From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. BSF Larvae and PVA Preparation
2.2.2. Protein Extraction from BSF Larvae and Their Characterization
2.2.3. Preparation of PVA/BSF Protein Blend Films
2.3. Characterization of PVA/BSF Protein Blend Films and BSF Protein Hydrolyzates
FT-IR Spectroscopy
2.4. Characterization of PVA/BSF Protein Blend Films
2.4.1. Thermal Behaviour
2.4.2. Solubility in Water
2.4.3. Water Uptake
2.4.4. Morphological Characterization
2.4.5. Tensile Behaviour
2.4.6. Contact Angle
2.5. Biodegradation Testing in Soil
3. Results
3.1. Characterization of BSF Larvae and BSF Protein Extracts
3.2. Characterization of PVA/BSF Protein Blend Films
3.3. FT-IR Spectroscopy
3.4. Thermal Behaviour
3.5. Solubility in Water
3.6. Water Uptake
3.7. Morphological Characterization
3.8. Tensile Behaviour
3.9. Contact Angle
3.10. Biodegradation Testing in Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 2018, 105, 812–820. [Google Scholar] [CrossRef]
- Edea, C.; Tesfaye, E.; Yirgu, T.; Alewi, M. Black soldier fly (Hermetia illucens) larvae as a sustainable source of protein in poultry feeding: A review. Ethiop. J. Agric. Sci. 2022, 32, 89–104. [Google Scholar]
- Nguyen, T.-X.; Tomberlin, J.; Vanlaerhoven, S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar] [CrossRef]
- Odongo, E.E.; Bbosa, W.K.; Kahunde, P.K. Black Soldier Fly (BSF): A Sustainable Solution for Protein, Waste Management, and a Circular Bio-Economy. Eur. J. Theor. Appl. Sci. 2024, 2, 822–834. [Google Scholar] [CrossRef]
- Regulation (EC) No. 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No. 1774/2002. Available online: https://eur-lex.europa.eu/eli/reg/2009/1069/oj/eng (accessed on 14 November 2009).
- Commission Regulation (EU) 2017/1017 of 15 June 2017 Amending Regulation (EU) No. 68/2013 on the Catalogue of Feed Materials. Available online: https://eur-lex.europa.eu/eli/reg/2017/1017/oj/eng (accessed on 21 June 2017).
- IPIFF Vision Paper on the Future of the Insect Sector Towards 2030. The European Insect Sector Today: Challenges, Opportunities and Regulatory Landscape. Available online: https://ipiff.org/ipiff-vision-paper/ (accessed on 7 March 2022).
- Fowles, T.M.; Nansen, C. Insect-Based Bioconversion: Value from Food Waste BT—Food Waste Management: Solving the Wicked Problem; Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 321–346. ISBN 978-3-030-20561-4. [Google Scholar]
- Ravi, H.K.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F.; Vian, M.A. Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, 8, 857. [Google Scholar] [CrossRef]
- Shaboon, A.M.; Qi, X.; Omar, M.A.A. Insect-Mediated Waste Conversion BT—Waste-to-Energy: Recent Developments and Future Perspectives Towards Circular Economy; Abomohra, A.E.-F., Wang, Q., Huang, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 479–509. ISBN 978-3-030-91570-4. [Google Scholar]
- Ragossnig, H.A.; Ragossnig, A.M. Biowaste treatment through industrial insect farms: One bioeconomy puzzle piece towards a sustainable net-zero carbon economy? Waste Manag. Res. J. Sustain. Circ. Econ. 2021, 39, 1005–1006. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Widya Yuwono, N.; Nisa’, K.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A.; et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 2022, 140, 1–13. [Google Scholar] [CrossRef]
- Eurostat 2024. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20240927-2#:~:text= (accessed on 27 September 2024).
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef]
- Smets, R.; Verbinnen, B.; Van De Voorde, I.; Aerts, G.; Claes, J.; Van Der Borght, M. Sequential Extraction and Characterisation of Lipids, Proteins, and Chitin from Black Soldier Fly (Hermetia illucens) Larvae, Prepupae, and Pupae. Waste Biomass Valorization 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Martín-López, H.; Ayora-Talavera, T.; Liedo, P.; Ramos-Díaz, A.; Herrera-Rodríguez, S.; Cuevas-Bernardino, J.C.; Pacheco, N. The Mexican fruit fly puparia (Anastrepha ludens) and the black soldier fly imagoes (Hermetia illucens), promising alternative sources of chitin. MRS Adv. 2024, 9, 1747–1753. [Google Scholar] [CrossRef]
- Ai, H.; Wang, F.; Yang, Q.; Zhu, F.; Lei, C. Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydr. Polym. 2008, 72, 419–423. [Google Scholar] [CrossRef]
- Batish, I.; Brits, D.; Valencia, P.; Miyai, C.; Rafeeq, S.; Xu, Y.; Galanopoulos, M.; Sismour, E.; Ovissipour, R. Effects of Enzymatic Hydrolysis on the Functional Properties, Antioxidant Activity and Protein Structure of Black Soldier Fly (Hermetia illucens) Protein. Insects 2020, 11, 876. [Google Scholar] [CrossRef] [PubMed]
- McNeil, S.J.; Sunderland, M.R.; Zaitseva, L.I. Closed-loop wool carpet recycling. Resour. Conserv. Recycl. 2007, 51, 220–224. [Google Scholar] [CrossRef]
- Bhavsar, P.; Patrucco, A.; Montarsolo, A.; Mossotti, R.; Rovero, G.; Giansetti, M.; Tonin, C. Superheated Water Hydrolysis of Waste Wool in a Semi-Industrial Reactor to Obtain Nitrogen Fertilizers. ACS Sustain. Chem. Eng. 2016, 4, 6722–6731. [Google Scholar] [CrossRef]
- Yin, J.; Rastogi, S.; Terry, A.E.; Popescu, C. Self-organization of Oligopeptides Obtained on Dissolution of Feather Keratins in Superheated Water. Biomacromolecules 2007, 8, 800–806. [Google Scholar] [CrossRef]
- Bhavsar, P.; Dalla Fontana, G.; Tonin, C.; Patrucco, A.; Zoccola, M. Superheated water hydrolyses of waste silkworm pupae protein hydrolysate: A novel application for natural dyeing of silk fabric. Dye. Pigment. 2020, 183, 108678. [Google Scholar] [CrossRef]
- Bhavsar, P.S.; Dalla Fontana, G.; Zoccola, M. Sustainable Superheated Water Hydrolysis of Black Soldier Fly Exuviae for Chitin Extraction and Use of the Obtained Chitosan in the Textile Field. ACS Omega 2021, 6, 8884–8893. [Google Scholar] [CrossRef]
- Caringella, R.; Bhavsar, P.; Dalla Fontana, G.; Patrucco, A.; Tonin, C.; Pozzo, P.D.; Zoccola, M. Fabrication and properties of keratoses/sericin blend films. Polym. Bull. 2022, 79, 2189–2204. [Google Scholar] [CrossRef]
- Barbi, S.; Spinelli, R.; Ferrari, A.M.; Montorsi, M. Design and environmentale assessment of bioplastics from Hermetia illucens prepupae proteins. Environ. Eng. Manag. J. 2019, 18, 2123–2131. [Google Scholar]
- Barbi, S.; Messori, M.; Manfredini, T.; Pini, M.; Montorsi, M. Rational design and characterization of bioplastics from Hermetia illucens prepupae proteins. Biopolymers 2019, 110, e23250. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, J.; Fortunati, E.; Atarés, L.; Chiralt, A.; Kenny, J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocoll. 2014, 35, 463–470. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, B.; He, M.; Yin, G.; Cui, Y.; Savina, I.N. Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release. Polymers 2015, 7, 580–591. [Google Scholar] [CrossRef]
- Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll. 2012, 29, 226–233. [Google Scholar] [CrossRef]
- Abdullah, Z.W.; Dong, Y.; Davies, I.J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym. Plast. Technol. Eng. 2017, 56, 1307–1344. [Google Scholar] [CrossRef]
- Pathak, V.M.; Navneet. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.-X. Chemically recyclable polymers: A circular economy approach to sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Costa, A.; Encarnação, T.; Tavares, R.; Todo Bom, T.; Mateus, A. Bioplastics: Innovation for Green Transition. Polymers 2023, 15, 517. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef]
- Kuddus, M.; Roohi. Bioplastics for Sustainable Development; Springer: Singapore, 2021; ISBN 978-981-16-1822-2. [Google Scholar]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L.; et al. Bio-Based Packaging: Materials, Modifications, Industrial Applications and Sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Curr. Opin. Environ. Sci. Health 2022, 25, 100311. [Google Scholar] [CrossRef]
- Bhavsar, P.; Balan, T.; Dalla Fontana, G.; Zoccola, M.; Patrucco, A.; Tonin, C. Sustainably Processed Waste Wool Fiber-Reinforced Biocomposites for Agriculture and Packaging Applications. Fibers 2021, 9, 55. [Google Scholar] [CrossRef]
- Setti, L.; Francia, E.; Pulvirenti, A.; De Leo, R.; Martinelli, S.; Maistrello, L.; Macavei, L.I.; Montorsi, M.; Barbi, S.; Ronga, D. Bioplastic Film from Black Soldier Fly Prepupae Proteins Used as Mulch: Preliminary Results. Agronomy 2020, 10, 933. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S.; Cuq, J.-L. Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. J. Food Sci. 1992, 57, 190–195. [Google Scholar] [CrossRef]
- Patrucco, A.; Zoccola, M.; Consonni, R.; Tonin, C. Wool cortical cell-based porous films. Text. Res. J. 2013, 83, 1563–1573. [Google Scholar] [CrossRef]
- EN-ISO 5079 (1995); Determination of Breaking Force and Elongation at Break of Individual Fbers. International Organization for Standardization: Geneva, Switzerland, 1995.
- Queiroz, L.S.; Regnard, M.; Jessen, F.; Mohammadifar, M.A.; Sloth, J.J.; Petersen, H.O.; Ajalloueian, F.; Brouzes, C.M.C.; Fraihi, W.; Fallquist, H.; et al. Physico-chemical and colloidal properties of protein extracted from black soldier fly (Hermetia illucens) larvae. Int. J. Biol. Macromol. 2021, 186, 714–723. [Google Scholar] [CrossRef]
- Mahmood, T.; Malik, M.; Bano, A.; Umer, J.; Shaheen, A. Nanocatalytic Conversion of Waste Palm Oil Grade III and Poplar Plant’s Wood Sawdust into Fuel. Innov. Energy Res. 2017, 6, 1000170. [Google Scholar] [CrossRef]
- Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: A review. J. Cent. Eur. Agric. 2015, 16, 1–22. [Google Scholar] [CrossRef]
- Gou, M.X.; Yang, X.H. Preparation and Characterization of Wool Keratin/PVA Blended Films. Adv. Mater. Res. 2011, 175–176, 132–136. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Hyder, M.N.; Huang, R.Y.M.; Chen, P. Correlation of physicochemical characteristics with pervaporation performance of poly(vinyl alcohol) membranes. J. Memb. Sci. 2006, 283, 281–290. [Google Scholar] [CrossRef]
- Nakano, Y.; Bin, Y.; Bando, M.; Nakashima, T.; Okuno, T.; Kurosu, H.; Matsuo, M. Structure and Mechanical Properties of Chitosan/Poly(Vinyl Alcohol) Blend Films. Macromol. Symp. 2007, 258, 63–81. [Google Scholar] [CrossRef]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B.; Rodríguez, S.D. Structural properties of native and conjugated black soldier fly (Hermetia illucens) larvae protein via Maillard reaction and classification by SIMCA. Heliyon 2021, 7, e07242. [Google Scholar] [CrossRef]
- Silva, G.G.D.; Sobral, P.J.A.; Carvalho, R.A.; Bergo, P.V.A.; Mendieta-Taboada, O.; Habitante, A.M.Q.B. Biodegradable Films Based on Blends of Gelatin and Poly (Vinyl Alcohol): Effect of PVA Type or Concentration on Some Physical Properties of Films. J. Polym. Environ. 2008, 16, 276–285. [Google Scholar] [CrossRef]
- Rajabinejad, H.; Zoccola, M.; Patrucco, A.; Montarsolo, A.; Chen, Y.; Ferri, A.; Muresan, A.; Tonin, C. Fabrication and properties of keratoses/polyvinyl alcohol blend films. Polym. Bull. 2020, 77, 3033–3046. [Google Scholar] [CrossRef]
- Jayasekara, R.; Harding, I.; Bowater, I.; Christie, G.B.Y.; Lonergan, G.T. Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym. Test. 2004, 23, 17–27. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Prog. Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Ishigaki, T.; Kawagoshi, Y.; Ike, M.; Fujita, M. Biodegradation of a polyvinyl alcohol-starch blend plastic film. World J. Microbiol. Biotechnol. 1999, 15, 321–327. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Jeevan Pradsad Reddy, D.; Varada Rajulu, A.; Li, R. Green composites from wheat protein isolate and Hildegardia Populifolia natural fabric. Polym. Compos. 2011, 32, 398–406. [Google Scholar] [CrossRef]
PVA/BSF Protein (% w/w) | ΔHf [J/g] | Xc [%] |
---|---|---|
100/0 | −52.73 ± 0.24 | 100 |
90/10 | −43.385 ± 2.42 | 82.28 ± 6.48 |
70/30 | −34.01 ± 1.46 | 64.50 ± 3.92 |
50/50 | −22.25 ± 1.09 | 42.20 ± 2.92 |
30/70 | −16.18 ± 0.83 | 30.68 ± 2.23 |
PVA/BSF Protein [% w/w] | Tonset [°C] | Tpeak [°C] | Residue [% w/w] |
---|---|---|---|
100/0 | 332.9 ± 0.8 | 360.4 ± 2.9 | 7.6 ± 0.3 |
90/10 | 274.6 ± 1.8 | 302.5 ± 10.7 | 7.7 ± 1.1 |
70/30 | 267.7 ± 0.6 | 294.7 ± 6.2 | 15.1 ± 0.5 |
50/50 | 259.3 ± 1.5 | 291.8 ± 10.7 | 24.2 ± 3.7 |
30/70 | 241.8 ± 1.2 | 284.6 ± 7.2 | 23.3 ± 0.8 |
10/90 | 235.7 ± 0.7 | 283.7 ± 3.5 | 29.4 ± 2.3 |
0/100 | 128.1 ± 1.5 | 280.8 ± 2.6 | 35.5 ± 1.6 |
PVA/BSF Protein [% w/w] | Tensile Strength [MPa] | Elongation at Break [%] |
---|---|---|
100/0 | 8 ± 1.04 | 160.6 ± 14.0 |
90/10 | 11.3 ± 2.55 | 236.4 ± 38.7 |
70/30 | 11.35 ± 0.68 | 212.8 ± 40.4 |
50/50 | 6.85 ± 1.05 | 43.75 ± 4.45 |
30/70 | 3.21 ± 0.84 | 26.6 ± 16.8 |
PVA/BSF Protein [% w/w] | Contact Angle |
---|---|
100/0 | 67.6 ± 0.41° |
90/10 | 65.6 ± 0.54° |
70/30 | 59.7 ± 0.67° |
50/50 | 56.1 ± 0.80° |
30/70 | 53.7 ± 0.95° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pasquale, A.; Zoccola, M.; Mohod, A.; Dalla Fontana, G.; Anceschi, A.; Dalle Vacche, S. From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly. Polymers 2025, 17, 1582. https://doi.org/10.3390/polym17111582
Di Pasquale A, Zoccola M, Mohod A, Dalla Fontana G, Anceschi A, Dalle Vacche S. From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly. Polymers. 2025; 17(11):1582. https://doi.org/10.3390/polym17111582
Chicago/Turabian StyleDi Pasquale, Alessia, Marina Zoccola, Ashish Mohod, Giulia Dalla Fontana, Anastasia Anceschi, and Sara Dalle Vacche. 2025. "From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly" Polymers 17, no. 11: 1582. https://doi.org/10.3390/polym17111582
APA StyleDi Pasquale, A., Zoccola, M., Mohod, A., Dalla Fontana, G., Anceschi, A., & Dalle Vacche, S. (2025). From Waste to Technological Products: Bioplastics Production from Proteins Extracted from the Black Soldier Fly. Polymers, 17(11), 1582. https://doi.org/10.3390/polym17111582