Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Cooling Rate on the Organization of M2Al HSS in the As-Cast State
3.2. Effect of Cooling Rate on Eutectic Carbide Type in M2Al HSS
3.3. Effect of Cooling Rate on Two-Dimensional Morphology and Composition of Eutectic Carbides in M2Al HSS
3.4. Effect of Cooling Rate on the Three-Dimensional Morphology of Eutectic Carbides in M2Al HSS
3.5. Effect of Cooling Rate on the Area Fraction of Eutectic Carbides in M2Al HSS
3.6. Thermodynamic Analysis of Eutectic Carbide Precipitation in M2Al HSS
3.7. In Situ Observation of Melting and Solidification of M2Al HSS
3.8. Kinetic Precipitation Mechanism of Eutectic Carbides
4. Conclusions
- 1.
- The as-cast microstructure of M2Al HSS comprises ferrite dendrites, reticulated eutectic carbides between the dendrites, and fine spherical secondary carbides within the dendrites. As the solidification cooling rate increases, the solidification microstructure of M2Al HSS becomes more refined. The relationship between the secondary dendrite arm spacing and the cooling rate is quantified by the equation .
- 2.
- The as-cast microstructure of M2Al HSS in the interdendritic regions exhibits significant segregation of Mo, W, V, C, and Cr, along with the precipitation of V-rich MC-type and Mo-rich M2C-type eutectic carbides. As the cooling rate increases, the average size of eutectic carbides decreases markedly, while their total area fraction increases and distribution uniformity improves. The three-dimensional morphology of MC-type eutectic carbides is smooth and rod-like, exhibiting low sensitivity to the cooling rate. In contrast, the three-dimensional morphology of M2C-type eutectic carbides transitions from lamellar to dendritic with increasing cooling rate.
- 3.
- Thermodynamic calculations and kinetic analyses indicate that the formation of eutectic carbides is primarily governed by the segregation of elements such as V, Mo, and C during the final stages of solidification. In contrast, the chemical composition and three-dimensional morphology of M2C-type eutectic carbides are synergistically governed by the diffusion of elements like W, Mo, and C in austenite, as well as by competitive growth dynamics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaus, A.S.; Bracik, M.; Sahulb, M.; Domankova, M. Microstructure and properties of M2 high-speed steel cast by the gravity and vacuum investment casting. Vacuum 2019, 162, 183–198. [Google Scholar] [CrossRef]
- Shi, G.; Zhou, S.; Ding, P. Investigation of nonmetallic inclusions in high-speed steels. Mater. Charact. 1997, 38, 19–23. [Google Scholar] [CrossRef]
- Zheng, L.; Yan, B.; Lou, J.; Li, H.; Jiang, Z. Formation Behavior of M2C and M6C Eutectic Carbides in M42 High-Speed Steel. ISIJ Int. 2023, 63, 294–302. [Google Scholar] [CrossRef]
- Zhou, X.; Fang, F.; Li, G.; Jiang, J. Morphology and Properties of M2C Eutectic Carbides in AISI M2 Steel. ISIJ Int. 2010, 50, 1151–1157. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.; Zheng, D.; Chai, J. Distribution characteristic and precipitation behavior of primary carbides in industrial grade AISI M35 high-speed steel produced by electroslag remelting. J. Mater. Res. Technol. 2025, 35, 3582–3592. [Google Scholar] [CrossRef]
- Xu, L.; Wei, S.; Xiao, F.; Zhou, H.; Zhang, G.; Li, J. Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content. Wear 2017, 376, 968–974. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.; Xiong, X.; Luan, H.; Hao, Y.; Yang, B.; Chen, J. Microstructure and mechanical properties of high carbon M2 powder metallurgy high-speed steel prepared by the carbide addition. Powder Metall. 2022, 65, 403–412. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, Z.; Zhang, W.; Fang, F.; Tu, Y.; Jiang, J. Deformation-Induced Carbide Transformation in M2 High-Speed Steel. Metall. Mater. Trans. A 2020, 51, 568–573. [Google Scholar] [CrossRef]
- Chen, D.; Xu, X.; Zhao, Y.; Fu, X.; Wei, L.; Zhou, Y.; Wu, Z. Superior mechanical properties of M35 high-speed steel obtained by controlling carbide precipitation and distribution via electropulsing treatment. Mat. Sci. Eng. A-Struct. 2023, 888, 145691. [Google Scholar] [CrossRef]
- Li, H.; Han, S.; Zhang, B.; Qiao, G.; Liu, J.; Xiao, F. Effects of Niobium on Microstructure, Hardness and Wear Behavior for High-Speed Steel Rolls. Metall. Mater. Trans. A 2023, 54, 3271–3285. [Google Scholar] [CrossRef]
- Ke, C.; Chen, C.; Zhang, M. Effect of Vanadium on Microstructure and Mechanical Properties of M2 High-Speed Steel Prepared by Laser Metal Direct Deposition Forming. Steel Res. Int. 2022, 93, 2100389. [Google Scholar] [CrossRef]
- Zheng, D.; Ma, G.; Li, J.; Cho, J.; Xiang, Z.; Liu, M.; Zhu, J. Effect of cerium on the primary carbides and inclusions in electroslag remelted M35 high speed steel. J. Mater. Res. Technol. 2023, 24, 8252–8266. [Google Scholar] [CrossRef]
- Jiao, W.; Li, H.; Feng, H.; Jiang, Z.; Wang, H.; Zhu, H.; Han, P.; Wu, W. Significant Improvement of Cleanliness and Macro/Microstructure of As-Cast AISI M42 High-Speed Steel by Mg Treatment. Metall. Mater. Trans. B 2022, 53, 1196–1211. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, H.; Sun, X.; Guo, J. Influence of the Nitrogen Content on the Carbide Transformation of AISI M42 High-Speed Steels during Annealing. Sci. Rep. 2018, 8, 4328. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, M.; Xu, B.; Li, D. A method based on semi-solid forming for eliminating Laves eutectic phase of INCONEL 718 alloy. J. Mater. Process Technol. 2017, 249, 202–211. [Google Scholar] [CrossRef]
- Liu, W.; Cao, Y.; Guo, Y.; Sun, M.; Xu, B.; Li, D. Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state. J. Mater. Sci. Technol. 2020, 38, 170–182. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, Y.; Sun, M.; Xu, B.; Li, D. Effects of liquid fraction on the microstructure and mechanical properties in forge solidifying 12Cr1MoV steel. J. Mater. Process Technol. 2018, 256, 25–35. [Google Scholar] [CrossRef]
- Zheng, T.; Li, W.; Qi, W.; Xia, Z.; Li, Q.; Shen, Z.; Guo, Y.; Zhong, Y.; Wang, H.; Wang, Q. Morphology transition of eutectic carbide assisted by thermoelectric magnetic force during the directional solidification of M2 high-speed steel. Ironmak. Steelmak. 2021, 48, 885–892. [Google Scholar] [CrossRef]
- Zhang, X.D.; Liu, W.; Li, Q.L.; Godfrey, A.; Liu, Q. Effect of magnetic field on solidification structure of a centrifugal cast high speed steel roll. Mater. Sci. Technol. 2010, 26, 1177–1183. [Google Scholar] [CrossRef]
- Li, W.; Jiao, S.; Tong, W.; Zang, X.; Wang, G.; Jiang, Z.; Li, H. Effect of Secondary Aerosol Cooling on the Characteristics of Carbides in M42 High-Speed Steel Produced by the Electroslag Remelting Withdrawal Process. Steel Res. Int. 2020, 91, 2000139. [Google Scholar] [CrossRef]
- Luan, Y.; Song, N.; Bai, Y.; Kang, X.; Li, D. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J. Mater. Process Technol. 2010, 210, 536–541. [Google Scholar] [CrossRef]
- Li, W.; Jiao, S.; Tong, W.; Zang, X.; Li, D.; Jiang, Z.; Li, H.; Jing, Y. An innovative method for calibrating local cooling rate in electroslag remelting of M42 high-speed steel. J. Iron Steel Res. Int. 2021, 28, 990–996. [Google Scholar] [CrossRef]
- Zhao, Z.; Cao, Y.; Wan, X.; Li, J.; Li, G. Effect of Cooling Rate on Carbide Characteristics of the High Vanadium High-speed Steel. ISIJ Int. 2022, 62, 524–531. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, W.; Chen, X.; Li, J. Increasing Solidification Rate of M2 High-Speed Steel Ingot by Fusible Metal Mold. Acta Metall. Sin.-Engl. Lett. 2016, 29, 382–387. [Google Scholar] [CrossRef]
- Zhou, X.F.; Fang, F.; Li, F.; Jiang, J.Q. Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel. J. Mater. Sci. 2011, 46, 1196–1202. [Google Scholar] [CrossRef]
- Mao, M.; Guo, H.; Wang, F.; Sun, X. Effect of Cooling Rate on the Solidification Microstructure and Characteristics of Primary Carbides in H13 Steel. ISIJ Int. 2019, 59, 848–857. [Google Scholar] [CrossRef]
- Zhao, G.; Zang, X.; Li, W.; Zhao, Z.; Li, D. Study on primary carbides precipitation in H13 tool steel regarding cooling rate during solidification. China Foundry 2020, 17, 235–244. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W.; Lu, D.; Lu, L.; Jia, J.; Li, H.; Zou, J.; Hu, Q. Microstructure and Mechanical Properties of Modified M2 High-Speed Steel by Adding La2O3 in the Electroslag Casting Process. Steel Res. Int. 2024, 95, 2300035. [Google Scholar] [CrossRef]
- Jiao, W.; Li, H.; Feng, H.; Jiang, Z.; Xia, L.; Zhang, S.; Zhu, H.; Wu, W. Evolutions of Micro- and Macrostructure by Cerium Treatment in As-Cast AISI M42 High-Speed Steel. Metall. Mater. Trans. B 2020, 51, 2240–2251. [Google Scholar] [CrossRef]
- GB/T 9943-2008; High-Speed Tool Steels. China Iron and Steel Industry Association: Beijing, China, 2008.
- Li, S.; Chen, Y.; Gong, T.; Chen, X.; Fu, P.; Li, D. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel. Acta Metall. Sin. 2022, 58, 1024–1034. [Google Scholar]
- Yin, F.; Su, M.; Ji, F.; Tian, Q.; Bai, Y.; Feng, J.; Xiao, Z. Effect of melting rate on microsegregation and primary MC carbides in M2 high-speed steel during electroslag remelting. China Foundry 2021, 18, 163–169. [Google Scholar] [CrossRef]
- Boccalini, M.; Goldenstein, H. Solidification of high speed steels. Int. Mater. Rev. 2001, 46, 92–115. [Google Scholar] [CrossRef]
- Zhou, X.F.; Fang, F.; Jiang, J.Q.; Zhu, W.L.; Xu, H.X. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater. Sci. Technol. 2014, 30, 116–122. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Z.; Ma, C.; Li, G. Precipitation Behavior and Elemental Distribution of MC Carbides in High Carbon and Vanadium High-Speed Steel. J. Mater. Eng. Perform. 2022, 31, 4444–4458. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, D.; Zhu, W.; Fang, F.; Tu, Y.; Jiang, J. Morphology, microstructure and decomposition behavior of M2C carbides in high speed steel. J. Iron Steel Res. Int. 2017, 24, 43–49. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Y.; Cao, Y.; Wang, J.; Hou, Z.; Sun, M.; Xu, B.; Li, D. Transformation behavior of primary MC and M2C carbides in Cr4Mo4V steel. J. Alloys Compd. 2021, 889, 161755. [Google Scholar] [CrossRef]
- Mao, M.; Guo, H.; Wang, F.; Sun, X. Chemical composition and structural identification of primary carbides in as-cast H13 steel. Int. J. Min. Met. Mater. 2019, 26, 839–848. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Shi, C.; Huang, J. Growth and agglomeration behaviors of eutectic M7C3 carbide in electroslag remelted martensitic stainless steel. J. Mater. Res. Technol. 2021, 11, 1490–1505. [Google Scholar] [CrossRef]
- Schaffnit, P.; Stallybrass, C.; Konrad, J.; Stein, F.; Weinberg, M. A Scheil-Gulliver model dedicated to the solidification of steel. Calphad 2015, 48, 184–188. [Google Scholar] [CrossRef]
- Ren, J.; Teng, Y.; Liu, X.; Xu, X.; Li, H.; Han, K.; Zhai, Q. In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy. J. Iron Steel Res. Int. 2025, 32, 409–417. [Google Scholar] [CrossRef]
- Attallah, M.M.; Terasaki, H.; Moat, R.J.; Bray, S.E.; Komizo, Y.; Preuss, M. In-Situ observation of primary γ′ melting in Ni-base superalloy using confocal laser scanning microscopy. Mater. Charact. 2011, 62, 760–767. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Deng, Z.; Qiu, S.; Zhang, P.; Zheng, G. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel. Acta Metall. Sin. 2020, 56, 1335–1342. [Google Scholar]
- Wang, W.; An, Z.; Luo, S.; Zhu, M. In-situ observation of peritectic solidification of Fe-Mn-Al-C steel with medium manganese. J. Alloys Compd. 2022, 909, 164750. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, B.; Galenko, P.K. Model of Eutectic Transformation Involving Intermetallic Compound. Acta Metall. Sin. 2021, 57, 1320–1332. [Google Scholar]
- Cui, C.; Ren, C.; Liu, Y.; Wang, S.; Su, H. Directional solidification of Fe-Al-Ta eutectic by electron beam floating zone melting. J. Alloys Compd. 2019, 785, 62–71. [Google Scholar] [CrossRef]
Alloying Element | C | Si | Mn | P | S | W | Mo | Cr | V | Al | N | O | Mg | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | 1.10 | 0.24 | 0.27 | 0.018 | 0.017 | 5.74 | 4.67 | 3.83 | 1.78 | 1.02 | 0.0126 | 0.0041 | 0.0017 | Bal. |
C | Si | Mn | P | S | W | Mo | Cr | V | Al | N | O | Mg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mo | −9.7 | - | 0.48 | −0.6 | −0.06 | - | 1.21 | −0.03 | - | - | −10 | 0.83 | - |
V | −34 | 4.2 | 0.57 | −4.1 | −5.8 | - | - | 1.19 | 3.09 | - | −7.9 | −46 | - |
C | 24.3 | 8 | −0.84 | 5.1 | 4.4 | −0.56 | −0.83 | −2.3 | −3 | 4.3 | 11 | −32 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, J.; Yang, H.; Zhuang, C. Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel. Crystals 2025, 15, 493. https://doi.org/10.3390/cryst15060493
Xiang J, Yang H, Zhuang C. Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel. Crystals. 2025; 15(6):493. https://doi.org/10.3390/cryst15060493
Chicago/Turabian StyleXiang, Jianghua, Hui Yang, and Changling Zhuang. 2025. "Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel" Crystals 15, no. 6: 493. https://doi.org/10.3390/cryst15060493
APA StyleXiang, J., Yang, H., & Zhuang, C. (2025). Effect of Cooling Rate on the Characteristics of Eutectic Carbides in M2Al High-Speed Steel. Crystals, 15(6), 493. https://doi.org/10.3390/cryst15060493