Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredient Sourcing and Diet Development
2.2. Fish Handling and Fecal Collection
2.3. Chemical and Digestibility Analysis
2.4. Statistical Analysis
3. Results
3.1. Diet Feed Intake Effects
3.2. Ingredient Digestibility
4. Discussion
4.1. Palatability and Digestibility
4.2. Animal-Based Ingredients
4.2.1. Poultry By-Products Meal and Feather Meal
4.2.2. Insects Meals
4.3. Plant-Based Ingredients (Corn Meal and Chlorella)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Young, B.C.; Shaikhi, A.A. Sobaity Seabream Culture in High-Temperature Conditions. N. Am. J. Aquac. 2023, 85, 200–204. [Google Scholar] [CrossRef]
- Agh, N.; Morshedi, V.; Noori, F.; Ghasemi, A.; Pagheh, E.; Rashidian, G. The effects of single and combined use of Lactobacillus plantarum and xylooligosacharide on growth, feed utilization, immune responses, and immune and growth related genes of sobaity (Sparidentex hasta) fingerlings. Aquac. Rep. 2022, 25, 101271. [Google Scholar] [CrossRef]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative proteins for fish diets: Implications beyond growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.M.; Bano, A.A.; Ali, S.; Rizwan, M.; Adrees, M.; Zahoor, A.F.; Sarker, P.K.; Hussain, M.; Arsalan, M.Z.-u.-H.; Yong, J.W.H. Substitution of fishmeal: Highlights of potential plant protein sources for aquaculture sustainability. Heliyon 2024, 10, e26573. [Google Scholar] [CrossRef]
- Annamalai, S.N.; Das, P.; Thaher, M.I.; Abdul Quadir, M.; Khan, S.; Mahata, C.; Al Jabri, H. Nutrients and energy digestibility of microalgal biomass for fish feed applications. Sustainability 2021, 13, 13211. [Google Scholar] [CrossRef]
- Kamalam, B.S.; Medale, F.; Panserat, S. Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture 2017, 467, 3–27. [Google Scholar] [CrossRef]
- Woodgate, S.L.; Wan, A.H.; Hartnett, F.; Wilkinson, R.G.; Davies, S.J. The utilisation of European processed animal proteins as safe, sustainable and circular ingredients for global aquafeeds. Rev. Aquac. 2022, 14, 1572–1596. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Lundebye, A.-K.; Tibon, J.; Sindre, H.; Nilsen, H.; Hagemann, A.; Sele, V. Aquaculture sludge as feed for black soldier fly: Transfer of chemical and biological contaminants and nutrients. Waste Manag. 2024, 187, 39–49. [Google Scholar] [CrossRef]
- Wang, X.; Luo, H.; Zheng, Y.; Wang, D.; Wang, Y.; Zhang, W.; Chen, Z.; Chen, X.; Shao, J. Effects of poultry by-product meal replacing fish meal on growth performance, feed utilization, intestinal morphology and microbiota communities in juvenile large yellow croaker (Larimichthys crocea). Aquac. Rep. 2023, 30, 101547. [Google Scholar] [CrossRef]
- Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals 2021, 11, 677. [Google Scholar] [CrossRef]
- Agbohessou, P.S.; Mandiki, S.N.; Gougbédji, A.; Megido, R.C.; Hossain, M.S.; De Jaeger, P.; Larondelle, Y.; Francis, F.; Lalèyè, P.A.; Kestemont, P. Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. Aquac. Nutr. 2021, 27, 880–896. [Google Scholar] [CrossRef]
- Kroeckel, S.; Harjes, A.-G.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute—Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Lock, E.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Dumas, A.; Raggi, T.; Barkhouse, J.; Lewis, E.; Weltzien, E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 492, 24–34. [Google Scholar] [CrossRef]
- Hancz, C. Feed efficiency, nutrient sensing and feeding stimulation in aquaculture: A review. Acta Agrar. Kaposváriensis 2020, 24, 35–54. [Google Scholar] [CrossRef]
- Eriegha, O.J.; Ekokotu, P.A. Factors affecting feed intake in cultured fish species: A review. Anim. Res. Int. 2017, 14, 2697–2709. [Google Scholar]
- Glencross, B.D.; Booth, M.; Allan, G.L. A feed is only as good as its ingredients—A review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nutr. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Aragão, C.; Pintado, M.; Valente, L. Apparent digestibility coefficients of processed agro-food by-products in European seabass (Dicentrarchus labrax) juveniles. Aquac. Nutr. 2018, 24, 1274–1286. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Zehra, S.; Laranja, J.L.Q.; Abulkasim, A.S.; Saleh, R.; De Mello, P.H.; Pantanella, E.; Alarcon, J.; Al-Suwailem, A.M.; Al Shaikhi, A.; Glencross, B.D. Nutrient and Energy Apparent Digestibility of Protein-Based Feed Ingredients and Effect of the Dietary Factors on Growth Performance and Feed Utilization of Sobaity Seabream, Sparidentex hasta. Animals 2024, 14, 933. [Google Scholar] [CrossRef]
- Glencross, B.D.; Carter, C.G.; Duijster, N.; Evans, D.R.; Dods, K.; McCafferty, P.; Hawkins, W.E.; Maas, R.; Sipsas, S. A comparison of the digestibility of a range of lupin and soybean protein products when fed to either Atlantic salmon (Salmo salar) or rainbow trout (Oncorhynchus mykiss). Aquaculture 2004, 237, 333–346. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Laranja, J.; Saleh, R.; Zehra, S.; De Mello, P.H.; Kasim, A.S.A.; Alarcon, J.; Alshaikhi, A.M.; Al-Suwailem, A.M.; Glencross, B.D. The digestible nutrient and energy values of diets across seven marine aquaculture species demonstrate the potential and limitations for cross utility of digestibility data. Aquaculture 2024, 583, 740586. [Google Scholar] [CrossRef]
- Barreto, A.; Arenas, M.; Álvarez-González, A.; Suárez-Bautista, J.; Sánchez, A.; Maldonado, C.; Cuzon, G.; Gaxiola, G. Evaluation of in vitro and in vivo digestibility of potential feed ingredients for juvenile Yellowtail Snapper. N. Am. J. Aquac. 2024, 86, 179–192. [Google Scholar] [CrossRef]
- Torfi Mozanzadeh, M.; Marammazi, J.G.; Yaghoubi, M.; Agh, N.; Pagheh, E.; Gisbert, E. Macronutrient requirements of silvery-black porgy (Sparidentex hasta): A comparison with other farmed sparid species. Fishes 2017, 2, 5. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Dairy Products; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Blyth, D.; Tabrett, S.; Bourne, N.; Glencross, B. Comparison of faecal collection methods and diet acclimation times for the measurement of digestibility coefficients in barramundi (Lates calcarifer). Aquac. Nutr. 2015, 21, 248–255. [Google Scholar] [CrossRef]
- Austreng, E. Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 1978, 13, 265–272. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. 2005. Available online: https://www.aoac.org/ (accessed on 29 April 2025).
- McQuaker, N.R.; Brown, D.F.; Kluckner, P.D. Digestion of environmental materials for analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chem. 1979, 51, 1082–1084. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Elsdon, T.S.; Gillanders, B.M. Interactive effects of temperature and salinity on otolith chemistry: Challenges for determining environmental histories of fish. Can. J. Fish. Aquat. Sci. 2002, 59, 1796–1808. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Rao, P.U. Chemical composition and nutritional evaluation of spent silk worm pupae. J. Agric. Food Chem. 1994, 42, 2201–2203. [Google Scholar] [CrossRef]
- Moutinho, S.; Oliva-Teles, A.; Martínez-Llorens, S.; Monroig, Ó.; Peres, H. Total fishmeal replacement by defatted Hermetia illucens larvae meal in diets for gilthead seabream (Sparus aurata) juveniles. J. Insects Food Feed 2022, 8, 1455–1468. [Google Scholar] [CrossRef]
- Li, X.; Qin, C.; Fang, Z.; Sun, X.; Shi, H.; Wang, Q.; Zhao, H. Replacing dietary fish meal with defatted black soldier fly (Hermetia illucens) larvae meal affected growth, digestive physiology and muscle quality of tongue sole (Cynoglossus semilaevis). Front. Physiol. 2022, 13, 855957. [Google Scholar] [CrossRef] [PubMed]
- Oteri, M.; Di Rosa, A.R.; Lo Presti, V.; Giarratana, F.; Toscano, G.; Chiofalo, B. Black soldier fly larvae meal as alternative to fish meal for aquaculture feed. Sustainability 2021, 13, 5447. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Neofytou, M.C.; Asimaki, A.; Daskalopoulou, E.; Psofakis, P.; Mente, E.; Rumbos, C.I.; Athanassiou, C.G. Fishmeal replacement by full-fat and defatted Hermetia illucens prepupae meal in the diet of gilthead seabream (Sparus aurata). Sustainability 2023, 15, 786. [Google Scholar] [CrossRef]
- Delgado, E.; Reyes-Jaquez, D. Extruded aquaculture feed: A review. In Extrusion of Metals, Polymers and Food Products; InTechOpen: London, UK, 2018; pp. 145–163. [Google Scholar]
- Qiu, H.; Dai, M.; Chen, N.; Li, S. Apparent digestibility of ten protein ingredients for largemouth bass (Micropterus salmoides). Aquac. Res. 2022, 53, 6846–6854. [Google Scholar] [CrossRef]
- Thompson, K.R.; Rawles, S.D.; Metts, L.S.; Smith, R.G.; Wimsatt, A.; Gannam, A.L.; Twibell, R.G.; Johnson, R.B.; Brady, Y.J.; Webster, C.D. Digestibility of dry matter, protein, lipid, and organic matter of two fish meals, two poultry by-product meals, soybean meal, and distiller’s dried grains with solubles in practical diets for Sunshine bass, Morone chrysops × M. saxatilis. J. World Aquac. Soc. 2008, 39, 352–363. [Google Scholar] [CrossRef]
- Zhou, Q.-C.; Tan, B.-P.; Mai, K.-S.; Liu, Y.-J. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture 2004, 241, 441–451. [Google Scholar] [CrossRef]
- Chi, S.; Wang, W.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. The apparent digestibility coefficients of 13 selected animal feedstuff for Cobia, Rachycentron canadum. J. World Aquac. Soc. 2017, 48, 280–289. [Google Scholar] [CrossRef]
- Lee, S.-M. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture 2002, 207, 79–95. [Google Scholar] [CrossRef]
- Adelina, A.; Feliatra, F.; Siregar, Y.; Suharman, I.; Pamukas, N. Fermented chicken feathers using Bacillus subtilis to improve the quality of nutrition as a fish feed material. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ho Chi Minh City, Vietnam, 25–28 February 2019; p. 012008. [Google Scholar]
- Safari, H.; Mohit, A.; Mohiti-Asli, M. Feather meal processing methods impact the production parameters, blood biochemical indices, gut function, and hepatic enzyme activity in broilers. J. Anim. Sci. 2024, 102, skae068. [Google Scholar] [CrossRef] [PubMed]
- Yeh, R.-H.; Hsieh, C.-W.; Chen, K.-L. Two-stage fermented feather meal enhances growth performance and amino acid digestibility in broilers. Fermentation 2023, 9, 128. [Google Scholar] [CrossRef]
- Gonçalves, E.G.; Carneiro, D.J. Coeficientes de digestibilidade aparente da proteína e energia de alguns ingredientes utilizados em dietas para o pintado (Pseudoplatystoma coruscans). Rev. Bras. De Zootec. 2003, 32, 779–786. [Google Scholar] [CrossRef]
- Hasnan, F.F.B.; Feng, Y.; Sun, T.; Parraga, K.; Schwarz, M.; Zarei, M. Insects as Valuable Sources of Protein and Peptides: Production, Functional Properties, and Challenges. Foods 2023, 12, 4243. [Google Scholar] [CrossRef]
- Ritvanen, T.; Pastell, H.; Welling, A.; Raatikainen, M. The nitrogen-to-protein conversion factor of two cricket species-Acheta domesticus and Gryllus bimaculatus. Agric. Food Sci. 2020, 29, 1–5. [Google Scholar] [CrossRef]
- Le Boucher, R.; Chung, W.; Ng Kai Lin, J.; Tan, L.S.E.; Lee, C.S. Black Soldier Fly Larvae Meal vs. Soy Protein Concentrate Meal: A Comparative Digestibility Study in Barramundi (Lates calcarifer). Aquac. Nutr. 2024, 2024, 3237898. [Google Scholar] [CrossRef]
- Abimorad, E.G.; Carneiro, D.J. Fecal collection methods and determination of crude protein and of gross energy digestibility coefficients of feedstuffs for pacu, Piaractus mesopotamicus (Holmberg, 1887). Rev. Bras. De Zootec. 2004, 33, 1101–1109. [Google Scholar] [CrossRef]
- Abimorad, E.G.; Squassoni, G.; Carneiro, D. Apparent digestibility of protein, energy, and amino acids in some selected feed ingredients for pacu Piaractus mesopotamicus. Aquac. Nutr. 2008, 14, 374–380. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef]
- Batista, S.; Pintado, M.; Marques, A.; Abreu, H.; Silva, J.L.; Jessen, F.; Tulli, F.; Valente, L.M. Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles. J. Appl. Phycol. 2020, 32, 3429–3446. [Google Scholar] [CrossRef]
- Barone, R.S.C.; Sonoda, D.Y.; Lorenz, E.K.; Cyrino, J.E.P. Digestibility and pricing of Chlorella sorokiniana meal for use in tilapia feeds. Sci. Agric. 2018, 75, 184–190. [Google Scholar] [CrossRef]
- Kotrbáček, V.; Doubek, J.; Doucha, J. The chlorococcalean alga Chlorella in animal nutrition: A review. J. Appl. Phycol. 2015, 27, 2173–2180. [Google Scholar] [CrossRef]
- Sarker, P.; Gamble, M.; Kelson, S.; Kapuscinski, A. Nile tilapia (Oreochromis niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential amino acids from freshwater Spirulina sp. feed ingredients. Aquac. Nutr. 2016, 22, 109–119. [Google Scholar] [CrossRef]
- Glencross, B.D. A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquac. Nutr. 2020, 26, 1871–1883. [Google Scholar] [CrossRef]
Fish Meal | Wheat Meal | Chlorella | Wheat Gluten Meal | Soybean Meal | Feather Meal | Poultry By-Products Meal | Corn Meal | Fermented Feather Meal | Black Soldier Fly Meal | Mealworm Meal | |
---|---|---|---|---|---|---|---|---|---|---|---|
Dry matter | 93.6 | 90.1 | 93.9 | 93.9 | 91.1 | 96.5 | 96.9 | 87.3 | 92.1 | 92.6 | 98.0 |
Protein | 64.0 | 14.4 | 58.4 | 77.5 | 45.6 | 87.0 | 68.4 | 8.6 | 84.5 | 51.7 | 58.8 |
Lipid | 9.2 | 2.6 | 9.2 | 7.5 | 3.3 | 7.3 | 16.0 | 3.5 | 5.8 | 14.1 | 18.9 |
CHO * | 2.0 | 71.4 | 25.6 | 8.1 | 37.0 | 0.7 | 0.1 | 73.9 | 0.9 | 15.3 | 16.1 |
Ash | 18.4 | 1.7 | 0.7 | 0.8 | 5.2 | 1.5 | 12.4 | 1.3 | 0.8 | 11.4 | 4.2 |
Energy | 19.0 | 16.7 | 21.8 | 22.6 | 18.4 | 23.5 | 22.3 | 16.2 | 22.4 | 20.3 | 23.9 |
Reference Diet | Feather Meal | Fermented Feather Meal | Mealworm Meal | Chlorella Meal | Poultry By-Products Meal | Corn Meal | Black Soldier Fly Meal | |
---|---|---|---|---|---|---|---|---|
Ingredients (g) | Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | Diet 6 | Diet 7 | Diet 8 |
Fish meal | 20 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
Fish oil | 7.5 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 | 5.3 |
Wheat meal | 16.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 | 11.4 |
Wheat gluten meal | 30 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
Soybean meal | 24.9 | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 | 17.4 |
Feather meal | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
Fermented feather meal | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 |
Mealworm meal | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 |
Chlorella meal | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 |
Poultry meal | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 |
Corn meal | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 |
Black soldier fly meal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
Vit and Min premix | 1 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Choline | 0.1 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
Yttrium oxide | 0.1 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
Total (g) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Reference Diet | Feather Meal | Fermented Feather Meal | Mealworm Meal | Chlorella Meal | Poultry By-Products Meal | Corn Meal | Black Soldier Fly Meal | |
---|---|---|---|---|---|---|---|---|
%dry basis | Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | Diet 6 | Diet7 | Diet 8 |
Dry Matter | 97 | 96 | 94.3 | 98 | 97 | 95 | 98 | 95 |
Crude Protein | 54.6 | 66 | 67.7 | 59.9 | 58.5 | 60.9 | 40.3 | 56.1 |
Lipids | 7.4 | 10.2 | 9.9 | 9.5 | 9.2 | 11.4 | 6.2 | 8 |
Ash | 6.1 | 6.2 | 4.7 | 5.3 | 5.7 | 8.4 | 4.9 | 8.7 |
Carbohydrates * | 28.8 | 13.6 | 12 | 23.3 | 23.6 | 14.3 | 46.6 | 22.3 |
Gross Energy (kJ/g) | 20.7 | 21.9 | 21.9 | 21.8 | 21.4 | 21.2 | 20 | 20.2 |
Diets | Test Ingredients | Feed Intake (g/Fish/Day) |
---|---|---|
D1 | Basal diet | 3.2 ± 0.81 a |
D2 | Feather meal | 3.3 ± 0.62 a |
D3 | Fermented feather meal | 3.6 ± 0.69 a |
D4 | Mealworm meal | 3.3 ± 0.72 a |
D5 | Chlorella mela | 3.5 ± 0.61 a |
D6 | Poultry by-products meal | 3.6 ± 0.24 a |
D7 | Corn meal | 3.8 ± 0.93 a |
D8 | Black soldier fly meal | 2.6 ± 0.58 a |
p value | p = 0.557 |
Test Diets | Test Ingredients | Dry Matter (IADC%) | Protein (IADC%) | Lipid (IADC%) | Energy (IADC%) |
---|---|---|---|---|---|
D2 | Feather meal | 34.8 ± 0.9 c | 52.8 ± 0.7 d | 91.0 ± 0.13 b | 52.2 ± 0.4 c |
D3 | Fermented feather meal | 50.1 ± 0.4 b | 85.6 ± 0.6 bc | 112.9 ± 0.17 a | 77.1 ± 0.3 ab |
D4 | Mealworm meal | 70.4 ± 0.9 a | 107.8 ± 0.5 a | 67.7 ± 0.7 c | 86.1 ± 0.5 a |
D5 | Chlorella mela | 36.8 ± 0.9 c | 83.8 ± 0.6 bc | 108.0 ± 0.17 a | 66.6 ± 0.4 bc |
D6 | Poultry by-products meal | 51.1 ± 0.8 b | 88.9 ± 0.2 b | 106.6 ± 0.5 a | 79.4 ± 0.5 ab |
D7 | Corn meal | 51.6 ± 0.7 b | 79.7 ± 0.2 c | 104.8 ± 0.3 a | 68.1 ± 0.9 bc |
D8 | Black soldier fly meal | 40.4 ± 0.06 c | 72.1 ± 0.1 c | 106.3 ± 0.1 a | 59.9 ± 0.5 c |
p value | p = 0.048 | p = 0.023 | p = 0.00008 | p = 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zehra, S.; Abul Kasim, A.S.; Saleh, R.; Mello, P.D.; Alshaikhi, A.; Laranja, J.; Alhafedh, Y.; Glencross, B.D.; Alghamdi, M.A.; Mohamed, A.W. Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture. Fishes 2025, 10, 265. https://doi.org/10.3390/fishes10060265
Zehra S, Abul Kasim AS, Saleh R, Mello PD, Alshaikhi A, Laranja J, Alhafedh Y, Glencross BD, Alghamdi MA, Mohamed AW. Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture. Fishes. 2025; 10(6):265. https://doi.org/10.3390/fishes10060265
Chicago/Turabian StyleZehra, Seemab, Aboobucker S. Abul Kasim, Reda Saleh, Paulo De Mello, Ali Alshaikhi, Joseph Laranja, Yousef Alhafedh, Brett D. Glencross, Majed A. Alghamdi, and Asaad Widaa Mohamed. 2025. "Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture" Fishes 10, no. 6: 265. https://doi.org/10.3390/fishes10060265
APA StyleZehra, S., Abul Kasim, A. S., Saleh, R., Mello, P. D., Alshaikhi, A., Laranja, J., Alhafedh, Y., Glencross, B. D., Alghamdi, M. A., & Mohamed, A. W. (2025). Evaluation of Apparent Nutrient Digestibility of Novel and Conventional Feed Ingredients in Sobaity Seabream (Sparidentex hasta) for Sustainable Aquaculture. Fishes, 10(6), 265. https://doi.org/10.3390/fishes10060265