Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
Abstract
1. Introduction
2. Experiment Procedure
3. Results and Discussions
3.1. Solidification Mode
3.2. Calculation of Non-Equilibrium Solidification
3.3. HT-CLSM In Situ Observation
3.4. Microstructure
3.5. Microsegregation
3.6. Characterization of Precipitated Phase
4. Conclusions
- Based on thermodynamic calculations and the HT-CLSM observations, the solidification sequence of 310S stainless steel can be described as L → L + γ → L + γ + δ → δ + γ. In this sequence, austenite nucleates first and grows rapidly during the initial stage, followed by the precipitation of a small amount of δ-ferrite in the interdendritic regions during the later stage of solidification. In contrast, the solidification sequence of 304 stainless steel is L → L + δ → L + δ + γ → δ + γ. After solidification, a rapid δ → γ transformation occurs. The higher δ-ferrite content in 304 stainless steel is attributed to the preferential formation and partial retention of δ-ferrite during solidification;
- Both thermodynamic calculations and experimental results indicate that, compared with 304 stainless steel, 310S stainless steel exhibits a lower δ-ferrite content and a significantly higher σ-phase fraction. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), with a chemical composition similar to that of δ. M23C6 carbides preferentially form at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides rapid diffusion paths for Cr but also serves as nucleation sites for M23C6. At the δ/γ interface, M23C6 formation follows the eutectoid reaction: δ → M23C6 + γ. Furthermore, during the solidification of 310S stainless steel, the elemental segregation sequence is Cr > Ni > Fe, with Cr and Ni exhibiting positive segregation and Fe showing negative segregation;
- With increasing Al content, the solidification mode of 310S stainless steel remains unchanged, but its microstructural features are significantly altered. The addition of Al refines the austenite grains and reduces solute enrichment in the interdendritic regions, thereby markedly decreasing elemental segregation. As a result, both the size and fraction of δ-ferrite are reduced, while the precipitation of σ phase is suppressed. The amount of M23C6 carbides decreases because the addition of Al reduces the δ/γ interface area, thereby diminishing the number of preferred nucleation sites for M23C6;
- Cooling rate has a significant effect on microstructural evolution. As the cooling rate increases, insufficient solute diffusion causes the actual solute distribution to deviate from equilibrium, leading to enhanced segregation of elements such as Cr and Ni. This process promotes the formation of δ-ferrite. Simultaneously, rapid cooling suppresses the δ → γ phase transformation, resulting in a greater retention of δ-ferrite in the final microstructure. The increased δ-ferrite content, combined with its associated segregation, further facilitates the transformation of the δ phase into the σ phase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, Y.; La, P.; Jin, J.; Du, M.; Zheng, Y.; Zhan, F.; Sheng, J.; Yu, H.; Zhu, M. Corrosion Behavior of Aluminum-Forming Alloy 310S for Application in Molten Chloride Salt CSP Thermal Storage Tank. Front. Mater. 2022, 9, 886285. [Google Scholar] [CrossRef]
- Sah, S.P.; Tada, E.; Nishikata, A. Corrosion Behaviour of Austenitic Stainless Steels in Carbonate Melt at 923 K under Controlled CO2-O2 Environment. Corros. Sci. 2018, 133, 310–317. [Google Scholar] [CrossRef]
- Kim, D.C.; Ogura, T.; Tanabe, Y.; Yamashita, S.; Saida, K. Hot Cracking Susceptibility and Solidification Segregation Analysis by Computer Simulation in Duplex Stainless Steels. Weld. Int. 2019, 33, 231–240. [Google Scholar] [CrossRef]
- Sun, J.; Tang, H.; Wang, C.; Han, Z.; Li, S. Effects of Alloying Elements and Microstructure on Stainless Steel Corrosion: A Review. Steel Res. Int. 2022, 93, 2100450. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Yang, X.; Zhang, Z.; Wang, J.; Li, Z.; Chen, L.; Mu, W. Solidification Modes and Delta-Ferrite of Two Types of 316L Stainless Steels: A Combination of as-Cast Microstructure and HT-CLSM Research. J. Iron Steel Res. Int. 2025, 32, 426–436. [Google Scholar] [CrossRef]
- Almomani, A.; Mourad, A.-H.I.; Barsoum, I. Effect of Sulfur, Phosphorus, Silicon, and Delta Ferrite on Weld Solidification Cracking of AISI 310S Austenitic Stainless Steel. Eng. Fail. Anal. 2022, 139, 106488. [Google Scholar] [CrossRef]
- Zargar, T.; Sadeghi, F.; Kim, J.W.; Lee, J.S.; Heo, Y.-U.; Yim, C.H. Kinetic Model to Investigate the Effect of Cooling Rate on δ-Ferrite Behavior and Its Application in Continuous Casting of AISI 304 Stainless Steel. Met. Mater. Int. 2022, 28, 2263–2276. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Idury, K.S.N.S.; Ismail, T.P.; Bhadauria, A.; Shekhawat, S.K.; Khatirkar, R.K.; Sapate, S.G. Effect of Heat Input on the Microstructure, Residual Stresses and Corrosion Resistance of 304L Austenitic Stainless Steel Weldments. Mater. Charact. 2014, 93, 10–23. [Google Scholar] [CrossRef]
- Spaccarotella, A.; Ridolfi, M.R.; Picht, G.; Scheller, P.R. Control of δ-γ Transformation during Solidification of Stainless Steel Slabs in the Mould. Steel Res. Int. 2003, 74, 693–699. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhang, W.; Chou, K. Influence of Cooling Rate on Solidification Process Ce-High Mo Austenite Stainless Steel: Nucleation, Growth, and Microstructure Evolution. Metals 2023, 13, 246. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Li, M.; Tong, L.; Zhang, Y.; Zhang, W. Effect of Cooling Rate on Segregation Characteristics of 254SMO Super Austenitic Stainless Steel and Pitting Corrosion Resistance under Simulated Flue Gas Desulfurization Environment. J. Mater. Sci. 2023, 58, 4137–4149. [Google Scholar] [CrossRef]
- Fu, J.W.; Yang, Y.S.; Guo, J.J.; Tong, W.H. Effect of Cooling Rate on Solidification Microstructures in AISI 304 Stainless Steel. Mater. Sci. Technol. 2008, 24, 941–944. [Google Scholar] [CrossRef]
- Hao, Y.; Li, J.; Li, X.; Liu, W.; Cao, G.; Li, C.; Liu, Z. Influences of Cooling Rates on Solidification and Segregation Characteristics of Fe-Cr-Ni-Mo-N Super Austenitic Stainless Steel. J. Mater. Process. Technol. 2020, 275, 116326. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Li, Y.; Lu, S. The Influence of Niobium on the Plastic Deformation Behaviors of 310s Austenitic Stainless Steel Weld Metals at Different Temperatures. Mater. Sci. Eng. A 2019, 743, 648–655. [Google Scholar] [CrossRef]
- Wei, Y.; Cao, J.; Yu, H.; Sheng, J.; La, P. Effect of Mg Addition on Molten Chloride Salt Corrosion Resistance of 310S Stainless Steel with Aluminum. Metals 2024, 14, 1109. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Brady, M.P.; Lu, Z.P.; Maziasz, P.J.; Liu, C.T.; Pint, B.A.; More, K.L.; Meyer, H.M.; Payzant, E.A. Creep-Resistant, Al2 O3 -Forming Austenitic Stainless Steels. Science 2007, 316, 433–436. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Lin, L.; Liu, K. High-Temperature Mechanical Properties Evaluation of 310S Stainless Steel. Mater. High Temp. 2023, 40, 479–491. [Google Scholar] [CrossRef]
- Jiao, Y.; Mahmood, J.; Zheng, W.; Singh, P.M.; Kish, J.R. Effect of Thermal Aging on the Intergranular Stress Corrosion Cracking Susceptibility of Type 310S Stainless Steel. Corrosion 2018, 74, 430–443. [Google Scholar] [CrossRef]
- Shalchi Amirkhiz, B.; Xu, S.; Scott, C. Microstructural Assessment of 310S Stainless Steel during Creep at 800 °C. Materialia 2019, 6, 100330. [Google Scholar] [CrossRef]
- Apolinario, L.H.R.; Wallerstein, D.; Montealegre, M.A.; Urtiga Filho, S.L.; Torres, E.A.; Hermenegildo, T.F.C.; Santos, T.F.A. Predominant Solidification Modes of 316 Austenitic Stainless Steel Coatings Deposited by Laser Cladding on 304 Stainless Steel Substrates. Met. Mater. Trans. A 2019, 50, 3617–3628. [Google Scholar] [CrossRef]
- Osuki, T.; Yonemura, M.; Ogawa, K.; Komizo, Y.; Terasaki, H. Analysis of the Solidification Process of Austenitic Stainless Steel Weld Metal Using Synchrotron Radiation. Weld World 2009, 53, R290–R303. [Google Scholar] [CrossRef]
- Ferrandini, P.L.; Rios, C.T.; Dutra, A.T.; Jaime, M.A.; Mei, P.R.; Caram, R. Solute Segregation and Microstructure of Directionally Solidified Austenitic Stainless Steel. Mater. Sci. Eng. A 2006, 435, 139–144. [Google Scholar] [CrossRef]
- Wang, T.; Phelan, D.; Wexler, D.; Yin, Y.; Guo, L.; Zhang, C.; Li, H. Detailed Analysis of Nucleation and Subsequent δ to γ Phase Transformation of a High N Super Austenitic Stainless Steel. Mater. Charact. 2023, 195, 112485. [Google Scholar] [CrossRef]
- Kim, S.H.; Moon, H.K.; Kang, T.; Lee, C.S. Dissolution Kinetics of Delta Ferrite in AISI 304 Stainless Steel Produced by Strip Casting Process. Mater. Sci. Eng. A 2003, 356, 390–398. [Google Scholar] [CrossRef]
- Saied, M. Experimental and Numerical Modeling of the Dissolution of Delta Ferrite in the Fe-Cr-Ni System: Application to the Austenitic Stainless Steels. Ph.D. Dissertation, Université Grenoble Alpes, Grenoble, France, 2016. [Google Scholar]
- Zhu, H.C.; Li, H.B.; Zhang, S.C.; Li, K.B.; Liu, G.H.; Jiang, Z.H.; Geng, X.; Han, P.D. Numerical Simulation of Mo Macrosegregation during Ingot Casting of High-Mo Austenitic Stainless Steel. Ironmak. Steelmak. 2015, 42, 748–755. [Google Scholar] [CrossRef]
- Liang, Z.; Li, H.; Wang, Q.; Sun, X.; Gao, X.; Yuan, S.; Yang, Z.; Zhang, F. Enhancing the Resistance to Hydrogen Embrittlement in Bainitic Steel via Grain Refinement, Dislocation Density Reduction, and Retained Austenite Stability Improvement. J. Mater. Sci. Technol. 2026, 247, 214–225. [Google Scholar] [CrossRef]
- Seol, J.-B.; Raabe, D.; Choi, P.-P.; Im, Y.-R.; Park, C.-G. Atomic Scale Effects of Alloying, Partitioning, Solute Drag and Austempering on the Mechanical Properties of High-Carbon Bainitic–Austenitic TRIP Steels. Acta Mater. 2012, 60, 6183–6199. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Yang, Y.; Luo, Z.; Song, C.; Zhai, Q. A Simple Method to Produce Austenite-Based Low-Density Fe–20Mn–9Al–0.75C Steel by a near-Rapid Solidification Process. Mater. Sci. Eng. A 2017, 679, 282–291. [Google Scholar] [CrossRef]
- Yamashita, S.; Ike, K.; Yamasaki, K.; Wei, F.-G.; Wang, K.; Ogura, T.; Saida, K. Relationship between Ferrite–Austenite Phase Transformation and Precipitation Behavior of Sigma Phase in Super Duplex Stainless Steel Weldment. Weld World 2022, 66, 351–362. [Google Scholar] [CrossRef]
- Chandra, K.; Kain, V.; Tewari, R. Microstructural and Electrochemical Characterisation of Heat-Treated 347 Stainless Steel with Different Phases. Corros. Sci. 2013, 67, 118–129. [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Jiao, J.; Cao, G.; Wang, Y.; Liu, Z. Influences of Cooling Rates on Delta Ferrite of Nuclear Power 316H Austenitic Stainless Steel. Mater. Charact. 2021, 174, 111029. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Wu, W. Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels. ISRN Met. 2012, 2012, 732471. [Google Scholar] [CrossRef]
- Waanders, F.B.; Vorster, S.W.; Pollak, H. The Influence of Temperature on σ-Phase Formation and the Resulting Hardening of Fe–Cr–Mo-Alloys. Hyperfine Interact. 1999, 120, 751–755. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Li, M.; Tong, L.; Zhang, Y.; Zhang, W. Effect of Cooling Rate on δ-Ferrite Formation and Sigma Precipitation Behavior of 254SMO Super-Austenitic Stainless Steel During Solidification. Met. Mater. Trans. B 2023, 54, 3497–3507. [Google Scholar] [CrossRef]
- Ben Rhouma, A.; Amadou, T.; Sidhom, H.; Braham, C. Correlation between Microstructure and Intergranular Corrosion Behavior of Low Delta-Ferrite Content AISI 316L Aged in the Range 550–700 °C. J. Alloys Compd. 2017, 708, 871–886. [Google Scholar] [CrossRef]
- Perron, A.; Toffolon-Masclet, C.; Ledoux, X.; Buy, F.; Guilbert, T.; Urvoy, S.; Bosonnet, S.; Marini, B.; Cortial, F.; Texier, G.; et al. Understanding Sigma-Phase Precipitation in a Stabilized Austenitic Stainless Steel (316Nb) through Complementary CALPHAD-Based and Experimental Investigations. Acta Mater. 2014, 79, 16–29. [Google Scholar] [CrossRef]
- Qian, J.; Chen, C.; Yu, H.; Liu, F.; Yang, H.; Zhang, Z. The Influence and the Mechanism of the Precipitate/Austenite Interfacial C-Enrichment on the Intergranular Corrosion Sensitivity in 310 S Stainless Steel. Corros. Sci. 2016, 111, 352–361. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, D.; Wang, X.; Li, Y.; Li, M.; Wang, F.; Zhang, W.; Tong, L. Effect of Al Content on the Δ→γ Transformation and M23C6 Precipitation Behavior in 18Cr-xAl-Si Ferritic Heat-Resistant Stainless Steel during Solidification Process. J. Mater. Res. Technol. 2022, 18, 3104–3114. [Google Scholar] [CrossRef]
- Sasikala, G.; Ray, S.K.; Mannan, S.L. Kinetics of Transformation of Delta Ferrite during Creep in a Type 316(N) Stainless Steel Weld Metal. Mater. Sci. Eng. A 2003, 359, 86–90. [Google Scholar] [CrossRef]
- Tseng, C.C.; Shen, Y.; Thompson, S.W.; Mataya, M.C.; Krauss, G. Fracture and the Formation of Sigma Phase, M2306, and Austenite from Delta-Ferrite in an AISI 304L Stainless Steel. Metall. Mater. Trans. A 1994, 25, 1147–1158. [Google Scholar]
- Facco, A.; Couvrat, M.; Magné, D.; Roussel, M.; Guillet, A.; Pareige, C. Microstructure Influence on Creep Properties of Heat-Resistant Austenitic Alloys with High Aluminum Content. Mater. Sci. Eng. A 2020, 783, 139276. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Ni | Cr | Mo | Al | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
304 | 0.05 | 0.72 | 1.24 | 0.018 | 0.004 | 8.7 | 18.1 | 0.04 | 0.001 | Bal. |
310S | 0.04 | 0.43 | 0.80 | 0.008 | 0.001 | 19.1 | 24.2 | 0.23 | 0.003 | Bal. |
310Al | 0.04 | 0.57 | 0.85 | 0.013 | 0.002 | 19.3 | 24.1 | 0.10 | 0.95 | Bal. |
Creq | Nieq | Creq/Nieq | |
---|---|---|---|
304 | 19.2 | 10.8 | 1.78 |
310S | 25.2 | 20.7 | 1.22 |
310Al | 30.5 | 20.9 | 1.45 |
Samples | Tn/°C | Ts/°C | ΔT/°C | t/s |
---|---|---|---|---|
304 | 1497.9 | 1473.4 | 24.5 | 89.9 |
310S | 1503.2 | 1471.7 | 31.5 | 115.5 |
310Al | 1448.1 | 1410.7 | 37.4 | 133.1 |
310Al-H | 1425.1 | 1401.9 | 23.2 | 48.0 |
Samples | M23C6 | σ |
---|---|---|
310S | 0.21 | 0.13 |
310Al | 0.07 | 0 |
Liquids | Solidus | γ | δ | σ | M23C6 | |
---|---|---|---|---|---|---|
304 | 1462 | 1426 | 1440 | 1462 | 748 | 934 |
310S | 1417 | 1384 | 1417 | 1400 | 945 | 1059 |
310Al | 1410 | 1385 | 1410 | 1405 | 842 | 1053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Wang, D.; Yang, S.; Cao, K.; Qiu, S.; Wei, J.; Zhao, A. Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel. Metals 2025, 15, 1091. https://doi.org/10.3390/met15101091
Xiao J, Wang D, Yang S, Cao K, Qiu S, Wei J, Zhao A. Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel. Metals. 2025; 15(10):1091. https://doi.org/10.3390/met15101091
Chicago/Turabian StyleXiao, Jun, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei, and Aimin Zhao. 2025. "Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel" Metals 15, no. 10: 1091. https://doi.org/10.3390/met15101091
APA StyleXiao, J., Wang, D., Yang, S., Cao, K., Qiu, S., Wei, J., & Zhao, A. (2025). Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel. Metals, 15(10), 1091. https://doi.org/10.3390/met15101091