Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (441)

Search Parameters:
Keywords = soldier fly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1407 KiB  
Article
Black Soldier Fly Frass Fertilizer Outperforms Traditional Fertilizers in Terms of Plant Growth in Restoration in Madagascar
by Cédrique L. Solofondranohatra, Tanjona Ramiadantsoa, Sylvain Hugel and Brian L. Fisher
Sustainability 2025, 17(15), 7152; https://doi.org/10.3390/su17157152 (registering DOI) - 7 Aug 2025
Abstract
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF [...] Read more.
Black soldier fly frass (BSFF) is a nutrient-rich organic byproduct with growing potential as a sustainable fertilizer. While its effects on crops have been studied, its impact on tree seedling development for reforestation remains poorly understood. This study evaluated the effect of BSFF on the growth and survival of two native Malagasy tree species: the fast-growing Dodonaea madagascariensis and the slow-growing Verpis macrophylla. A six-month nursery experiment tested three BSFF application rates (half-, one-, and two-fold nitrogen equivalence), along with cattle manure, synthetic NPK, and a no-fertilizer control. The survival was highest in the half-fold BSFF (95% for D. madagascariensis, 87.5% for V. macrophylla) and lowest in BSFF two-fold (0% and 22.5%, respectively) treatments. NPK also significantly reduced the survival (5% for D. madagascariensis, 17.5% for V. macrophylla). The growth responses were most pronounced in D. madagascariensis, where the BSFF half- and one-fold treatments led to height growth rates that were 2.0–2.7 times higher than that of the control, cattle manure, and NPK treatments, and diameter growth that was 1.8–2.3 times higher. The biomass accumulation was also significantly higher under the BSFF half- and one-fold treatments for D. madagascariensis. In contrast, V. macrophylla showed limited response to the treatments. These findings indicate that calibrated BSFF application can enhance seedling performance in reforestation efforts, particularly for fast-growing species. Notably, the growth rate of D. madagascariensis doubled (in terms of cm/month) under optimal BSFF treatment—a critical advantage, as time is a key constraint in reforestation and faster growth directly supports more efficient forest restoration. This highlights BSFF’s potential as a sustainable and locally available input for forest restoration in Madagascar. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

29 pages, 953 KiB  
Review
Comprehensive Review of Alternative Proteins in Pet Food: Research Publications, Patents, and Product Trends in Plant, Aquatic, Insect, and Cell-Based Sources
by Phatthranit Klinmalai, Pitiya Kamonpatana, Arisara Thongpech, Janenutch Sodsai, Khwanchat Promhuad, Atcharawan Srisa, Yeyen Laorenza, Attawit Kovitvadhi, Sathita Areerat, Anusorn Seubsai, Shyam S. Sablani and Nathdanai Harnkarnsujarit
Foods 2025, 14(15), 2640; https://doi.org/10.3390/foods14152640 - 28 Jul 2025
Viewed by 481
Abstract
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, [...] Read more.
The increasing demand for sustainable pet-food solutions has driven interest in alternative protein sources, as researchers seek to avoid allergenic foods while maintaining optimal pet nutrition. This review explores recent scientific publications, patent trends, and market trends relating to various alternative protein sources, including plant-based, aquatic, insect-derived, and cell-based sources. Their nutritional composition, functional properties, and potential benefits for pet health were assessed. Plant-based proteins, such as soy, pea, and lentils, provide essential amino acids and functional properties suitable for meat analogues. Microalgae and seaweed offer rich sources of omega-3 fatty acids, antioxidants, and bioactive compounds. Insect-based proteins such as black-soldier-fly larvae and mealworms are highly digestible and rich in essential nutrients, with additional benefits for gut health. Emerging cell-based proteins present a novel, lab-grown alternative with promising sustainability and nutritional advantages. While these protein sources offer significant benefits, challenges related to digestibility, palatability, regulatory approval, and consumer acceptance must be addressed. The emphasis of the present research is on current developments for industry uses and future potential. The analysis sheds light on the contributions of alternative protein sources to the promotion of sustainable and nutrient meals for pets. Full article
Show Figures

Figure 1

41 pages, 3292 KiB  
Review
Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review
by Muhammad Raheel Tariq, Shaojuan Liu, Fei Wang, Hui Wang, Qianyuan Mo, Zhikai Zhuang, Chaozhong Zheng, Yanwen Liang, Youming Liu, Kashif ur Rehman, Murat Helvaci, Jianguang Qin and Chengpeng Li
Insects 2025, 16(8), 750; https://doi.org/10.3390/insects16080750 - 22 Jul 2025
Viewed by 1130
Abstract
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological [...] Read more.
The global escalation of organic waste generation, coupled with rising protein demand and environmental pressure, necessitates innovative, circular approaches to resource management. Hermetia illucens (Black Soldier Fly, BSF) has emerged as a leading candidate for integrated waste-to-resource systems. This review examines BSF biological and genomic adaptations underpinning waste conversion efficiency, comparative performance of BSF bioconversion versus traditional treatments, nutritional and functional attributes, techno-economic, regulatory, and safety barriers to industrial scale-up. Peer-reviewed studies were screened for methodological rigor, and data on life cycle traits, conversion metrics, and product compositions were synthesized. BSF larvae achieve high waste reductions, feed-conversion efficiencies and redirect substrate carbon into biomass, yielding net CO2 emissions as low as 12–17 kg CO2 eq ton−1, an order of magnitude below composting or vermicomposting. Larval biomass offers protein, lipids (notably lauric acid), micronutrients, chitin, and antimicrobial peptides, with frass serving as a nutrient-rich fertilizer. Pathogen and antibiotic resistance gene loads decrease during bioconversion. Key constraints include substrate heterogeneity, heavy metal accumulation, fragmented regulatory landscapes, and high energy and capital demands. BSF systems demonstrate superior environmental and nutritional performance compared to conventional waste treatments. Harmonized safety standards, feedstock pretreatment, automation, and green extraction methods are critical to overcoming scale-up barriers. Interdisciplinary innovation and policy alignment will enable BSF platforms to realize their full potential within circular bio-economies. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

16 pages, 5425 KiB  
Article
Black Soldier Fly Larvae Meal as a Sustainable Fishmeal Substitute for Juvenile Hybrid Grouper: Impacts on Growth, Immunity, and Gut Health
by Yan Chen, Wenfeng Li, Minyi Zhong, Jun Ma, Bing Chen, Junming Cao, Jiun-Yan Loh and Hai Huang
Fishes 2025, 10(7), 344; https://doi.org/10.3390/fishes10070344 - 11 Jul 2025
Viewed by 331
Abstract
Background: Aquaculture increasingly seeks sustainable alternatives to fishmeal, a key protein source in fish diets. Black Soldier Fly Larvae (BSFL) meal is a promising substitute, but its effects on fish growth, immunity, and gut health need further investigation. This study aimed to evaluate [...] Read more.
Background: Aquaculture increasingly seeks sustainable alternatives to fishmeal, a key protein source in fish diets. Black Soldier Fly Larvae (BSFL) meal is a promising substitute, but its effects on fish growth, immunity, and gut health need further investigation. This study aimed to evaluate the impact of varying BSFL inclusion levels on juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), a widely farmed species in tropical aquaculture. Methods: Juvenile hybrid grouper were fed diets with four levels of BSFL substitution (0%, 10%, 30%, and 50%) over 56 days. Key metrics such as growth performance, immune function, antioxidant capacity, and gut transcriptome were analyzed. Results: Replacing fish meal with BSFL meal had no significant effect on the survival rate of hybrid grouper (p > 0.05) but significantly affected growth performance, immune function, and antioxidant capacity (p < 0.05). BSFL10 and BSFL30 groups showed good growth and elevated immune enzyme activity, with significantly higher HIS levels (p < 0.05); the Wf of the BSFL10 group was comparable to the control. However, excessive replacement (BSFL50) led to reduced growth (Wf significantly lower, p < 0.05) and increased oxidative stress, as indicated by higher CAT activity (p < 0.05). Transcriptomic analysis revealed upregulation of immune- and metabolism-related genes with increasing BSFL levels, with immune pathways notably activated in the BSFL50 group. Conclusions: BSFL meal is a promising alternative to fishmeal in juvenile hybrid grouper diets, with moderate inclusion (10–30%) being most beneficial. Excessive BSFL substitution (50%) may impair fish health, highlighting the need for careful formulation in aquaculture diets. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

20 pages, 3332 KiB  
Article
Impact of Salmonella enteritidis Infection and Mechanical Stress on Antimicrobial Peptide Expression in Hermetia illucens
by Davide Santori, Anna Maria Fausto, Alessio Gelli, Anna Rita Pifferi, Samuele Dottarelli, Sofia Cucci, Francesca Di Donato, Goffredo Grifoni and Erminia Sezzi
Insects 2025, 16(7), 692; https://doi.org/10.3390/insects16070692 - 4 Jul 2025
Viewed by 527
Abstract
Hermetia illucens, the black soldier fly, is a common and widespread fly of the family Stratiomyidae. Its ability to grow on contaminated substrates suggests the production of antimicrobial peptides that enable its survival. This study aimed to verify the impact of [...] Read more.
Hermetia illucens, the black soldier fly, is a common and widespread fly of the family Stratiomyidae. Its ability to grow on contaminated substrates suggests the production of antimicrobial peptides that enable its survival. This study aimed to verify the impact of direct and indirect infection with Salmonella enteritidis on the expression of defensins and cecropins in Hermetia illucens larvae. In addition to an infection with a microorganism, it was interesting to verify if the expression of peptides and the relative action of hemolymph changed in larvae subjected to mechanical stress by abdominal puncture. The peptide fraction of the hemolymph of infected larvae was tested using antibiogram and minimum inhibitory concentration tests against Salmonella enteritidis and Salmonella typhimurium. Both molecular and microbiological tests were carried out at three different time points, on larvae not subjected to any treatment (T-0), four hours after treatment (T-1), and 24 h after treatment (T-2). The results of the microbiological tests showed the antimicrobial action of the peptide fraction of the hemolymph against both S. typhimurium and S. enteritidis; for the latter one, the action was more marked. Interesting results were also found for larvae subjected only to mechanical stress by puncture. Molecular tests on the expression of defensins and cecropins were in full agreement with those obtained in the microbiological tests, with expression more pronounced in larvae infected directly with Salmonella enteritidis. Temporal and condition-specific regulation of defensins and cecropins highlights the complexity of the immune response and suggests sophisticated mechanisms by which the host fine-tunes antimicrobial peptide expression to enhance pathogen defense while preventing excessive immune activation. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

19 pages, 1118 KiB  
Article
Assessing the Environmental Impacts of the Black Soldier Fly-Based Circular Economy and Decentralized System in Singapore: A Case Study
by Remondah R. Ramzy, Vartika Goenka, Marco A. El-Dakar and Janice Ser Huay Lee
Sustainability 2025, 17(13), 6115; https://doi.org/10.3390/su17136115 - 3 Jul 2025
Viewed by 746
Abstract
Food waste management is a major global issue, and alternative protein sources like insect farming offer a sustainable solution. This study investigated the environmental impacts of black soldier fly larvae (BSFL) production using a Life Cycle Assessment (LCA), evaluating its role in both [...] Read more.
Food waste management is a major global issue, and alternative protein sources like insect farming offer a sustainable solution. This study investigated the environmental impacts of black soldier fly larvae (BSFL) production using a Life Cycle Assessment (LCA), evaluating its role in both protein production and food waste treatment. The assessment considered three functional units: FU1 (1 kg of dried larvae), FU2 (per kg of protein), and FU3 (treatment of 1 ton of food waste). The results indicate that larvae rearing is the largest contributor to emissions in FU1 (46% of 18.51 kg CO2 eq). In FU2, BSFL protein shows a higher climate impact (49.41 kg CO2 eq) than fishmeal or soybean meal but requires significantly less land. FU3 demonstrates that BSFL-based composting can achieve net negative emissions (~−24.8 kg CO2 eq), outperforming conventional waste treatment. An optimized scenario (Scenario A) shows marked improvements across all units compared to a Business-as-Usual case, including a 79% reduction in FU1 emissions and a 577% increase in FU3 carbon savings. These findings underline the environmental advantages of BSFL systems, especially in Singapore, and support their potential as sustainable alternatives for protein production and food waste management. Full article
Show Figures

Figure 1

25 pages, 1315 KiB  
Article
Use of Insect Meals in Dry Expanded Dog Food: Impact of Composition and Particulate Flow Characteristics on Extrusion Process and Kibble Properties
by Youhan Chen, Tucker Graff, Aidan C. Cairns, Ryley Griffin, Kaliramesh Siliveru, Julia Guazzelli Pezzali and Sajid Alavi
Processes 2025, 13(7), 2083; https://doi.org/10.3390/pr13072083 - 1 Jul 2025
Viewed by 519
Abstract
This study explored the potential of insect proteins as an alternative to traditional meat and bone meals in nutritionally balanced dry expanded dog food. Four formulations containing black soldier fly larvae meal (BSFL), cricket flour (CF), poultry meal (PM), or fish meal (FM) [...] Read more.
This study explored the potential of insect proteins as an alternative to traditional meat and bone meals in nutritionally balanced dry expanded dog food. Four formulations containing black soldier fly larvae meal (BSFL), cricket flour (CF), poultry meal (PM), or fish meal (FM) at 30% inclusion were evaluated using powder rheology, extrusion trials, and analyses of kibble expansion and texture. BSFL and FM had lower specific basic flow energy (<13 mJ/kg) compared to PM and CF (>14 mJ/kg), leading to better flowability and improved extrusion stability and product consistency. High fat and chitin contents in CF and BSFL, respectively, resulted in higher bulk densities (328–382 g/L) than meat-and-bone-meal-based products (304–306 g/L). The insect-meal-based kibbles also had either a fragile (peak crushing force < 7 kg for BSFL) or very hard texture (force > 13 kg for CF). Results from a second experiment showed that including BSFL meal at lower levels (10%) alongside poultry meal mitigated the negative effects on kibble quality while improving process stability. Overall, the study suggests that defatting and partial, rather than complete, replacement of traditional proteins with insect meal could be more viable strategies for producing consistent, high-quality extruded pet food. Full article
(This article belongs to the Special Issue Feature Papers in the "Food Process Engineering" Section)
Show Figures

Figure 1

15 pages, 1225 KiB  
Article
Physicochemical and Perceived Olfactory Changes in Black Soldier Fly (Hermetia illucens) Larvae Oil Under Domestic Cooking Temperatures
by Kian Aun Chang, Sze Ying Leong, Lye Yee Chew, Ching Qi Lim, Meng Jack Lim, Zongwei Ong and Sook Wah Chan
Foods 2025, 14(13), 2333; https://doi.org/10.3390/foods14132333 - 30 Jun 2025
Viewed by 373
Abstract
The rapid growth and sustainable production of black soldier fly larvae (BSFL) contribute positively to the circular economy. This study profiled the fatty acid composition of crude BSFL oil, followed by an evaluation of its physicochemical properties under domestic cooking temperatures (up to [...] Read more.
The rapid growth and sustainable production of black soldier fly larvae (BSFL) contribute positively to the circular economy. This study profiled the fatty acid composition of crude BSFL oil, followed by an evaluation of its physicochemical properties under domestic cooking temperatures (up to 180 °C, 30 min). Odour evaluation of the BSFL oil was also performed using 10 trained panellists for attributes such as fishy, nutty, oily, meaty/savoury, roasted, and pungent. The results indicated that BSFL oil contains palmitic (23.69%), oleic (30.90%), and linoleic (21.81%) acids in relatively similar proportions, representing a mix of saturated, monounsaturated, and polyunsaturated fatty acids. Heating caused BSFL oil to be darker and more viscous. The peroxide and free fatty acid values also increased significantly (p < 0.05) with rising temperatures, indicating limited oxidative stability and reduced suitability of BSFL oil for cooking purposes. The perceived intensity of odour attributes, particularly fishy and oily notes, increased concomitantly with higher cooking temperatures. Refining processes and antioxidants may assist in improving the thermal stability of BSFL oil for culinary applications. Full article
(This article belongs to the Special Issue Food Bioactives: Innovations, Mechanisms, and Future Applications)
Show Figures

Graphical abstract

18 pages, 758 KiB  
Article
Bioactive Compounds in Breast Meat of Broiler Chickens Fed with Black Soldier Fly Wholemeal
by Giulia Grassi, Antonio Franco, Carmen Scieuzo, Giambattista Capasso, Giovanni Lomonaco, Rosanna Salvia, Anna Maria Perna and Patrizia Falabella
Appl. Sci. 2025, 15(13), 7132; https://doi.org/10.3390/app15137132 - 25 Jun 2025
Viewed by 316
Abstract
This study investigated the effects of dietary supplementation with Black Soldier Fly (BSF) wholemeal on the content of bioactive compounds in broiler chicken breast meat. The experiment involved 45 male Ross 308 broiler chickens randomly assigned to three dietary groups: control diet, control [...] Read more.
This study investigated the effects of dietary supplementation with Black Soldier Fly (BSF) wholemeal on the content of bioactive compounds in broiler chicken breast meat. The experiment involved 45 male Ross 308 broiler chickens randomly assigned to three dietary groups: control diet, control diet supplemented with 5% (HI5), or 10% (HI10) black soldier fly (BSF) wholemeal. The diets were administered for 35 days. The study found that higher levels of BSF wholemeal meal inclusion significantly improved creatine and carnosine levels, with increases of 22% and 26%, respectively, in the HI10 group compared to the control group. In addition, HI supplementation improved the fatty acid profile, significantly increasing the levels of EPA, DHA, and conjugated linoleic acid (CLA), while reducing the total PUFA and ALA levels. Antioxidant activity, measured using the FRAP and ABTS assays, was also significantly higher in the BSF-fed groups, particularly in the HI10 group. These results suggest that BSF wholemeal flour can improve the functional and nutritional qualities of chicken meat, thereby enhancing its potential as a sustainable ingredient in poultry diets. Full article
(This article belongs to the Special Issue Innovations in Natural Products and Functional Foods)
Show Figures

Figure 1

25 pages, 7095 KiB  
Article
Chemopreventive Effects of Bioactive Peptides Derived from Black Soldier Fly Larvae Protein Hydrolysates in a Rat Model of Early-Stage Colorectal Carcinogenesis
by Kwanchanok Praseatsook, Arpamas Vachiraarunwong, Kenji Sato, Sivamoke Dissook, Hideki Wanibuchi, Sirinya Taya, Rawiwan Wongpoomchai, Pornngarm Dejkriengkraikul, Min Gi and Supachai Yodkeeree
Int. J. Mol. Sci. 2025, 26(13), 5955; https://doi.org/10.3390/ijms26135955 - 20 Jun 2025
Viewed by 1513
Abstract
Bioactive peptides from black soldier fly larvae (BSFL) protein hydrolysates have gained attention for their health-promoting properties. Our previous study demonstrated the chemopreventive potential of BSFL hydrolysates prepared with Alcalase (ASBP-AH) in colon cancer cells; their in vivo efficacy has not been fully [...] Read more.
Bioactive peptides from black soldier fly larvae (BSFL) protein hydrolysates have gained attention for their health-promoting properties. Our previous study demonstrated the chemopreventive potential of BSFL hydrolysates prepared with Alcalase (ASBP-AH) in colon cancer cells; their in vivo efficacy has not been fully elucidated. This study evaluated the chemopreventive effects of ASBP-AH, processed by spray-drying (ASBP-AHS) or freeze-drying (ASBP-AHF), in a diethylnitrosamine (DEN) and 1,2-dimethylhydrazine (DMH)-induced rat model of early-stage colorectal carcinogenesis. Oral administration of ASBP-AHS or ASBP-AHF significantly reduced aberrant crypt foci (ACF) and downregulated PCNA, COX-2, and NF-κB expression, without affecting apoptosis. Furthermore, both treatments restored microbial species richness and shifted gut microbial diversity disrupted by carcinogen exposure. ASBP-AHS specifically enriched short-chain fatty acid (SCFA)-producing bacteria, while ASBP-AHF favored anti-inflammatory microbial signatures. Likewise, correlation analysis revealed positive associations between microbial changes and SCFA levels, particularly with ASBP-AHS. Peptidomic profiling identified identical peptides in both hydrolysates, including stable pyroglutamyl-containing sequences with potential anti-inflammatory and microbiota-modulating effects. These findings support the in vivo chemopreventive potential of ASBP-AH and its promise as a functional food ingredient for promoting gut health and reducing colorectal cancer risk. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Peptides)
Show Figures

Figure 1

31 pages, 11896 KiB  
Article
Investigating the Microbial Dynamics of Hermetia illucens Powder Throughout Rearing and Processing: An Integrated Approach Using Cultural and Metabarcoding Methods
by Boris Misery, Lenaïg Brulé, Rima Djema, Xin Yan, Victoire Le Cozic, Guillaume Baudouin, Michel Federighi and Géraldine Boué
Foods 2025, 14(13), 2161; https://doi.org/10.3390/foods14132161 - 20 Jun 2025
Viewed by 504
Abstract
The increasing demand for sustainable protein sources highlights Hermetia illucens (Black Soldier Fly, BSF) as a promising alternative. However, microbiological safety remains a key concern. This study investigated the microbial diversity of BSF larvae, comparing two processing methods: (1) boiling followed by drying [...] Read more.
The increasing demand for sustainable protein sources highlights Hermetia illucens (Black Soldier Fly, BSF) as a promising alternative. However, microbiological safety remains a key concern. This study investigated the microbial diversity of BSF larvae, comparing two processing methods: (1) boiling followed by drying and (2) drying alone. Microbial diversity was assessed via 16S rRNA sequencing, while bacterial loads were quantified using culture-based methods on samples from a French company. A systematic review complemented this analysis by synthesizing the existing knowledge on BSF microbiota. The rearing conditions varied, with substrate pH ranging from 4.1 to 9.0 and ambient temperatures between 24.6 °C and 42.7 °C. Mesophilic bacteria, spores, and lactic acid bacteria reached up to 8.6, 7.7, and 8.5 log CFU/g in the substrates and larvae, while yeasts, molds, and sulfite-reducing bacteria remained below 4.8 log CFU/g. Boiling reduced most loads below detection thresholds, particularly for yeasts, molds, and ASR. Salmonella, Listeria monocytogenes, Cronobacter sp., and coagulase-positive staphylococci were absent, whereas Clostridium perfringens and Escherichia coli were variably detected. Metabarcoding showed shifts in composition, with Proteobacteria, Bacteroidota, Actinobacteriota, and Firmicutes (Bacillota and Clostridiota) dominating. Process 1 more effectively reduced the bacterial loads, though Bacillus and Clostridium remained. Campylobacter sp. detection in powders raises food safety concerns. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1210 KiB  
Article
Effects of Feed Additives (Nannochloropsis gaditana and Hermetia illucens) on Growth and Expression of Antioxidant and Cytokine Genes in Nile Tilapia (Oreochromis niloticus) Subjected to Air Exposure Stress
by László Ardó, Zsuzsanna J. Sándor, Márton Orbán, János Szakáli, Janka Biró, Anita Annamária Szűcs, Gyula Kovács, Michelle Lévai, Balázs Gregosits, Zsuzsanna Brlás-Molnár and Emese Békefi
Animals 2025, 15(12), 1776; https://doi.org/10.3390/ani15121776 - 17 Jun 2025
Viewed by 408
Abstract
A 7-week feeding trial was conducted with Nile tilapia juveniles with an average body weight of 143.5 ± 3.1 g in a cage system in order to test the effect of different feed additives on growth performance, antioxidant defense system, and immune status [...] Read more.
A 7-week feeding trial was conducted with Nile tilapia juveniles with an average body weight of 143.5 ± 3.1 g in a cage system in order to test the effect of different feed additives on growth performance, antioxidant defense system, and immune status of fish. For this reason, experimental diets were formulated with inclusion of two different additives containing bioactive compounds, namely Nannochlorophsis gaditana in 3.5% (diet EXP-A) and black soldier fly larvae meal (diet EXP-I) in 3.5%, and compared with a diet supplemented with a mixture of two different commercial compounds (Yang and Syrena Boost) in 0.4% (diet EXP-S). As a negative control, a commercially available feed (Nongteng, Laos) for tilapia was selected. At the end of the feeding trial, production parameters and expression of genes related to the antioxidant defense system and innate immune response were studied. Furthermore, following the feeding, air exposure stress for 5 min was administered to the fish, and similar parameters were assessed. Results indicated that all diets promoted adequate fish growth (SGR 1.67–1.81 g day−1) and feed utilization (FCR 1.29–1.57 g g−1) with no significant (p < 0.05) differences in these parameters between the dietary fish groups. Expression of genes sod, cat, and gpx significantly increased in the liver samples of the EXP-A group at the end of feeding. Following air exposure, the EXP-A group maintained a significantly higher level of antioxidant-related gene expression compared to other treatments. Subsequently, gpx upregulation was observed in the EXP-S group in the post-stress stage compared to pre-stress. Based on our results, we recommend the inclusion of any of the tested additives at the evaluated doses to enhance the non-specific immune response of Nile tilapia. Additionally, Nannochloropsis gaditana at a 3.5% inclusion level can be used to further improve antioxidant defense capacity. Full article
Show Figures

Figure 1

19 pages, 4804 KiB  
Article
From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly
by Alessia Di Pasquale, Marina Zoccola, Ashish Mohod, Giulia Dalla Fontana, Anastasia Anceschi and Sara Dalle Vacche
Polymers 2025, 17(11), 1582; https://doi.org/10.3390/polym17111582 - 5 Jun 2025
Viewed by 524
Abstract
The need to find sustainable solutions to conventional plastics has driven research into alternative materials, including bioplastics, which represent a promising option for reducing pollution and enhancing the value of renewable resources. In this study, bioplastics made from polyvinyl alcohol (PVA) and proteins [...] Read more.
The need to find sustainable solutions to conventional plastics has driven research into alternative materials, including bioplastics, which represent a promising option for reducing pollution and enhancing the value of renewable resources. In this study, bioplastics made from polyvinyl alcohol (PVA) and proteins extracted from the larvae of Black Soldier Fly (BSF), an insect capable of converting organic waste into high-value biomass, were produced and characterized. The proteins were obtained by hydrolysis of defatted BSF larvae with superheated water, avoiding harsh chemical reagents. Next, polymer films were fabricated by mixing PVA and hydrolyzed BSF proteins in different proportions and analyzed for morphological, physical-chemical, mechanical and biodegradability characteristics. The results obtained show that as the BSF protein content increases, the films show a reduction in thermal stability and mechanical properties, and also, they exhibit higher biodegradability, correlated with higher wettability, solubility and ability to absorb moisture. This research highlights the value of using organic waste-fed insects as a resource for bioplastic production, offering an alternative to traditional polymers and contributing to the transition to sustainable materials. Full article
(This article belongs to the Special Issue High-Value Polymer Materials from Waste Recovery and Recycling)
Show Figures

Figure 1

17 pages, 1210 KiB  
Review
Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques
by Kamila Zdeňková, Eliška Čermáková, Pavel Vejl, Agáta Čermáková and Jakub Vašek
Foods 2025, 14(11), 2002; https://doi.org/10.3390/foods14112002 - 5 Jun 2025
Cited by 1 | Viewed by 676
Abstract
The utilization of insects as a source of essential nutrients holds considerable promise, with the potential to serve as both feed and food. Consequently, there is a necessity to develop control systems, as the undeclared addition of insects to food products and/or non-compliance [...] Read more.
The utilization of insects as a source of essential nutrients holds considerable promise, with the potential to serve as both feed and food. Consequently, there is a necessity to develop control systems, as the undeclared addition of insects to food products and/or non-compliance with labelling regulations may pose health risks and result in financial losses for consumers. This review describes methods for identifying and detecting insect species by targeting biomolecules such as DNA, proteins, saccharides, and metabolites, with a particular focus on DNA-based approaches. This review provides a detailed overview of the application of polymerase chain reaction (PCR) and DNA sequencing methods that are suitable for the analysis of edible and forage insects. The main focus is on identifying species that are approved for use as novel foods or insect feeds within the European Union (e.g., house cricket (Acheta domesticus), common mealworm (Tenebrio molitor), migratory locust (Locusta migratoria), lesser mealworm (Alphitobius diaperinus), black soldier fly (Hermetia illucens), banded cricket (Gryllodes sigillatus), field cricket (Gryllus assimilis), silkworm (Bombyx mori)). However, insect species of global relevance are also discussed. The suitability of DNA analysis methods for accurate species identification, detection of (un)labeled contaminants, and monitoring of genetic diversity has been demonstrated. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 277 KiB  
Article
Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture
by Seemab Zehra, Aboobucker S. Abul Kasim, Reda Saleh, Paulo De Mello, Ali Alshaikhi, Joseph Laranja, Yousef Alhafedh, Brett D. Glencross, Majed A. Alghamdi and Asaad Widaa Mohamed
Fishes 2025, 10(6), 265; https://doi.org/10.3390/fishes10060265 - 3 Jun 2025
Viewed by 412
Abstract
This study aimed to evaluate the apparent digestibility coefficients (ADCs) for nutrients and energy of seven conventional and alternative feed ingredients (poultry feather meal, fermented feather meal, mealworm meal, defatted black soldier fly, Chlorella, poultry by-product meal, and corn meal) when fed to [...] Read more.
This study aimed to evaluate the apparent digestibility coefficients (ADCs) for nutrients and energy of seven conventional and alternative feed ingredients (poultry feather meal, fermented feather meal, mealworm meal, defatted black soldier fly, Chlorella, poultry by-product meal, and corn meal) when fed to Sobaity seabream (Sparidentex hasta), with the goal of identifying sustainable, digestible, and nutritionally viable ingredients for aquaculture feed formulations. A reference diet (RF) was formulated to meet the nutrient requirements of Sobaity seabream while test diets were prepared to contain 70% RF and 30% of the test ingredients. Sobaity seabream (200 ± 8.0 g) were fed the diets for seven days before fecal matter was collected by stripping. The whole length of the digestibility trial was 21 days. The ingredient apparent digestibility of dry matter (34.8–70.4%), crude protein (52.8–107.8%), crude lipid (67.7–112.9%), and energy (52.2–86.1%) were affected by test ingredients (p < 0.01). The dry matter digestibility of mealworm meal was the highest (70.4%) compared to other ingredients. Feather meal, Chlorella, and black soldier fly meal had significantly lower values of dry matter digestibility. Dry matter and crude protein were significantly more digestible in fermented feather meal than the feather meal without fermentation. The crude protein digestibility was significantly higher (107.8%) for mealworm meal. However, feather meal has shown a significantly lower value (52.8%) for crude protein digestibility compared to other ingredients. Energy digestibility showed a significant positive correlation with dry matter digestibility (r = 0.870). The energy digestibility of mealworm meal was significantly higher (86.1%, p < 0.05) than other ingredients. Feather meal had the lowest energy digestibility (52.2%) with no statistically significant difference from Chlorella, corn meal, and black soldier fly meal. This study indicates that mealworm meal is the most easily digestible protein source for Sobaity seabream and should be prioritized in their diets. Fermentation enhances the digestibility of feather meal and is recommended when using it. Ingredients with a lower digestibility, like feather meal, chlorella, and black soldier fly meal, should be used in moderation or undergo further processing to improve nutrient availability. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Back to TopTop