Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques
Abstract
1. The Emerging Role of Edible Insect Species in Food and Feed
2. Insect Species Authentication Techniques for Food and Feed Applications
2.1. Proteins as Analytical Targets
2.2. Polysaccharide Targets in Insect Detection
2.3. Metabolites
2.4. DNA as Detection Marker
3. Insect DNA Analysis
3.1. Advances in PCR Techniques for Analysis of Insect DNA
3.2. Insect DNA Barcoding
3.2.1. Insect DNA Barcoding with Sanger Sequencing
3.2.2. Insect DNA Metabarcoding
3.2.3. Beyond PCR Bias: Whole-Genome Sequencing as an Alternative to Amplicon-Based Metabarcoding
4. Practical Approaches to Monitoring Insect Product Authenticity
5. Current Trends and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BOLD | Barcode of Life Data System |
cdPCR | Capillary digital polymerase chain reaction |
COI | Cytochrome oxidase I |
Cq | Quantification cycle |
cyt b | Cytochrome b |
DART-HRMS | Direct analysis in real time high-resolution mass spectrometry |
ddPCR | Droplet digital polymerase chain reaction |
dPCR | Digital polymerase chain reaction |
EFSA | European Food Safety Authority |
ELISA | Enzyme-linked immunosorbent assay |
ELLA | Enzyme-linked lectin sorbent assay |
GC | Gas chromatography |
GMO | Genetically modified organism |
HPLC | High-performance liquid chromatography |
HRMS | High-resolution mass spectrometry |
IBP | Insect-based product |
LC | Liquid chromatography |
LC-MS | Liquid chromatography mass spectrometry |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
mPCR | Multiplex polymerase chain reaction |
MS | Mass spectrometry |
mtDNA | Mitochondrial DNA |
NCBI | National Center for Biotechnology Information |
nDNA | Nuclear DNA |
NTS | Non-targeted screening |
PCR | Polymerase chain reaction |
qPCR | Quantitative polymerase chain reaction |
SDS PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
WGA | Wheat germ agglutinin |
UDG | Uracil-DNA glycosylase |
WGS | Whole-genome sequencing (and metagenomics) |
References
- Fuso, A.; Leni, G.; Prandi, B.; Lolli, V.; Caligiani, A. Novel foods/feeds and novel frauds: The case of edible insects. Trends Food Sci. Technol. 2024, 147, 104457. [Google Scholar] [CrossRef]
- Poma, G.; Cuykx, M.; Da Silva, K.M.; Iturrospe, E.; van Nuijs, A.L.; van Huis, A.; Covaci, A. Edible insects in the metabolomics era. First steps towards the implementation of entometabolomics in food systems. Trends Food Sci. Technol. 2022, 119, 371–377. [Google Scholar] [CrossRef]
- Spatola, G.; Giusti, A.; Mancini, S.; Tinacci, L.; Nuvoloni, R.; Fratini, F.; Di Iacovo, F.; Armani, A. Assessment of the information to consumers on insects-based products (Novel Food) sold by e-commerce in the light of the EU legislation: When labelling compliance becomes a matter of accuracy. Food Control 2024, 162, 110440. [Google Scholar] [CrossRef]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. Efsa J. 2016, 14, e04594. [Google Scholar]
- Zurek, L.; Gorham, J.R. Insects as vectors of foodborne pathogens. In Wiley Handbook of Science and Technology for Homeland Security; Wiley: Hoboken, NJ, USA, 2008; p. 1. [Google Scholar]
- Graczyk, T.K.; Knight, R.; Tamang, L. Mechanical transmission of human protozoan parasites by insects. Clin. Microbiol. Rev. 2005, 18, 128–132. [Google Scholar] [CrossRef]
- Gałęcki, R.; Bakuła, T.; Gołaszewski, J. Foodborne diseases in the edible Insect industry in Europe—New challenges and old problems. Foods 2023, 12, 770. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Tsen, H.-Y.; Chen, H.-Y.; Chang, Y.-H.; Lin, C.-K.; Chen, C.-Y.; Pai, W.-Y. Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. J. Microbiol. Methods 2012, 88, 110–116. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products—Results of a preliminary survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef]
- Vale-Hagan, W.; Singhal, S.; Grigoletto, I.; Totaro-Fila, C.; Theodoridou, K.; Koidis, A. Edible insects in mixed-sourced protein meals for animal feed and food: An EU focus. Food Humanit. 2023, 1, 1180–1187. [Google Scholar] [CrossRef]
- Liu, Z.; Xia, L.; Wu, Y.; Xia, Q.; Chen, J.; Roux, K.H. Identification and characterization of an arginine kinase as a major allergen from silkworm (Bombyx mori) larvae. Int. Arch. Allergy Immunol. 2009, 150, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Binder, M.; Mahler, V.; Hayek, B.; Sperr, W.R.; Schöller, M.; Prozell, S.; Wiedermann, G.; Valent, P.; Valenta, R.; Duchêne, M. Molecular and immunological characterization of arginine kinase from the Indianmeal moth, Plodia interpunctella, a novel cross-reactive invertebrate pan-allergen. J. Immunol. 2001, 167, 5470–5477. [Google Scholar] [CrossRef]
- Veys, P.; Baeten, V. Protocol for the isolation of processed animal proteins from insects in feed and their identification by microscopy. Food Control 2018, 92, 496–504. [Google Scholar] [CrossRef]
- Pečová, M.; Javůrková, Z.; Bartlová, M.; Pospiech, M. Detection of edible insect as a component of snack bars using histochemical method. J. Food Compos. Anal. 2024, 132, 106312. [Google Scholar] [CrossRef]
- Belghit, I.; Lock, E.-J.; Fumière, O.; Lecrenier, M.-C.; Renard, P.; Dieu, M.; Berntssen, M.H.; Palmblad, M.; Rasinger, J.D. Species-specific discrimination of insect meals for aquafeeds by direct comparison of tandem mass spectra. Animals 2019, 9, 222. [Google Scholar] [CrossRef]
- Francis, F.; Mazzucchelli, G.; Baiwir, D.; Debode, F.; Berben, G.; Caparros Megido, R. Proteomics based approach for edible insect fingerprinting in novel food: Differential efficiency according to selected model species. Food Control 2020, 112, 107135. [Google Scholar] [CrossRef]
- Ulrich, S.; Kühn, U.; Biermaier, B.; Piacenza, N.; Schwaiger, K.; Gottschalk, C.; Gareis, M. Direct identification of edible insects by MALDI-TOF mass spectrometry. Food Control 2017, 76, 96–101. [Google Scholar] [CrossRef]
- Karnaneedi, S.; Johnston, E.B.; Bose, U.; Juhász, A.; Broadbent, J.A.; Ruethers, T.; Jerry, E.M.; Kamath, S.D.; Limviphuvadh, V.; Stockwell, S.; et al. The Allergen Profile of Two Edible Insect Species—Acheta domesticus and Hermetia illucens. Mol. Nutr. Food Res. 2024, 68, 2300811. [Google Scholar] [CrossRef]
- Jeong, K.Y.; Son, M.; Lee, J.Y.; Park, K.H.; Lee, J.-H.; Park, J.-W. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori. J. Korean Med. Sci. 2015, 31, 18–24. [Google Scholar] [CrossRef]
- Pospiech, M.; Pečová, M.; Bartlová, M.; Javůrková, Z.; Kopecká, A.; Šebelová, K.; Pospíšil, O.; Kulma, M.; Folke, J.; Tremlová, B.; et al. Development of Indirect Sandwich ELLA for Detection of Insects in Food. Appl. Sci. 2024, 14, 10794. [Google Scholar] [CrossRef]
- Son, Y.-J.; Hwang, I.-K.; Nho, C.W.; Kim, S.M.; Kim, S.H. Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) larvae and characterization of mealworm chitin and chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Tata, A.; Massaro, A.; Marzoli, F.; Miano, B.; Bragolusi, M.; Piro, R.; Belluco, S. Authentication of edible insects’ powders by the combination of DART-HRMS signatures: The first application of ambient mass spectrometry to screening of novel food. Foods 2022, 11, 2264. [Google Scholar] [CrossRef] [PubMed]
- Tramuta, C.; Gallina, S.; Bellio, A.; Bianchi, D.M.; Chiesa, F.; Rubiola, S.; Romano, A.; Decastelli, L. A set of multiplex polymerase chain reactions for genomic detection of nine edible insect species in foods. J. Insect Sci. 2018, 18, 3. [Google Scholar] [CrossRef]
- Köppel, R.; Schum, R.; Habermacher, M.; Sester, C.; Piller, L.E.; Meissner, S.; Pietsch, K. Multiplex real-time PCR for the detection of insect DNA and determination of contents of Tenebrio molitor, Locusta migratoria and Achaeta domestica in food. Eur. Food Res. Technol. 2019, 245, 559–567. [Google Scholar] [CrossRef]
- Jilkova, D.; Marien, A.; Hulin, J.; Zdenkova, K.; Fumiere, O.; Cermakova, E.; Berben, G.; Debode, F. Detection of Acheta domesticus by real-time PCR in food and feed. J. Insects Food Feed 2024, 1, 1–16. [Google Scholar] [CrossRef]
- Garino, C.; Winter, R.; Broll, H.; Winkel, M.; Braeuning, A.; Reich, F.; Zagon, J. Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control 2022, 140, 109138. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, S.-Y.; Jung, S.-K.; Kim, M.-Y.; Kim, H.-Y. Development and validation of ultrafast PCR assays to detect six species of edible insects. Food Control 2019, 103, 21–26. [Google Scholar] [CrossRef]
- Mohamadzade Namin, S.; Yeasmin, F.; Choi, H.W.; Jung, C. DNA-based method for traceability and authentication of Apis cerana and A. dorsata honey (Hymenoptera: Apidae), using the NADH dehydrogenase 2 gene. Foods 2022, 11, 928. [Google Scholar] [CrossRef]
- Marien, A.; Sedefoglu, H.; Dubois, B.; Maljean, J.; Francis, F.; Berben, G.; Guillet, S.; Morin, J.F.; Fumière, O.; Debode, F. Detection of Alphitobius diaperinus by Real-Time Polymerase Chain Reaction With a Single-Copy Gene Target. Front. Vet. Sci. 2022, 9, 718806. [Google Scholar] [CrossRef]
- Zagon, J.; di Rienzo, V.; Potkura, J.; Lampen, A.; Braeuning, A. A real-time PCR method for the detection of black soldier fly (Hermetia illucens) in feedstuff. Food Control 2018, 91, 440–448. [Google Scholar] [CrossRef]
- Watanabe, S.; Masamura, N.; Satoh, S.-y.; Hirao, T. Technique for the identification of insect species in processed foods based on three short DNA sequences. Food Control 2023, 153, 109908. [Google Scholar] [CrossRef]
- Giusti, A.; Spatola, G.; Mancini, S.; Nuvoloni, R.; Armani, A. Novel foods, old issues: Metabarcoding revealed mislabeling in insect-based products sold by e-commerce on the EU market. Food Res. Int. 2024, 184, 114268. [Google Scholar] [CrossRef] [PubMed]
- Hillinger, S.; Saeckler, J.; Domig, K.J.; Dobrovolny, S.; Hochegger, R. Development of a DNA Metabarcoding Method for the Identification of Insects in Food. Foods 2023, 12, 1086. [Google Scholar] [CrossRef]
- Siozios, S.; Massa, A.; Parr, C.L.; Verspoor, R.L.; Hurst, G.D. DNA barcoding reveals incorrect labelling of insects sold as food in the UK. PeerJ 2020, 8, e8496. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Sanz, L.; Senar, M.À.; Piñol, J. Estimation of the relative abundance of species in artificial mixtures of insects using low-coverage shotgun metagenomics. Metabarcoding Metagenom. 2020, 4, e48281. [Google Scholar] [CrossRef]
- Hrbek, V.; Zdenkova, K.; Jilkova, D.; Cermakova, E.; Jiru, M.; Demnerova, K.; Pulkrabova, J.; Hajslova, J. Authentication of Meat and Meat Products Using Triacylglycerols Profiling and by DNA Analysis. Foods 2020, 9, 1269. [Google Scholar] [CrossRef]
- Cermakova, E.; Lencova, S.; Mukherjee, S.; Horka, P.; Vobruba, S.; Demnerova, K.; Zdenkova, K. Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art. Foods 2023, 12, 228. [Google Scholar] [CrossRef]
- Šmarda, J.; Doškař, J.; Pantůček, R.; Růžičková, V.; Koptíková, J. Metody Molekulární Biologie; Masarykova Univerzita: Brno, Czech Republic, 2005. [Google Scholar]
- Dingle, T.C.; Sedlak, R.H.; Cook, L.; Jerome, K.R. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin. Chem. 2013, 59, 1670–1672. [Google Scholar] [CrossRef]
- Huggett, J.F.; O’Grady, J.; Bustin, S. qPCR, dPCR, NGS—A journey. Biomol. Detect. Quantif. 2015, 3, A1. [Google Scholar] [CrossRef]
- Debode, F.; Marien, A.; Gérard, A.; Francis, F.; Fumière, O.; Berben, G. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit. Contam. Part A 2017, 34, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Marien, A.; Dubois, B.; Anselmo, A.; Veys, P.; Berben, G.; Kohl, C.; Maljean, J.; Guillet, S.; Morin, J.F.; Debode, F. Detection of Bombyx mori as a Protein Source in Feedingstuffs by Real-Time PCR with a Single-Copy Gene Target. Agriculture 2024, 14, 1996. [Google Scholar] [CrossRef]
- Robin, E.D.; Wong, R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell. Physiol. 1988, 136, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Paracchini, V.; Petrillo, M.; Lievens, A.; Kagkli, D.-M.; Angers-Loustau, A. Nuclear DNA barcodes for cod identification in mildly-treated and processed food products. Food Addit. Contam. Part A 2019, 36, 1–14. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Vogensen, F.K.; Karlsson, A.H. Species determination—Can we detect and quantify meat adulteration? Meat Sci. 2009, 83, 165–174. [Google Scholar] [CrossRef]
- Meiklejohn, K.A.; Damaso, N.; Robertson, J.M. Assessment of BOLD and GenBank—Their accuracy and reliability for the identification of biological materials. PLoS ONE 2019, 14, e0217084. [Google Scholar] [CrossRef]
- Ratnasingham, S.; Hebert, P.D. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef]
- Kjærandsen, J. Current state of DNA barcoding of Sciaroidea (Diptera)—Highlighting the need to build the reference library. Insects 2022, 13, 147. [Google Scholar] [CrossRef]
- Yu, D.W.; Ji, Y.; Emerson, B.C.; Wang, X.; Ye, C.; Yang, C.; Ding, Z. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 2012, 3, 613–623. [Google Scholar] [CrossRef]
- Hebert, P.D.; Ratnasingham, S.; De Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270 (Suppl. 1), S96–S99. [Google Scholar] [CrossRef]
- Zdenkova, K.; Akhatova, D.; Fialova, E.; Krupa, O.; Kubica, L.; Lencova, S.; Demnerova, K. Detection of meat adulteration: Use of efficient and routine-suited multiplex polymerase chain reaction-based methods for species authentication and quantification in meat products. J. Food Nutr. Res. 2018, 57, 351. [Google Scholar]
- Barido, F.H.; Desti, D.; Pramono, A.; Abdurrahman, Z.H.; Volkandari, S.D.; Cahyadi, M. Validating duplex-PCR targeting ND2 for bovine and porcine detection in meat products. Food Chem. Mol. Sci. 2023, 7, 100181. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Liu, S.; Yang, Q.; Su, X.; Zhou, L.; Tang, M.; Fu, R.; Li, J.; Huang, Q. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. GigaScience 2013, 2, 2047-217X-2-4. [Google Scholar] [CrossRef] [PubMed]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; de Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef]
- Elbrecht, V.; Leese, F. Can DNA-Based Ecosystem Assessments Quantify Species Abundance? Testing Primer Bias and Biomass—Sequence Relationships with an Innovative Metabarcoding Protocol. PLoS ONE 2015, 10, e0130324. [Google Scholar] [CrossRef]
- SVS. Inspektoři SVS Odhalili Při Kontrole Skladu Potravin v Praze Nelegální Potravinu z Hmyzu. 2022. Available online: https://bezpecnostpotravin.cz/inspektori-svs-odhalili-pri-kontrole-skladu-potravin-v-praze-nelegalni-potravinu-z-hmyzu/ (accessed on 27 May 2025).
- Weissman, D.B.; Gray, D.A.; Pham, H.T.; Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa 2012, 3504, 67–88. [Google Scholar] [CrossRef]
Target | Method |
---|---|
Insect body or its parts | Microscopy (light microscope [15]) |
Histochemical methods: visualization after staining [16] | |
Protein | Mass spectrometry (e.g., liquid chromatography mass spectrometry: LC-MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: MALDI-TOF MS) [17,18,19] |
Electrophoresis (SDS-PAGE [20]) | |
Immunochemical tests (enzyme-linked immunosorbent assay: ELISA, western blot [20,21]) | |
Saccharide | Enzyme-linked lectin sorbent assay (ELLA) [22] |
High-performance liquid chromatography (HPLC) [23] | |
Metabolites | Gas chromatography (GC) and liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) [2] |
Direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) [2,24] | |
DNA | PCR and its variations (multiplex PCR, nested PCR, ultrafast PCR system based on a microfluidic chip) [25] |
PCR with fluorescence detection in real-time (qPCR) [26,27,28,29,30,31,32] | |
Digital (droplet) PCR (dPCR or ddPCR) [27,31,32] | |
Sequencing (Sanger and next-generation sequencing) [33,34,35,36,37] |
Parameters | Endpoint PCR | qPCR with Intercalating Dye | qPCR with Fluorescently Labelled Probe(s) | Digital PCR | |
---|---|---|---|---|---|
Device capacity | Most often 96 reactions/run | Most often 96 reactions/run | Most often 96 reactions/run | Depends on device (8–96) | |
Price of the device | Low | Medium | Medium | High | |
Cost of analysis (includes chemicals and plastic only) | Low | Medium | High | Very high | |
Time required for PCR analysis | Analysis | ~5 h * | ~3.5 h (Tm analysis) | ~2 h | cdPCR: ~2 h; ddPCR: ~3.5 h |
Evaluation | Short | Medium | Medium | Medium | |
Post-PCR processing | Horizontal agarose electrophoresis | Melt curve analysis | No | Chip/droplet fluorescence reading | |
Suitable for the analysis of single species samples | Yes | Yes | Yes | Yes | |
Suitable for the analysis of mixed samples | Yes | Limits in multiplex arrangements | Yes | Yes, with fluorescently labelled probe(s) | |
Applicability for quantification | No | Yes, single-species samples | Yes | Yes | |
Specificity | Medium | Medium, limits in multiplexes | High ** | High ** | |
Results evaluation requirements | Simple | Moderate | Moderate | Simple | |
Published protocols for insects | A. diaperinus [25], A. domesticus [25], B. mori [25], G. mellonella [25], G. sigillatus [25], L. migratoria [25], S. gregaria [25], T. molitor [25], Z. atratus [25] | A. dichotoma [29], Apis cerana, A. dorsata and A. mellifera [30], B. mori [29], G bimaculatus [29], O. chinensis [29], P. brevitarsis [29], T. molitor [29], unspecified insects [26] | A. diaperinus [28,31], A. domesticus [26,27], H. illucens [32], T. molitor [26,43], L. migratoria [26], insects [43] | A. diaperinus [31], A. domesticus [27], H. illucens [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdeňková, K.; Čermáková, E.; Vejl, P.; Čermáková, A.; Vašek, J. Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques. Foods 2025, 14, 2002. https://doi.org/10.3390/foods14112002
Zdeňková K, Čermáková E, Vejl P, Čermáková A, Vašek J. Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques. Foods. 2025; 14(11):2002. https://doi.org/10.3390/foods14112002
Chicago/Turabian StyleZdeňková, Kamila, Eliška Čermáková, Pavel Vejl, Agáta Čermáková, and Jakub Vašek. 2025. "Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques" Foods 14, no. 11: 2002. https://doi.org/10.3390/foods14112002
APA StyleZdeňková, K., Čermáková, E., Vejl, P., Čermáková, A., & Vašek, J. (2025). Analytical Methods for the Identification of Edible and Feed Insects: Focus on DNA-Based Techniques. Foods, 14(11), 2002. https://doi.org/10.3390/foods14112002