Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = sol-gel ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4013 KiB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 290
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 370
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

32 pages, 6710 KiB  
Article
XPS Investigation of Sol–Gel Bioactive Glass Synthesized with Geothermal Water
by Helena Cristina Vasconcelos, Maria Meirelles and Reşit Özmenteş
Surfaces 2025, 8(3), 50; https://doi.org/10.3390/surfaces8030050 - 14 Jul 2025
Viewed by 207
Abstract
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and [...] Read more.
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and MgO-modified bioglasses. Using high-resolution X-ray photoelectron spectroscopy (XPS), we examined how the mineral composition of the waters influenced the chemical environment and network connectivity of the glass surface. The presence of trace ions, such as Mg2+, Sr2+, Zn2+, and B3+, altered the silicate structure, as evidenced by binding energy shifts and peak deconvolution in O 1s, Si 2p, P 2p, Ca 2p, and Na 1s spectra. Thermal treatment further promoted polymerization and reduced hydroxylation. Our findings suggest that mineral-rich waters act as functional agents, modulating the reactivity and structure of bioactive glass surfaces in eco-sustainable synthesis routes. Full article
(This article belongs to the Special Issue Bio-Inspired Surfaces)
Show Figures

Figure 1

22 pages, 6898 KiB  
Article
The Impact of Aluminum Doping on the Performance of MgV2O4 Spinel Cathodes for High-Rate Zinc-Ion Energy Storage
by He Lin, Zhiwen Wang and Yu Zhang
Molecules 2025, 30(13), 2833; https://doi.org/10.3390/molecules30132833 - 1 Jul 2025
Viewed by 384
Abstract
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, [...] Read more.
This study explores the development of aluminum-doped MgV2O4 spinel cathodes for aqueous zinc-ion batteries (AZIBs), addressing the challenges of poor Zn2+ ion diffusion and structural instability. Al3+ ions were pre-inserted into the spinel structure using a sol-gel method, which enhanced the material’s structural stability and electrical conductivity. The doping of Al3+ mitigates the electrostatic interactions between Zn2+ ions and the cathode, thereby improving ion diffusion and facilitating efficient charge/discharge processes. While pseudocapacitive behavior plays a dominant role in fast charge storage, the diffusion of Zn2+ within the bulk material remains crucial for long-term performance and stability. Our findings demonstrate that Al-MgV2O4 exhibits enhanced Zn2+ diffusion kinetics and robust structural integrity under high-rate cycling conditions, contributing to its high electrochemical performance. The Al-MgVO cathode retains a capacity of 254.3 mAh g−1 at a high current density of 10 A g−1 after 1000 cycles (93.6% retention), and 186.8 mAh g−1 at 20 A g−1 after 2000 cycles (90.2% retention). These improvements, driven by enhanced bulk diffusion and the stabilization of the crystal framework through Al3+ doping, make it a promising candidate for high-rate energy storage applications. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

20 pages, 4257 KiB  
Article
Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study
by Nadezhda D. Yakushova, Ivan A. Gubich, Andrey A. Karmanov, Alexey S. Komolov, Aleksandra V. Koroleva, Ghenadii Korotcenkov and Igor A. Pronin
Technologies 2025, 13(7), 277; https://doi.org/10.3390/technologies13070277 - 1 Jul 2025
Viewed by 318
Abstract
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use [...] Read more.
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use of the synthesized samples as highly efficient photocatalysts providing the decomposition of toxic dyes (methyl orange) under the action of both ultraviolet radiation and visible light. It establishes the contribution of the average crystallite size, the proportion of zinc atoms in the crystalline phase, their nanostructure, as well as X-ray amorphous phases of copper and aluminum to the efficiency of the photocatalysis process. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Graphical abstract

18 pages, 2233 KiB  
Article
Structure and Electrochemical Behavior of ZnLaFeO4 Alloy as a Negative Electrode in Ni-MH Batteries
by Houyem Gharbi, Wissem Zayani, Youssef Dabaki, Chokri Khaldi, Omar ElKedim, Nouredine Fenineche and Jilani Lamloumi
Energies 2025, 18(13), 3251; https://doi.org/10.3390/en18133251 - 21 Jun 2025
Viewed by 274
Abstract
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe [...] Read more.
This study focuses on the structural and electrochemical behavior of the compound ZnLaFeO4 as a negative electrode material for nickel–metal hydride (Ni-MH) batteries. The material was synthesized by a sol–gel hydrothermal method to assess the influence of lanthanum doping on the ZnFe2O4 spinel structure. X-ray diffraction revealed the formation of a dominant LaFeO3 perovskite phase, with ZnFe2O4 and La2O3 as secondary phases. SEM analysis showed agglomerated grains with an irregular morphology. Electrochemical characterization at room temperature and a discharge rate of C/10 (full charge in 10 h) revealed a maximum discharge capacity of 106 mAhg−1. Although La3+ doping modified the microstructure and slowed the activation process, the electrode exhibited stable cycling with moderate polarization behavior. The decrease in capacity during cycling is due mainly to higher internal resistance. These results highlight the potential and limitations of La-doped spinel ferrites as alternative negative electrodes for Ni-MH systems. Full article
Show Figures

Figure 1

16 pages, 2642 KiB  
Article
Enhanced Optoelectronic Synaptic Performance in Sol–Gel Derived Al-Doped ZnO Thin Film Devices
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Materials 2025, 18(13), 2931; https://doi.org/10.3390/ma18132931 - 20 Jun 2025
Viewed by 710
Abstract
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of [...] Read more.
We report the fabrication and characterization of Al-doped ZnO (AZO) optoelectronic synaptic devices based on sol–gel-derived thin films with varying Al concentrations (0~4.0 wt%). Structural and optical analyses reveal that moderate Al doping modulates the crystal orientation, optical bandgap, and defect levels of ZnO films. Notably, 2.0 wt% Al doping yields the widest bandgap (3.31 eV), stable PL emission, and uniform deep-level absorption without inducing significant lattice disorder. Synaptic performance, including learning–forgetting dynamics and persistent photoconductivity (PPC), is strongly dependent on Al concentration. The 2.0 wt% AZO device exhibits the lowest forgetting rate and longest memory retention due to optimized trap formation, particularly Al–oxygen vacancy complexes that enhance carrier lifetime. Visual memory simulations using a 3 × 3 pixel array under patterned UV illumination further confirm superior long-term memory (LTM) behavior at 2.0 wt%, with stronger excitatory postsynaptic current (EPSC) retention during repeated stimulation. These results demonstrate that precise doping control via the sol–gel method enables defect engineering in oxide-based neuromorphic devices. Our findings provide an effective strategy for designing low-cost, scalable optoelectronic synapses with tunable memory characteristics suitable for future in-sensor computing and neuromorphic vision systems. Full article
Show Figures

Figure 1

9 pages, 3564 KiB  
Communication
Pico-Dispensed Zinc Oxide Nanoparticles for Actuation of Microcantilevers: A Precise Deposition Approach
by Paweł Janus, Anna Katarzyna Piotrowska, Piotr Prokaryn, Andrzej Sierakowski, Jan Prokaryn and Rafał Dobrowolski
Sensors 2025, 25(12), 3689; https://doi.org/10.3390/s25123689 - 12 Jun 2025
Viewed by 2411
Abstract
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. [...] Read more.
This paper presents a cost-effective and versatile pico-dispensing technique as an efficient and straightforward approach for depositing zinc oxide nanoparticle (ZnO—NP) thin films on micromechanical devices (MEMS). Due to its piezoelectric properties, bulk ZnO is commonly used as a material for micro-/nanocantilever actuation. The pico-dispensing process provides precise control over the deposition, allowing uniform and localized application of ZnO—NP on microcantilevers. Compared to traditional ZnO deposition techniques (e.g., sputtering or sol–gel), pico-dispensing of ZnO—NP offers advantages in simplicity, reduced material waste, and significantly lower costs. Furthermore, it is easy to tailor the composition and properties by incorporating nanoparticles of other materials. Experimental results demonstrate that ZnO—NP thin films deposited via pico-dispensing enable actuation with amplitudes of several nanometers and bandwidths up to 250 kHz, making them potentially suitable for actuation of micromechanical devices such as in dynamic AFM modes. Full article
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Bioactive Calcium Silico-Phosphate Glasses Doped with Mg2+ and/or Zn2+: Biocompatibility, Bioactivity and Antibacterial Activity
by Laura-Nicoleta Dragomir, Cristina-Daniela Ghiţulică, Andreia Cucuruz, Andreea Lazar, Georgeta Voicu and Sorina Dinescu
Antibiotics 2025, 14(6), 534; https://doi.org/10.3390/antibiotics14060534 - 22 May 2025
Viewed by 548
Abstract
Bioactive glasses in the SiO2-CaO-P2O5 system represent emerging materials for hard-tissue-regeneration applications. This article focuses on the synthesis, characterization, and biological interaction of glasses doped with Mg2+ and/or Zn2+, with an emphasis on their effects [...] Read more.
Bioactive glasses in the SiO2-CaO-P2O5 system represent emerging materials for hard-tissue-regeneration applications. This article focuses on the synthesis, characterization, and biological interaction of glasses doped with Mg2+ and/or Zn2+, with an emphasis on their effects on biomineralization, antibacterial behavior, and interactions with preosteoblasts from the MC3T3-E1 cell line. The bioglasses were synthesized using the sol-gel method, and the vitreous nature remained predominant even after thermal treatment at 600 °C for 2 h. From an in vitro perspective, the synthesized bioglasses demonstrated strong cell adhesion and proliferation (notably in the case of Mg2+ doping), low cytotoxicity, and antibacterial properties (especially in Zn2+-doped samples). Additionally, the simultaneous doping with Mg2+ and Zn2+ of the bioactive glass matrix is a prospective strategy for developing biomaterials with a “dual” biological characteristics–both osteoinductive and antibacterial. Full article
(This article belongs to the Special Issue Nanotechnology-Based Antimicrobials and Drug Delivery Systems)
Show Figures

Figure 1

20 pages, 7982 KiB  
Article
Harvesting Friction Energy on Zinc Oxide and Zinc Oxide/Europium Oxide Sol-Gel Catalysts for Tribocatalytic Paracetamol Degradation
by Dobrina Ivanova, Hristo Kolev, Ralitsa Mladenova, Bozhidar I. Stefanov and Nina Kaneva
Molecules 2025, 30(11), 2265; https://doi.org/10.3390/molecules30112265 - 22 May 2025
Viewed by 835
Abstract
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface [...] Read more.
In the natural environment, mechanical energy is widely available as a sustainable and green energy source. In this paper, we successfully convert mechanical energy on ZnO and ZnO/Eu2O3 tribocatalysts via a friction route. Electrons were transferred across the contact interface when the catalyst particles and the polytetrafluoroethylene (PTFE)-sealed magnetic bar rubbed against each other under magnetic stirring. At the same time, holes were left on the catalyst while the PTFE absorbed the electrons. Similar to photocatalysis, organic pollutants can be effectively oxidized by the holes in the valence band of sol-gel catalysts due to their strong oxidative ability. The tribocatalytic tests demonstrated that ZnO and ZnO/Eu2O3 could eliminate organic analgesics (paracetamol) under magnetic stirring in the dark. By controlling the quantity of rare earth elements (1, 2, and 3 mol%), stirring speed, and the number of magnetic rods, we could further enhance the tribocatalytic performance. In addition to developing a green tribocatalysis approach for the oxidative purification of organic pollutants, this work offers a potential route for converting environmental mechanical energy into chemical energy, which could be used in sustainable energy and environmental remediation. Full article
Show Figures

Figure 1

16 pages, 3307 KiB  
Article
Synaptic Plasticity and Memory Retention in ZnO–CNT Nanocomposite Optoelectronic Synaptic Devices
by Seung Hun Lee, Dabin Jeon and Sung-Nam Lee
Materials 2025, 18(10), 2293; https://doi.org/10.3390/ma18102293 - 15 May 2025
Cited by 2 | Viewed by 610
Abstract
This study presents the fabrication and characterization of ZnO–CNT composite-based optoelectronic synaptic devices via a sol–gel process. By incorporating various concentrations of CNTs (0–2.0 wt%) into ZnO thin films, we investigated their effects on synaptic behaviors under ultraviolet (UV) stimulation. The CNT addition [...] Read more.
This study presents the fabrication and characterization of ZnO–CNT composite-based optoelectronic synaptic devices via a sol–gel process. By incorporating various concentrations of CNTs (0–2.0 wt%) into ZnO thin films, we investigated their effects on synaptic behaviors under ultraviolet (UV) stimulation. The CNT addition enhanced the electrical and optical performance by forming a p–n heterojunction with ZnO, which promoted charge separation and suppressed recombination. As a result, the 1.5 wt% CNT device exhibited the highest excitatory postsynaptic current (EPSC), improved paired-pulse facilitation, and prolonged memory retention. Learning–forgetting cycles revealed that repeated stimulation reduced the number of pulses required for relearning while extending the forgetting time, mimicking biological memory reinforcement. Energy consumption per pulse was estimated at 16.34 nJ, suggesting potential for low-power neuromorphic applications. A 3 × 3 device array was also employed for visual memory simulation, showing spatially controllable and stable memory states depending on CNT content. To support these findings, structural and optical analyses were conducted using scanning electron microscopy (SEM), UV-visible absorption spectroscopy, photoluminescence (PL) spectroscopy, and Raman spectroscopy. These findings demonstrate that the synaptic characteristics of ZnO-based devices can be finely tuned through CNT incorporation, providing a promising pathway for the development of energy-efficient and adaptive optoelectronic neuromorphic systems. Full article
Show Figures

Figure 1

40 pages, 7391 KiB  
Review
Preparation Methods and Photocatalytic Performance of Kaolin-Based Ceramic Composites with Selected Metal Oxides (ZnO, CuO, MgO): A Comparative Review
by Dikra Bouras, Lotfi Khezami, Regis Barille, Neçar Merah, Billel Salhi, Gamal A. El-Hiti, Ahlem Guesmi and Mamoun Fellah
Inorganics 2025, 13(5), 162; https://doi.org/10.3390/inorganics13050162 - 13 May 2025
Cited by 2 | Viewed by 1144
Abstract
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics [...] Read more.
The current review examines various methods for preparing photocatalytic materials based on ceramic substrates, with a focus on incorporating metal oxides such as ZnO, CuO, and MgO. This study compares traditional mixing, co-precipitation, sol–gel, and autoclave methods for synthesizing these materials. Kaolin-based ceramics (DD3 and DD3 with 38% ZrO2) from Guelma, Algeria, were used as substrates. This review highlights the effects of different preparation methods on the structural, morphological, and compositional properties of the resulting photocatalysts. Additionally, the potential of these materials for the photocatalytic degradation of organic dyes, specifically Orange II, was evaluated. Results indicated that ceramic/ZnO/CuO and ceramic/MgO powders prepared via traditional mixing and co-precipitation techniques exhibited significantly faster degradation rates under visible light than Cu layers deposited on ceramic substrates using solution gradient processes. This enhancement was attributed to the increased effective surface area and the size of the spherical nanoparticles obtained through these methods, which facilitated accelerated pollutant absorption. This study highlights the ease and cost-effectiveness of preparing robust layers on ceramic substrates, which are advantageous for photocatalytic applications due to their straightforward removal after filtration. Notably, DD3Z/MgO powders demonstrated superior catalytic activity, achieving complete degradation of the organic dye in just 10 min, whereas DD3Z/ZnO-CuO powders achieved 93.6% degradation after 15 min. Additionally, experiments using kaolin-based ceramics as substrates instead of powders yielded a maximum dye decomposition rate of 77.76% over 6 h using ZnO thin layers prepared via the autoclave method. Full article
(This article belongs to the Special Issue Nanocomposites for Photocatalysis, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 7737 KiB  
Article
Photocatalytic Efficiency of Pure and Palladium Co-Catalytic Modified Binary System
by Nina Kaneva and Albena Bachvarova-Nedelcheva
Inorganics 2025, 13(5), 161; https://doi.org/10.3390/inorganics13050161 - 11 May 2025
Viewed by 590
Abstract
The present work examines pure and palladium photofixed TiO2 and binary (TiO2/ZnO) photocatalysts for breaking down tartrazine, a food coloring agent, in distilled water. Powders with the following compositions are obtained using the sol-gel process: 100TiO2, 10TiO2 [...] Read more.
The present work examines pure and palladium photofixed TiO2 and binary (TiO2/ZnO) photocatalysts for breaking down tartrazine, a food coloring agent, in distilled water. Powders with the following compositions are obtained using the sol-gel process: 100TiO2, 10TiO2/90ZnO, 50TiO2/50ZnO, and 90TiO2/10ZnO. The composite materials are analyzed using SEM-EDS, UV-Vis, DTA-TG, and X-ray diffraction. The synthesized gels are then photo-fixed with UV light to incorporate palladium ions and are also examined for tartrazine (E102) degradation. The photocatalytic tests were carried out in a cylindrical glass reactor illuminated by ultraviolet light. Compared to mixed binary catalysts, the prepared pure TiO2 catalyst demonstrated greater activity in the photodegradation of tartrazine (E102). The further of a specific quantity of zinc oxide reduced the catalytic properties of TiO2. The recombination of photoinduced electron-hole pairs in ZnO may account for this. In comparison to the pure samples, the co-catalytic palladium-modified gels exhibited higher photocatalytic efficiency. Heterojunction and palladium modification of the composites partially captured and transferred the electrons. Consequently, the longer lifetime of the photogenerated charges improved the catalytic activity of the palladium titanium dioxide and binary gels. Additionally, under UV light, pure and palladium photofixed TiO2 and binary sol-gel samples displayed excellent stability for tartrazine photodegradation. Full article
(This article belongs to the Special Issue Metal Catalyst Discovery, Design and Synthesis)
Show Figures

Figure 1

18 pages, 4535 KiB  
Article
Fabrication of ZnO Thin Films Doped with Na at Different Percentages for Sensing CO2 in Small Quantities at Room Temperature
by Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis
Sensors 2025, 25(9), 2705; https://doi.org/10.3390/s25092705 - 24 Apr 2025
Cited by 1 | Viewed by 534
Abstract
The objective of this study is the fabrication of sensors which can detect modifications in CO2 concentrations at room temperature, thus indicating the quality or microbial spoilage of food products when incorporated into food packaging. ZnO nanostructures are known for their ability [...] Read more.
The objective of this study is the fabrication of sensors which can detect modifications in CO2 concentrations at room temperature, thus indicating the quality or microbial spoilage of food products when incorporated into food packaging. ZnO nanostructures are known for their ability to detect organic gases; however, their effectiveness is limited to high temperatures (greater than 200 °C). To overcome this limitation, sodium (Na) doping is investigated as a way to enhance the sensing properties of ZnO films and lower the working temperature. In this study, undoped and Na-doped ZnO thin films were developed via the sol-gel method with different Na percentages (2.5, 5 and 7.5%) and were deposited via spin coating. The crystal structure, the morphology, and the surface topography of the developed films were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. Furthermore, the response to CO2 was measured by varying its concentration up to 500 ppm at room temperature. All the developed films presented the characteristic diffraction peaks of the ZnO wurtzite hexagonal crystal structure. SEM revealed that the films consisted of densely packed grains, with an average particle size of 58 nm. Na doping increased the film thickness but reduced the surface roughness. Finally, the developed sensors demonstrated very good CO2 sensing properties, with the 2.5% Na-doped sensor having an enhanced sensing performance concerning sensitivity, response, and recovery times. This leads to the conclusion that Na-doped ZnO sensors could be used for the detection of microbial spoilage in food products at room temperature, making them suitable for smart food packaging applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop