Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach
Abstract
1. Introduction
2. Details of CFD Model Translation
2.1. Model Assumptions
- The temperature at the molten pool surface is assumed to be uniformly constant due to the application of appropriate electron beam scanning patterns and frequencies.
- The effects of strand curvature, mold oscillation, mold powder, mold taper, and mold gap are neglected.
- Local thermodynamic equilibrium dominates during the solidification process.
2.2. Governing Equations
- Continuity Equation:
- Momentum Equation:
2.3. Initial Conditions and Boundary Conditions
2.4. Grid Independence Test
3. Results and Discussion
3.1. Model Validation and Analysis
- Simulating the water-cooled copper crucible using the same heat transfer coefficients.
- Precisely controlling the electron beam power (peak value of 120 W) through user-defined functions.
- Employing 237,466 structured grids to ensure computational accuracy.
3.2. Analysis of Al Concentration in the Double-Overflow Mold
3.3. Analysis of Al Concentration in the Triple-Overflow Mold
3.4. Analysis of Al Concentration in the Quadruple-Overflow Mold
3.5. Artificial Neural Network Simulation
3.6. Discussion of the Optimization Model Results
4. Conclusions
- Under constant melting temperature conditions, as the number of overflow ports increases, the effect of changes in casting speed on the degree of segregation, as measured by the variance ( value), becomes significantly stronger. In the double-overflow mold for same-side casting, the difference in values increases by 0.222 when the casting speed is raised from 8 mm/min to 24 mm/min. However, when using a quadruple-overflow mold for same-side casting, this difference further expands to 0.285. This phenomenon clearly demonstrates that in same-side casting processes, an increase in the number of overflow ports significantly amplifies the impact of melting temperature changes on the segregation behavior of the ingot.
- Under the same-side casting mode, when the casting speed is kept constant, the number of overflow ports and the melting temperature show a clear positive correlation with the degree of segregation (as indicated by the value). The difference in values is 0.09 for the double-overflow configuration, while it increases to 0.12 for the quadruple-overflow configuration. Notably, under high-temperature conditions (2273 K), the value significantly increases by as much as 30%. This series of data confirms that, under the process conditions of a fixed casting speed, the double-overflow configuration can achieve the best segregation control effect.
- A process-structure prediction model was established based on the BP neural network, and the neural network structure was optimized. The prediction performance of the neural network using ReLU as the activation function is superior to that of the neural network using the sigmoid function as the activation function. After optimizing the activation function, different neural networks with varying numbers of hidden layers and neurons were compared. It was found that the neural network with two hidden layers performs better, and the performance is optimal when the number of neurons in the two hidden layers is 60 and 28, respectively. The correlation coefficient is 0.9909, the MSE is 1.124, and the MRE is 28.0078%. The predicted optimal condition is double-overflow same-side casting with a casting speed of 18 mm/min and a melting temperature of 2168 K. The average Al concentration is 6.8 wt.%, the melt pool depth is 75 mm, and the value is only 0.002.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Mathematical Parameters | Explanation of Mathematical Parameters |
liquid fraction | |
relaxation factor with a default value | |
cell temperature, K | |
interface temperature, K | |
density, kg/m3 | |
cell volume, m3 | |
latent heat of the material, J/kg | |
cell matrix coefficient | |
time step, s | |
melting temperature, K | |
number of species | |
the slope of the liquidus surface with respect to | |
the mass fraction of solute i | |
the partition coefficient of solute i | |
the momentum sink | |
a small number (0.001) to prevent division by zero | |
mushy zone constant | |
cell velocity, m/s | |
pull velocity, m/s | |
liquidus temperature of the material, K | |
temperature, K | |
R | universal gas constant, J/mol K |
reaction rate, kg/m2 s | |
velocity of the liquid, m/s | |
mass diffusion coefficient for species in the mixture, m2/s | |
forward rate constant for reaction r | |
number of gaseous species | |
molar concentrations of gaseous species | |
molar concentrations of site species | |
and | the rate exponents for the ith gaseous species as reactant and product, respectively |
and | the rate exponents for the jth gaseous species as reactant and product, respectively |
pre-exponential factor (consistent units) | |
temperature exponent (dimensionless) | |
activation energy for the reaction, J/mol | |
µ | dynamic viscosity, Pa·s |
u | velocity of the fluid with respect to the object, m/s |
L | characteristic length, m |
Re | Reynolds number |
References
- Cui, Y.-W.; Wang, L.; Zhang, L.-C. Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments. Prog. Mater. Sci. 2024, 144, 101277. [Google Scholar] [CrossRef]
- Song, T.; Chen, Z.; Cui, X.; Lu, S.; Chen, H.; Wang, H.; Dong, T.; Qin, B.; Chan, K.C.; Brandt, M. Strong and ductile titanium–oxygen–iron alloys by additive manufacturing. Nature 2023, 618, 63–68. [Google Scholar] [CrossRef]
- Ji, H.; Guo, S.; Gao, L.; Yang, L.; Yan, H.; Zeng, H. Revolutionizing titanium production: A comprehensive review of thermochemical and molten salt electrolysis processes. Int. J. Miner. Metall. Mater. 2025. [Google Scholar] [CrossRef]
- Li, S.S.; Yue, X.; Li, Q.Y.; Peng, H.L.; Dong, B.X.; Liu, T.S.; Yang, H.Y.; Fan, J.; Shu, S.L.; Qiu, F. Development and applications of aluminum alloys for aerospace industry. J. Mater. Res. Technol. 2023, 27, 944–983. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, X.; Chen, J.; Peng, X.; Chen, D.; Pan, F. Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 2021, 9, 705–747. [Google Scholar] [CrossRef]
- Banerjee, D.; Williams, J. Perspectives on titanium science and technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Ouarga, A.; Zirari, T.; Fashu, S.; Lahcini, M.; Youcef, H.B.; Trabadelo, V. Corrosion of iron and nickel based alloys in sulphuric acid: Challenges and prevention strategies. J. Mater. Res. Technol. 2023, 26, 5105–5125. [Google Scholar] [CrossRef]
- Liu, T.-S.; Chen, P.; Qiu, F.; Yang, H.-Y.; Jin, N.T.Y.; Chew, Y.; Wang, D.; Li, R.; Jiang, Q.-C.; Tan, C. Review on laser directed energy deposited aluminum alloys. Int. J. Extrem. Manuf. 2024, 6, 022004. [Google Scholar] [CrossRef]
- You, S.; Huang, Y.; Kainer, K.U.; Hort, N. Recent research and developments on wrought magnesium alloys. J. Magnes. Alloys 2017, 5, 239–253. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Liu, P.; Qi, S.; Li, W.; Zhang, K.; Chen, X. Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications. J. Alloys Compd. 2023, 948, 169773. [Google Scholar] [CrossRef]
- Lee, D.; Ga, J.; Park, M.H.; Chang, S.Y. Effect of High Temperature on Microstructure and Hardness of Ti-6Al-4Dy Alloy by High Energy Ball Milling and Spark Plasma Sintering. J. Jpn. Soc. Powder Powder Metall. 2025, 72, S787–S790. [Google Scholar] [CrossRef]
- Sun, J.; Pan, Y.; Liu, Y.; Kuang, F.; Lu, R.; Lu, X. Strength–ductility synergy strategy of Ti6Al4V alloy fabricated by metal injection molding. Int. J. Miner. Metall. Mater. 2025, 32, 1641–1654. [Google Scholar] [CrossRef]
- Ullah, I.; Akinlabi, E.T.; Songmene, V. Thermo-metallo-mechanical based phase transformation modeling for high-speed milling of Ti–6Al–4V through stress-strain and temperature effects. J. Mater. Res. Technol. 2024, 30, 894–909. [Google Scholar] [CrossRef]
- Madapana, D.; Ramadas, H.; Nath, A.K.; Dutta Majumdar, J. Studies on laser shock peening on nanomechanical and mechano-chemical properties of titanium alloy (Ti6Al4V). JOM 2023, 75, 109–119. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Shangguan, J.-J.; Cheng, G.; Jin, B.-Y.; Yu, S. Microstructures and mechanical properties of TC4/AZ91D bimetal prepared by solid–liquid compound casting combined with Zn/Al composite interlayer. Trans. Nonferrous Met. Soc. China 2022, 32, 1144–1158. [Google Scholar] [CrossRef]
- Strumza, E.; Landau, P.; Kimmel, G.; Ganor, Y.I.; Yeheskel, O.; Hayun, S. Thermophysical properties of Ti-6Al-4V fabricated by powder bed fusion methods. Addit. Manuf. 2022, 58, 103045. [Google Scholar] [CrossRef]
- Qiu, G.; Guo, Y. Current situation and development trend of titanium metal industry in China. Int. J. Miner. Metall. Mater. 2022, 29, 599–610. [Google Scholar] [CrossRef]
- Martin, P.; Prillieux, A.; Balcaen, Y.; Hacquin, A.; Saby, M.; Dod, B.; Alexis, J.; Perusin, S. Rheology of Ti-6Al-4V alloy under non equilibrium conditions during β forging. J. Mater. Process. Technol. 2024, 327, 118346. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Babu, A.; Kleijn, C.R.; Hermans, M.J.; Richardson, I.M. The effect of groove shape on molten metal flow behaviour in gas metal arc welding. Materials 2021, 14, 7444. [Google Scholar] [CrossRef]
- Namchanthra, S.; Phirommark, P.; Phengpom, T.; Priyadumkol, J.; Wijitdamkerng, W.; Chookaew, W.; Suvanjumrat, C.; Promtong, M. Numerical analysis of molten iron flow and heat transfer in plumbing casting defect detection using split tracking approach. Case Stud. Therm. Eng. 2025, 72, 106287. [Google Scholar] [CrossRef]
- Arul Mozhi Varman, J.; Sivarupan, T.; Georgarakis, K.; Salonitis, K.; Jolly, M. Modeling and Simulation of Cold Hearth Continuous Casting of Titanium Alloys. In Proceedings of the TMS Annual Meeting & Exhibition, Las Vegas, NV, USA, 23–27 March 2025; pp. 1117–1124. [Google Scholar]
- Xin, Y.; Liu, Y.; Gao, L.; Fang, H.; Chai, Z.; Shao, J.; Guo, S.; Yang, L.; Lu, D.; Li, X. The numerical simulation of element segregation control during the electron beam cold hearth melting process of large-sized Ti-6wt% Al-4wt% V titanium alloy slab. J. Mater. Res. Technol. 2025, 36, 8671–8687. [Google Scholar] [CrossRef]
- Weng, F.; Bi, G.; Chew, Y.; Sui, S.; Tan, C.; Du, Z.; Su, J.; Ng, F.L. Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire. Int. J. Miner. Metall. Mater. 2025, 32, 154–168. [Google Scholar] [CrossRef]
- Campbell, J. A Future for Vacuum Arc Remelting and Electroslag Remelting. Metals 2023, 13, 1634. [Google Scholar] [CrossRef]
- Kumar, R.; Saha, A.K.; Mandal, A.K. Removal of metallic and non-metallic impurities by hydrogen plasma-arc melting. Can. Metall. Q. 2023, 62, 383–395. [Google Scholar] [CrossRef]
- Ceng, M.; Liu, Y.; Chen, X.; Zhang, H.; Li, Y. Calculation of flow, heat transfer and evaporation during the Electron Beam Cold Hearth Melting of Ti-6al-4V Alloy. RARE Met. Mater. Eng. 2020, 49, 833–841. [Google Scholar]
- Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.; Bohacek, J. A parametric study of the vacuum arc remelting (VAR) process: Effects of arc radius, side-arcing, and gas cooling. Metall. Mater. Trans. B 2020, 51, 222–235. [Google Scholar] [CrossRef]
- Pirro, G.; Martucci, A.; Morri, A.; Lombardi, M.; Ceschini, L. A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy: Microstructural and mechanical characterization. Int. J. Miner. Metall. Mater. 2025, 32, 414–424. [Google Scholar] [CrossRef]
- Ward, R.; Johnson, T.; Young, J. Process modelling and control for cold hearth refining of intermetallic alloys. Intell. Process. High Perform. Mater. 1998, 5. [Google Scholar]
- Bellot, J.-P.; Décultot, L.; Jardy, A.; Hans, S.; Doridot, E.; Delfosse, J.; McDonald, N. Numerical simulation of the plasma arc melting cold hearth refining process (PAMCHR). Metall. Mater. Trans. B 2020, 51, 1329–1338. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Jiang, Y. Research progress of electron beam clod hearth melting for titanium and titanium alloys. Hot Work. Technol. 2016, 45, 9–14. [Google Scholar]
- Liu, Q.; Li, X.; Jiang, Y. Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum 2017, 141, 1–9. [Google Scholar] [CrossRef]
- He, X.; Liu, G.; Ma, J.; Wang, S. Study of elemental volatilization patterns in electron beam cold hearth melting of TA10 titanium alloy. In Proceedings of the Ninth International Conference on Energy Materials and Electrical Engineering (ICEMEE 2023), Guilin, China, 25–27 August 2023; pp. 586–590. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.-m.; Huang, H.-g.; Sui, Y.-d.; Zhang, H.-m.; Shi, Z.; Chattopadhyay, K.; Jiang, Y.-H.; Zhou, R. Numerical study of aluminum segregation during electron beam cold hearth remelting for large-scale Ti-6 wt% Al-4 wt% V alloy round ingot. Int. J. Heat Mass Transf. 2019, 139, 764–772. [Google Scholar] [CrossRef]
- Zheng, H.; Hao, X.; Zhang, S.; Omran, M.; Chen, G.; Chen, J.; Gao, L. Modeling of process and analysis of drying characteristics for natural TiO2 under microwave heating. Chem. Eng. Process.-Process Intensif. 2022, 174, 108900. [Google Scholar] [CrossRef]
- Gao, L.; Huang, H.; Jiang, Y.; Chen, G.; Chattopadhyay, K.; Zhou, R. Numerical study on the solid–Liquid interface evolution of large-Scale titanium alloy ingots during high energy consumption electron beam cold hearth melting. JOM 2020, 72, 1953–1960. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.; Xin, Y.; Guo, S.; Yang, L.; Ji, H.; Chen, G. Numerical Modeling of Electron Beam Cold Hearth Melting for the Cold Hearth. Minerals 2024, 14, 601. [Google Scholar] [CrossRef]
- Ivanchenko, V.; Ivasishin, O.; Semiatin, S. Evaluation of Evaporation Losses during Electron-Beam Melting of Ti-Al-V Alloys. Metall. Mater. Trans. B 2003, 34, 911–915. [Google Scholar] [CrossRef]
- Klassen, A.; Forster, V.E.; Juechter, V.; Körner, C. Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl. J. Mater. Process. Technol. 2017, 247, 280–288. [Google Scholar] [CrossRef]
- Vutova, K.; Donchev, V. Non-stationary heat model for electron beam melting and refining—An economic and conservative numerical method. Appl. Math. Model. 2016, 40, 1565–1575. [Google Scholar] [CrossRef]
- Gao, L.; Huang, H.-g.; Kratzsch, C.; Zhang, H.-m.; Chattopadhyay, K.; Jiang, Y.-h.; Zhou, R. Numerical study of aluminum segregation during electron beam cold hearth melting for large-scale Ti-6 wt% Al-4 wt% V alloy slab ingots. Int. J. Heat Mass Transf. 2020, 147, 118976. [Google Scholar] [CrossRef]
- Zhou, B.; Lin, G.; Wang, S.; Hu, T.; An, Y. Metal-organic frameworks for sustainable recovery of precious metals: Advances in synthesis, applications and multiscale mechanisms. Int. J. Miner. Metall. Mater. 2025. [Google Scholar] [CrossRef]
- Akhonin, S.; Trigub, N.; Zamkov, V.; Semiatin, S. Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti-6Al-4V ingots. Metall. Mater. Trans. B 2003, 34, 447–454. [Google Scholar] [CrossRef]
- Peng, B.-B.; Li, X.-M.; Wang, X.; Mo, J.; Luo, L. Simulation study on temperature field and microstructure of Ti-6Al-4V alloy round ingot during EBCHM. Mater. Res. Express 2021, 8, 046505. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Zhou, R.; Huang, H.; Xiong, W.; Li, Z. Numerical simulation of molybdenum and nickel distribution in large-scale slab ingots of Ti-0.3 wt.% Mo-0.8 wt.% Ni alloys during electron beam cold hearth melting. JOM 2022, 74, 3811–3820. [Google Scholar] [CrossRef]
- Shuster, R.E. Modeling of Aluminum Evaporation During Electron Beam Cold Hearth Melting of Titanium Alloy Ingots. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2013. [Google Scholar]
- Wang, M.; Chu, S.; Zhang, Q.; Liang, G.; Zhao, H.; Xu, Z.; Xu, Y.; Zhu, X.; Shi, Y.; Mao, B. Study on the Evolution Patterns of the Molten Pool and Inclusion Movement in Electron Beam Cold Hearth Melting Process. Metall. Mater. Trans. B 2024, 56, 1072–1084. [Google Scholar] [CrossRef]
- Chung, H.; Zhang, X.; Jung, S.; Zhang, Z.; Choi, C.Y. Application of machine-learned metadata-driven model for dairy barn ventilation simulation. Comput. Electron. Agric. 2022, 202, 107350. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, T.; Lu, G. Understanding the local structure and thermophysical behavior of Mg-La liquid alloys via machine learning potential. Int. J. Miner. Metall. Mater. 2025, 32, 439–449. [Google Scholar] [CrossRef]
- Li, Z.-p.; Fan, X.-h.; Chen, G.; Yang, G.-m.; Sun, Y. Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation. Neural Comput. Appl. 2017, 28, 2247–2253. [Google Scholar] [CrossRef]
- Nguyen, N.P.; Maghsoudi, E.; Roberts, S.N.; Kwon, B. Shape optimization of pin fin array in a cooling channel using genetic algorithm and machine learning. Int. J. Heat Mass Transf. 2023, 202, 123769. [Google Scholar] [CrossRef]
- Chen, X.; Lan, T.; Shi, X.; Tong, C. A semi-supervised linear–nonlinear least-square learning network for prediction of carbon efficiency in iron ore sintering process. Control Eng. Pract. 2020, 100, 104454. [Google Scholar] [CrossRef]
- Yang, F.; Cho, H.; Zhang, H.; Zhang, J.; Wu, Y. Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery. Energy Convers. Manag. 2018, 164, 15–26. [Google Scholar] [CrossRef]
- Sevinc, H.; Hazar, H. Investigation of performance and exhaust emissions of a chromium oxide coated diesel engine fueled with dibutyl maleate mixtures by experimental and ANN technique. Fuel 2020, 278, 118338. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, H.; Wang, Q.; Zheng, Z.; Wang, H.; Yue, Z.; Ming, Z.; Wen, M.; Feng, L.; Yao, M. Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. Combust. Flame 2022, 237, 111852. [Google Scholar] [CrossRef]
- Fernández, A.; Sanchidrián, J.A.; Segarra, P.; Gómez, S.; Li, E.; Navarro, R. Rock mass structural recognition from drill monitoring technology in underground mining using discontinuity index and machine learning techniques. Int. J. Min. Sci. Technol. 2023, 33, 555–571. [Google Scholar] [CrossRef]
- Lin, H.; Singh, S.K.; Xiang, Z.; Kang, W.H.; Raval, S.; Oh, J.; Canbulat, I. An investigation of machine learning techniques to estimate minimum horizontal stress magnitude from borehole breakout. Int. J. Min. Sci. Technol. 2022, 32, 1021–1029. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, Y.; Wang, J.; Luo, C.; Miao, Q. Unmanned aerial vehicle flight data anomaly detection and recovery prediction based on spatio-temporal correlation. IEEE Trans. Reliab. 2021, 71, 457–468. [Google Scholar] [CrossRef]
- Jin, N.; Hu, S.; Liu, X.; Guo, L. A Neural Network Method for Characterizing Particle Clusters in Gas–Solid Fluidized Beds. Ind. Eng. Chem. Res. 2024, 63, 16598–16608. [Google Scholar] [CrossRef]
- Liu, H.; Shen, F.; Gao, F. Research on flight accidents prediction based back propagation neural network. arXiv 2024, arXiv:2406.13954. [Google Scholar] [CrossRef]
- Wright, L.G.; Onodera, T.; Stein, M.M.; Wang, T.; Schachter, D.T.; Hu, Z.; McMahon, P.L. Deep physical neural networks trained with backpropagation. Nature 2022, 601, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Jing, X. Research on prediction model of geotechnical parameters based on BP neural network. Neural Comput. Appl. 2019, 31, 8205–8215. [Google Scholar] [CrossRef]
- Guo, Z.-H.; Wu, J.; Lu, H.-Y.; Wang, J.-Z. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl.-Based Syst. 2011, 24, 1048–1056. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kleijn, C.R.; Richardson, I.M. Sensitivity of Numerical Predictions to the Permeability Coefficient in Simulations of Melting and Solidification Using the Enthalpy-Porosity Method. Energies 2019, 12, 4360. [Google Scholar] [CrossRef]
- Zhang, Z. Modeling of Al Evaporation and Marangoni Flow in Electron Beam Button Melting of Ti-6Al-4V. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2013. [Google Scholar]
- Wang, X.; Liu, Q.-L.; Li, X.-M. Effect of crystallizer’ s three-dimension on the solid-liquid interface morphology of the large-scale Ti64 during EBCHM. Mater. Res. Express 2019, 6, 0865h4. [Google Scholar] [CrossRef]
- Chen, H.; Long, M.; Chen, D.; Liu, T.; Duan, H. Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab. Int. J. Heat Mass Transf. 2018, 126, 843–853. [Google Scholar] [CrossRef]
- Fluent, A. Ansys Fluent Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2011; Volume 15317, pp. 724–746. [Google Scholar]
- Wang, Y.; Xin, Y.; Gao, L.; Cao, W.; Ma, C.; Guo, S.; Chen, G. The Analysis of the Compositional Uniformity of a Ti-Al Alloy during Electron Beam Cold Hearth Melting: A Numerical Study. Metals 2024, 14, 884. [Google Scholar] [CrossRef]
- Semiatin, S.; Ivanchenko, V.; Ivasishin, O. Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys. Metall. Mater. Trans. B 2004, 35, 235–245. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Length | 1050 mm |
Width | 220 mm |
Height | 300 mm |
Computational software | ANSYS Fluent |
Initial Al concentration | 7 wt.% |
Wall heat transfer coefficient | 2000 W/(m2·K) |
Number of grid cells | Approximately 1.7 million hexahedral elements |
Minimum grid size | 0.1 mm3 |
Inlet | Velocity inlet |
Wall | No-slip |
Surface | Free shear boundary |
Gradient term | Green-Gauss Cell-Based |
Pressure term | PRESTO |
Convective term | Third-order MUSCL |
Algorithm | SIMPLE |
Turbulence model | Standard k-ε turbulence model |
Species transport equation | Species transport model |
Residual of the energy equation | |
Other residuals |
Parameter | Value |
---|---|
Computational time | 33 min |
Casting speed | 8 mm/min 12 mm/min 16 mm/min 20 mm/min 24 mm/min |
Casting temperature | 2073 K 2123 K 2173 K 2223 K 2273 K |
Number of overflow ports | Double-overflow ports Triple-overflow ports Quadruple-overflow ports |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Liu, J.; Shi, Y.; Cheng, Z.; Liu, Y.; Gao, L.; Zhang, H.; Ji, H.; Han, T.; Guo, S.; et al. Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach. Metals 2025, 15, 897. https://doi.org/10.3390/met15080897
Xin Y, Liu J, Shi Y, Cheng Z, Liu Y, Gao L, Zhang H, Ji H, Han T, Guo S, et al. Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach. Metals. 2025; 15(8):897. https://doi.org/10.3390/met15080897
Chicago/Turabian StyleXin, Yuchen, Jianglu Liu, Yaming Shi, Zina Cheng, Yang Liu, Lei Gao, Huanhuan Zhang, Haohang Ji, Tianrui Han, Shenghui Guo, and et al. 2025. "Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach" Metals 15, no. 8: 897. https://doi.org/10.3390/met15080897
APA StyleXin, Y., Liu, J., Shi, Y., Cheng, Z., Liu, Y., Gao, L., Zhang, H., Ji, H., Han, T., Guo, S., Yin, S., & Zhao, Q. (2025). Optimization of Process Parameters in Electron Beam Cold Hearth Melting and Casting of Ti-6wt%Al-4wt%V via CFD-ML Approach. Metals, 15(8), 897. https://doi.org/10.3390/met15080897