2021, 80, 150–162. [Google Scholar] [CrossRef]
- Zhang, W.W.; Hu, Y.; Wang, Z.; Yang, C.; Zhang, G.Q.; Prashanth, K.G.; Suryanarayana, C. A novel high-strength Al-based nanocomposite reinforced with Ti-based metallic glass nanoparticles produced by powder metallurgy. Mater. Sci. Eng. A 2018, 734, 34–41. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Yang, K.; He, C.; Sha, J.; Shi, C.; Mei, Y.; Li, J.; Zhao, N. Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets. J. Mater. Sci. Technol. 2022, 101, 60–70. [Google Scholar] [CrossRef]
- Basak, C.B.; Meduri, A.; Hari Babu, N. Influence of Ni in high Fe containing recyclable Al-Si cast alloys. Mater. Des. 2019, 182, 108017. [Google Scholar] [CrossRef]
- Zhu, B.; Zanella, C. Hardness and corrosion behaviour of anodised Al-Si produced by rheocasting. Mater. Des. 2019, 173, 107764. [Google Scholar] [CrossRef]
- Li, Y.-K.; Zha, M.; Rong, J.; Jia, H.; Jin, Z.-Z.; Zhang, H.-M.; Ma, P.-K.; Xu, H.; Feng, T.-T.; Wang, H.-Y. Effect of large thickness-reduction on microstructure evolution and tensile properties of Mg-9Al-1Zn alloy processed by hard-plate rolling. J. Mater. Sci. Technol. 2021, 88, 215–225. [Google Scholar] [CrossRef]
- Ganjehfard, K.; Taghiabadi, R.; Noghani, M.T.; Ghoncheh, M.H. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. Int. J. Miner. Metall. Mater. 2021, 28, 718–728. [Google Scholar] [CrossRef]
- Gao, M.; Xie, J.; Gao, Y.; Wang, W.; Li, C.; Yang, B.; Liu, J.; Xie, H. Mechanical behavior of coal under different mining rates: A case study from laboratory experiments to field testing. Int. J. Min. Sci. Technol. 2021, 31, 825–841. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Shen, L.; Wu, H.; Zhu, H. Microstructure and mechanical properties of in situ (TiC + SiC)/FeCrCoNi high entropy alloy matrix composites. J. Iron Steel Res. Int. 2021, 28, 496–504. [Google Scholar] [CrossRef]
- Pereira, C.L.; Gomes, L.F.; Garcia, A.; Spinelli, J.E. Comparing the roles of Sb and Bi on microstructures and application properties of the Al-15% Si alloy. J. Alloys Compd. 2021, 878, 160343. [Google Scholar] [CrossRef]
- Pan, S.; Yuan, J.; Jin, K.; Murali, N.; Gladstein, A.; Zeng, Y.; Taub, A.; Li, X. Influence of Mg on reaction and properties of Al–Si/TiC nanocomposites. Mater. Sci. Eng. A 2022, 840, 142992. [Google Scholar] [CrossRef]
- Dong, B.-X.; Li, Q.; Wang, Z.-F.; Liu, T.-S.; Yang, H.-Y.; Shu, S.-L.; Chen, L.-Y.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B Eng. 2021, 217, 108912. [Google Scholar] [CrossRef]
- Yan, Y.-F.; Kou, S.-Q.; Yang, H.-Y.; Shu, S.-L.; Qiu, F.; Jiang, Q.-C.; Zhang, L.-C. Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy: Preparation, performance, and mechanisms. Int. J. Extrem. Manuf. 2023, 5, 032006. [Google Scholar] [CrossRef]
- McCartney, D.G. Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 1989, 34, 247–260. [Google Scholar] [CrossRef]
- Fan, Z.; Gao, F.; Wang, Y.; Men, H.; Zhou, L. Effect of solutes on grain refinement. Prog. Mater. Sci. A Festschr. Honor. Brian Cantor 2022, 123, 100809. [Google Scholar] [CrossRef]
- Yu, J.; Geng, Y.; Chen, Y.; Wang, X.; Zhang, Z.; Tang, H.; Xu, J.; Ju, H.; Wang, D. High-strength and thermally stable TiB2-modified Al–Mn–Mg–Er–Zr alloy fabricated via selective laser melting. Int. J. Miner. Metall. Mater. 2024, 31, 2221–2232. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Tian, L.; Guo, Y.; Li, J.; Xia, F.; Liang, M.; Bai, Y. Effects of Solidification Cooling Rate on the Microstructure and Mechanical Properties of a Cast Al-Si-Cu-Mg-Ni Piston Alloy. Materials 2018, 11, 1230. [Google Scholar] [CrossRef]
- Niu, G.; Mao, J.; Wang, J. Effect of Ce Addition on Fluidity of Casting Aluminum Alloy A356. Metall. Mater. Trans. A 2019, 50, 5935–5944. [Google Scholar] [CrossRef]
- Qiu, C.; Miao, S.; Li, X.; Xia, X.; Ding, J.; Wang, Y.; Zhao, W. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy. Mater. Des. 2017, 114, 563–571. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Mater. Des. 2017, 116, 427–437. [Google Scholar] [CrossRef]
- Wu, X.-F.; Wang, Z.-C.; Wang, K.-Y.; Zhao, R.-D.; Wu, F.-F. Microstructural refinement and tensile properties enhancement of Al-10Mg2Si cast alloys by copper addition. J. Alloys Compd. 2022, 896, 163058. [Google Scholar] [CrossRef]
- Huang, J.; Feng, L.; Li, C.; Huang, C.; Li, J.; Friedrich, B. Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. Scr. Mater. 2020, 180, 88–92. [Google Scholar] [CrossRef]
- Wang, C.; Cui, H.; Tang, X.; He, K. Friction-Stir Welding of a Wrought Al-Si-Mg Alloy in As-Fabricated and Heat-Treatment States. Materials 2020, 13, 861. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Zhang, M.; Gong, W.; Lai, R.; Li, Y. Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds. Int. J. Miner. Metall. Mater. 2024, 31, 725–736. [Google Scholar] [CrossRef]
- Baek, M.-S.; Kang, T.-H.; Kim, J.-H.; Park, J.-P.; Euh, K.; Lee, K.-A. Effect of EMS Process on the Primary Si Refinement, Tensile and Fatigue Properties of Hyper-eutectic Al-15wt.%Si Alloy. Korean J. Met. Mater. 2022, 60, 360–369. [Google Scholar] [CrossRef]
- Abboud, J.H.; Mazumder, J. Ultra-refined primary and eutectic silicon in rapidly solidified laser produced hypereutectic Al–Si alloys. Adv. Mater. Process. Technol. 2022, 8, 2510–2532. [Google Scholar] [CrossRef]
- Xi, L.; Guo, S.; Ding, K.; Prashanth, K.G.; Sarac, B.; Eckert, J. Effect of nanoparticles on morphology and size of primary silicon and property of selective laser melted Al-high Si content alloys. Vacuum 2021, 191, 110405. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, S.; Dong, X.; Liu, X.; Ji, S. Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys. J. Mater. Sci. Technol. 2022, 100, 36–45. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, Y.; Zheng, T.; Shen, Z.; Wang, J.; Fan, L.; Zhai, Y.; Peng, M.; Zhou, B.; Ren, W.; et al. Refinement of primary Si in the bulk solidified Al-20 wt.%Si alloy assisting by high static magnetic field and phosphorus addition. J. Alloys Compd. 2017, 714, 39–46. [Google Scholar] [CrossRef]
- Xu, Y.; Deng, Y.; Casari, D.; Mathiesen, R.H.; Liu, X.; Li, Y. Growth kinetics of primary Si particles in hypereutectic Al-Si alloys under the influence of P inoculation: Experiments and modelling. J. Alloys Compd. 2021, 854, 155323. [Google Scholar] [CrossRef]
- Haghayeghi, R.; Timelli, G. An investigation on primary Si refinement by Sr and Sb additions in a hypereutectic Al-Si alloy. Mater. Lett. 2021, 283, 128779. [Google Scholar] [CrossRef]
- Vijayan, V.; Ravi, M.; Prabhu, K.N. Effect of Ni and Sr additions on the microstructure, mechanical properties, and coefficient of thermal expansion of Al-23%Si alloy. Mater. Today Proc. Int. Conf. Smart Sustain. Dev. Mater. Manuf. Energy Eng. 2021, 46, 2732–2736. [Google Scholar] [CrossRef]
- Sebaie, O.E.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. The effects of mischmetal, cooling rate and heat treatment on the eutectic Si particle characteristics of A319.1, A356.2 and A413.1 Al–Si casting alloys. Mater. Sci. Eng. A 2008, 480, 342–355. [Google Scholar] [CrossRef]
- Han, L.; Sui, Y.; Wang, Q.; Wang, K.; Jiang, Y. Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. J. Alloys Compd. 2017, 695, 1566–1572. [Google Scholar] [CrossRef]
- Jiang, B.; Ji, Z.; Hu, M.; Xu, H.; Xu, S. A novel modifier on eutectic Si and mechanical properties of Al-Si alloy. Mater. Lett. 2019, 239, 13–16. [Google Scholar] [CrossRef]
- Li, J.H.; Barrirero, J.; Engstler, M.; Aboulfadl, H.; Mücklich, F.; Schumacher, P. Nucleation and Growth of Eutectic Si in Al-Si Alloys with Na Addition. Metall. Mater. Trans. A 2015, 46, 1300–1311. [Google Scholar] [CrossRef]
- Lu, S.-Z.; Hellawell, A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metall. Trans. A 1987, 18, 1721–1733. [Google Scholar] [CrossRef]
- Day, M.G.; Hellawell, A.; Hirsch, P.B. The microstructure and crystallography of aluminium—Silicon eutectic alloys. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1997, 305, 473–491. [Google Scholar] [CrossRef]
- McDonald, S.D.; Dahle, A.K.; Taylor, J.A.; StJohn, D.H. Eutectic grains in unmodified and strontium-modified hypoeutectic aluminum-silicon alloys. Metall. Mater. Trans. A 2004, 35, 1829–1837. [Google Scholar] [CrossRef]
- Xiong, Y. Study of Al-Si Alloy by Tissue Hereditary Double Modification; Jiangsu University of Science and Technology: Zhenjiang, China, 2014. [Google Scholar]
- Li, J.H.; Albu, M.; Ludwig, T.; Matsubara, Y.; Hofer, F.; Arnberg, L.; Tsunekawa, Y.; Schumacher, P. Modification of Eutectic Si in Al-Si Based Alloys. Mater. Sci. Forum 2014, 794–796, 130–136. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, Z.; Zhao, J.; He, J.; Jiang, H. Factors affecting eutectic Si modification in Al-Si hypoeutectic alloy with the addition of Na, Sr, Eu and Yb. Mater. Lett. 2022, 308, 131206. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Z.; Ren, B.; Wang, M.; Weng, Y.; Liu, Z. Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Trans. Nonferrous Met. Soc. China 2007, 17, 301–306. [Google Scholar] [CrossRef]
- Yuan, D.; Yang, X.; Wu, S.; Lü, S.; Hu, K. Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. J. Mater. Process. Technol. 2019, 269, 1–9. [Google Scholar] [CrossRef]
- Dong, B.-X.; Li, Q.; Yang, H.-Y.; Liu, T.-S.; Qiu, F.; Shu, S.-L.; Jiang, Q.-C.; Zhang, L.-C. Synergistic optimization in solidification microstructure and mechanical performance of novel (TiCxNy−TiB2)p/Al nanocomposites: Design, tuning and mechanism. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106843. [Google Scholar] [CrossRef]
- Murty, B.S.; Kori, S.A.; Chakraborty, M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002, 47, 3–29. [Google Scholar] [CrossRef]
- Schaffer, P.L.; Dahle, A.K. Settling behaviour of different grain refiners in aluminium. Mater. Sci. Eng. A Int. Conf. Adv. Solidif. Process. 2005, 413–414, 373–378. [Google Scholar] [CrossRef]
- Wang, T.; Gao, T.; Nie, J.; Li, P.; Liu, X. Influence of carbon source on the microstructure of Al–Ti–C master alloy and its grain refining efficiency. Mater. Charact. 2013, 83, 13–20. [Google Scholar] [CrossRef]
- Vandyoussefi, M.; Worth, J.; Greer, A.L. Effect of instability of TiC particles ongrain refinement of Al and Al–Mg alloysby addition of Al–Ti–C inoculants. Mater. Sci. Technol. 2000, 16, 1121–1128. [Google Scholar] [CrossRef]
- Nie, J.; Ma, X.; Ding, H.; Liu, X. Microstructure and grain refining performance of a new Al–Ti–C–B master alloy. J. Alloys Compd. 2009, 486, 185–190. [Google Scholar] [CrossRef]
- Birol, Y. A novel Al–Ti–B alloy for grain refining Al–Si foundry alloys. J. Alloys Compd. 2009, 486, 219–222. [Google Scholar] [CrossRef]
- Birol, Y. An improved practice to manufacture Al–Ti–B master alloys by reacting halide salts with molten aluminium. J. Alloys Compd. 2006, 420, 71–76. [Google Scholar] [CrossRef]
- Limmaneevichitr, C.; Eidhed, W. Novel technique for grain refinement in aluminum casting by Al–Ti–B powder injection. Mater. Sci. Eng. A 2003, 355, 174–179. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.H.; Zhu, Y.T.; Ma, E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007, 55, 5822–5832. [Google Scholar] [CrossRef]
- Yao, D.; Xia, Y.; Qiu, F.; Jiang, Q. Effects of La addition on the elevated temperature properties of the casting Al–Cu alloy. Mater. Sci. Eng. A 2011, 528, 1463–1466. [Google Scholar] [CrossRef]
- Han, J.; Li, Y.; Ma, C.; Zheng, Q.; Zhang, X.; Wu, X. Study on the oxidation mechanism of Al-SiC composite at elevated temperature. Int. J. Miner. Metall. Mater. 2024, 31, 2077–2087. [Google Scholar] [CrossRef]
- Son, K.T.; Cho, C.H.; Kim, M.G.; Lee, J.W. Two-stage dynamic recrystallization and texture evolution in Al-7Mg alloy during hot torsion. Int. J. Miner. Metall. Mater. 2024, 31, 1900–1911. [Google Scholar] [CrossRef]
- Bai, Z.; Qiu, F.; Shan, L.; Liu, Y.; Han, Y.; Jiang, Q. Grain refinement behavior of Al–Cu alloys inoculated by various metallic glasses. Mater. Chem. Phys. 2015, 168, 1–5. [Google Scholar] [CrossRef]
- Zhu, L.; Qiu, F.; Qiu, D.; Duan, T.-T.; Chang, F.; Li, T.-T.; Shu, S.-L.; Yang, H.-Y.; He, Y.; Jiang, Q.-C. Efficient microstructure refinement of Al–Si–Mg alloy manipulated by nanocrystals formed by in-situ crystallization in melt. Mater. Sci. Eng. A 2019, 751, 90–98. [Google Scholar] [CrossRef]
- Liu, T.-S.; Zhu, L.; Yang, H.-Y.; Cui, H.-Y.; Meng, J.; Qiu, F.; Dong, B.-X.; Shu, S.-L.; Jiang, Q.-C.; Zhang, L.-C. Significantly enhanced fatigue resistance and mechanisms of hypoeutectic Al-Si composite calibrated using trace in-situ nanocrystals. Compos. Part B Eng. 2024, 271, 111138. [Google Scholar] [CrossRef]
- Li, T.-T.; Yang, H.-Y.; Miao, T.-J.; Peng, H.-L.; Chen, X.; Zhu, L.; Duan, T.-T.; Qiu, F.; Bai, Z.-H.; Chen, S.-M.; et al. Microstructure refinement and strengthening of Al–Cu alloys manipulated by nanocrystalline phases formed by in situ crystallization of Ni–Nb–Ti metallic glasses in melt. J. Mater. Res. Technol. 2020, 9, 4494–4505. [Google Scholar] [CrossRef]
- Bai, Z.; Qiu, F.; He, Y.; Zhao, H.; Jiang, Q. Tensile properties and work-hardening behaviours of Al–Cu alloys modified by Al84Ni10La6 metallic glass. Int. J. Cast Met. Res. 2015, 28, 352–355. [Google Scholar] [CrossRef]
- Zhu, L.; Qiu, F.; Zou, Q.; Han, X.; Shu, S.-L.; Yang, H.-Y.; Jiang, Q.-C. Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al-Si-Mg alloy manipulated by in situ nanosized crystals. Mater. Sci. Eng. A 2021, 802, 140627. [Google Scholar] [CrossRef]
- Zhu, L.; Qiu, F.; Shan, L.-Y.; Yang, H.-Y.; Shu, S.-L.; Shao, Y.; Jiang, Q.-C. Instantaneous efficient microstructure manipulation of eutectic AlSi alloy by trace in-situ nanoparticles and their mechanism in superior tensile properties. Mater. Charact. 2023, 199, 112755. [Google Scholar] [CrossRef]
Inoculant | Composition (wt%) | Area Ratio of Equiaxed Grain Area (%) | Size of Equiaxed Grain (µm) | Content (wt%) | Inoculation Modes | Ref. |
---|---|---|---|---|---|---|
Sc | AlMg6.66Sc0.66Mn0.51 | 60.9 | 2.01 | 0.66 | ball milling with ScH3 nanoparticles | [13] |
AlMn4.69Sc0.7 | 0 | - | 0.7 | pre-alloyed | [14] | |
Zr | AlMn4.88Sc1.48 | 44 | 0.83 | 1.48 | pre-alloyed | [14] |
AlCu4.43Mg1.31Zr1.31Mn0.76 | 68 | 0.79 | 1.31 | pre-alloyed | [15] | |
AlMg4.13Zr1.42 | 48.6 | 0.38 | 1.42 | pre-alloyed | [16] | |
AlCu4.4Mg1.51Mn1.15Zr3.72 | 100 | 0.7 | 3.72 | pre-alloyed | [17] | |
Sc + Zr | AlFe2Cu1.35Zr4.44 | 100 | 0.785 | 4.44 | pre-alloyed | [18] |
AlMg5.35Sc0.58Zr0.17 | 58 | 0.6 | 0.75 | pre-alloyed | [19] | |
AlMg4.94Sc0.6Zr0.2Fe0.25 | 32.6 | 0.68 | 0.8 | pre-alloyed | [20] | |
AlMg6.64Sc0.67Mn0.50Zr0.33 | 96.4 | 1.21 | 1 | ball milling with ScH3 and ZrH3 nanoparticles | [13] | |
AlMn4.52Mg1.32Sc0.79Zr0.74 | 60 | 0.65 | 1.53 | pre-alloyed | [21] | |
AlMg6.64Sc1.07Zr0.54Mn0.50 | 97.8 | 1.07 | 1.57 | ball milling with ScH3 and ZrH3 nanoparticles | [13] | |
Ti | AlMn5Mg1.5Sc0.82Zr0.76Fe0.16 | 47.4 | 0.68 | 1.58 | pre-alloyed | [20] |
AlCu4.5Mg2.4Si1.9Ti0.6 | 67 | 0.93 | 0.6 | pre-alloyed | [22] | |
AlCu3.77Mg1.08Ti0.7Mn0.4Fe0.13 | 100 | 2 | 0.7 | vibrative agitation mixing with Ti nanoparticles | [23] | |
Nb | AlCu2.25Mg1.8Ti1.5 | 100 | 1.64 | 1.5 | pre-alloyed | [24] |
AlTi2 | 100 | 0.522 | 2 | - | [25] | |
AlZn12.03Mg2.25Cu1.64Nb1.47 | 100 | 0.8 | 1.47 | pre-alloyed | [26] |
Decomposed Elements | Si Morphology | Advantages | Disadvantages |
---|---|---|---|
Na | Fine fibrous | Short gestation period | Easily evaporates and quickly fades away |
Insensitive to cooling rate | Low recovery rate, difficult to add and control | ||
Redistribution of pores | |||
Easily undergoes deterioration | |||
Sr | Fine fibrous | Does not easily undergo deterioration | Long gestation period |
Lasting effect, easy to add, and good recyclability | Relatively high cooling rate | ||
Redistribution of pores | |||
Sb | Layered thin slices | After remelting, it still maintains durability and metamorphic effects | Harmful gases are produced during the adding and remelting process |
Only achieved a fine layered structure |
Alloy | Metallic Glass | wt.% | TYS (Mpa) | UTS (Mpa) | Strain(%) | Refs. |
---|---|---|---|---|---|---|
Al-Cu | Zr55Cu30Al10Ni5 | 0.2 | 424 | 569 | 11.1 | [46] |
FeBSi | 0.1 | - | 520 | 14.2 | [45] | |
Ni60Nb25Ti15 | 0.05 | 363.2 | 534.3 | 19.2 | [122] | |
Al84Ni10La6 | 0.4 | 374 | 520 | - | [123] | |
Al-Si | Zr55Cu30Al10Ni5 | 0.2 | - | 362 | 2.21 | [1] |
FeBSi | 0.1 | - | 460 | 5.09 | [123] | |
NiNbTi | 0.05 | 228 | 348 | 18.5 | [124] | |
Al-Mg | FeBSi | 0.05 | 91.2 | 145.5 | 29.8 | [47] |
Al-Si-Mg | FeBSi | 0.1 | 226 | 343 | 18.4 | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.-B.; Zhan, L.; Liu, L.; Meng, F.-X.; Zhang, R.; Tuerxun, K.; Zhao, X.-R.; Dong, B.-X.; Shu, S.-L.; Liu, T.-S.; et al. The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization. Materials 2025, 18, 4206. https://doi.org/10.3390/ma18174206
Yang W-B, Zhan L, Liu L, Meng F-X, Zhang R, Tuerxun K, Zhao X-R, Dong B-X, Shu S-L, Liu T-S, et al. The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization. Materials. 2025; 18(17):4206. https://doi.org/10.3390/ma18174206
Chicago/Turabian StyleYang, Wen-Bo, Lei Zhan, Lin Liu, Fan-Xu Meng, Run Zhang, Kadiredan Tuerxun, Xing-Rui Zhao, Bai-Xin Dong, Shi-Li Shu, Tian-Shu Liu, and et al. 2025. "The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization" Materials 18, no. 17: 4206. https://doi.org/10.3390/ma18174206
APA StyleYang, W.-B., Zhan, L., Liu, L., Meng, F.-X., Zhang, R., Tuerxun, K., Zhao, X.-R., Dong, B.-X., Shu, S.-L., Liu, T.-S., Yang, H.-Y., Qiu, F., & Jiang, Q.-C. (2025). The Microstructure Regulation Mechanism and Future Application of Aluminum Alloys Manipulated by Nanocrystalline Structures Formed by In Situ Amorphous Crystallization. Materials, 18(17), 4206. https://doi.org/10.3390/ma18174206