Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = soil-loosening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3731 KiB  
Article
An Automated Method for Identifying Voids and Severe Loosening in GPR Images
by Ze Chai, Zicheng Wang, Zeshan Xu, Ziyu Feng and Yafeng Zhao
J. Imaging 2025, 11(8), 255; https://doi.org/10.3390/jimaging11080255 - 30 Jul 2025
Viewed by 250
Abstract
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity [...] Read more.
This paper proposes a novel automatic recognition method for distinguishing voids and severe loosening in road structures based on features of ground-penetrating radar (GPR) B-scan images. By analyzing differences in image texture, the intensity and clarity of top reflection interfaces, and the regularity of internal waveforms, a set of discriminative features is constructed. Based on these features, we develop the FKS-GPR dataset, a high-quality, manually annotated GPR dataset collected from real road environments, covering diverse and complex background conditions. Compared to datasets based on simulations, FKS-GPR offers higher practical relevance. An improved ACF-YOLO network is then designed for automatic detection, and the experimental results show that the proposed method achieves superior accuracy and robustness, validating its effectiveness and engineering applicability. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
A Poly(Acrylamide-co-Acrylic Acid)-Encapsulated Nitrification Inhibitor with Good Soil-Loosening, Phosphorous-Solubilizing, and Nitrogen Fixation Abilities and High-Temperature Resistance
by Hui Gao, Yuli Fu, Tianyu Wang, Meijia Liu, Jianzhen Mao and Feng Xu
Polymers 2025, 17(9), 1280; https://doi.org/10.3390/polym17091280 - 7 May 2025
Viewed by 346
Abstract
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA- [...] Read more.
3,4-dimethylpyrazole (DMPZ), when used as a nitrification inhibitor, exhibits volatility, poor thermal stability, high production costs, and limited functionality restricted to nitrogen fixation. To address these limitations and introduce novel phosphorus-solubilizing and soil-loosening abilities, herein, a poly (acrylamide-co-acrylic acid)-encapsulated NI (P(AA-co-AM)-e-NI) is synthesized by incorporating linear P(AM-co-AA) macromolecular structures into NI systems. The P(AA-co-AM)-e-NI demonstrates an obvious phase transition from a glassy state to a rubbery state, with a glass transition temperature of ~150 °C. Only 5 wt% of the weight loss occurs at 220 °C, meeting the temperature requirements of the high-tower melt granulation process (≥165 °C). The DMPZ content in P(AA-co-AM)-e-NI is 1.067 wt%, representing a 120% increase compared to our previous products (0.484 wt%). P(AA-co-AM)-e-NI can effectively reduce the abundance of ammonia-oxidizing bacteria and prolong the duration during which nitrogen fertilizers exist in the form of ammonium nitrogen. It can also cooperatively enhance the conversion of insoluble phosphorus into soluble phosphorus in the presence of ammonium nitrogen (NH4+-N). In addition, upon adding P(AA-co-AM)-e-NI into soils, soil bulk density and hardness decrease by 9.2% and 10.5%, respectively, and soil permeability increases by 10.5%, showing that it has a good soil-loosening ability and capacity to regulate the soil environment. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 3598 KiB  
Article
Biomimicry in the Context of Stabilised Porous Clays
by Arya Assadi-Langroudi
Biomimetics 2025, 10(5), 290; https://doi.org/10.3390/biomimetics10050290 - 5 May 2025
Viewed by 325
Abstract
This study explores the etymological roots of nature and nature-inspired design within the context of soil stabilisation. It outlines Aristotle’s doctrine of hylomorphism and applies these concepts to develop a pathway for the stabilisation of clays within their original porous or looser structure [...] Read more.
This study explores the etymological roots of nature and nature-inspired design within the context of soil stabilisation. It outlines Aristotle’s doctrine of hylomorphism and applies these concepts to develop a pathway for the stabilisation of clays within their original porous or looser structure through interparticle modifications. A biopolymer is introduced to a base clay thorough a procedure that imitates forms, matter, generative processes, and functions of arbuscular mycorrhizal (AM) fungi. For the first time, the void ratio was progressively increased from 0.50 to 0.70, and the air ratio from 0.15 to 0.33, reflecting a systematic transition from a denser to a looser packing state. A 20% increase in shear wave velocity indicated enhanced interparticle engagement following treatment. This reinforcement effect contributed to the preservation of stiffness and residual strength, despite a 120% increase in air ratio and a 63% reduction in degree of saturation, alongside a modest improvement in unconfined compressive strength. The findings presented here mark a departure from both conventional and emerging stabilisation techniques, enabling engineered soil to remain porous, to loosen with time, and to continue delivering engineering and ecological services. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

25 pages, 4423 KiB  
Article
Weed Abundance, Seed Bank in Different Soil Tillage Systems, and Straw Retention
by Sinkevičienė Aušra, Bogužas Vaclovas, Sinkevičius Alfredas, Steponavičienė Vaida, Anicetas Lenkis and Kimbirauskienė Rasa
Agronomy 2025, 15(5), 1105; https://doi.org/10.3390/agronomy15051105 - 30 Apr 2025
Cited by 1 | Viewed by 464
Abstract
Comprehensive studies are needed to investigate the diversity, abundance, and seed bank of weeds in winter wheat, spring barley, and spring oilseed rape crops due to a lack of experimental studies. Tillage has a long-term impact on agroecosystems. Since 1999, a long-term field [...] Read more.
Comprehensive studies are needed to investigate the diversity, abundance, and seed bank of weeds in winter wheat, spring barley, and spring oilseed rape crops due to a lack of experimental studies. Tillage has a long-term impact on agroecosystems. Since 1999, a long-term field experiment has been conducted at the Experimental Station of Vytautas Magnus University. The soil of the experimental site is classified as Epieutric Endocalcaric Planosol (Endoclayic, Episiltic, Aric, Drainic, Endoraptic, Uterquic), according to the World Reference Base. Treatments were arranged using a split-plot design. According to the factorial field experiment, the straw was removed from one part of the experimental field, and on the other part of the field, the straw was chopped and spread at harvesting (factor A). Six tillage systems, conventional (deep) and shallow plowing, shallow loosening, shallow rotovation, catch cropping and rotovation, and no tillage, were used as a subplot (factor B). The current study results show that the number of annual, perennial, and total weeds and the dry matter biomass decreased in shallow-plowed plots compared to deep-plowed plots. Different applied tillage treatments had different effects on perennial weeds. In the upper (0–10 cm) soil layer studied, the number of annual, perennial, and total weed seeds decreased in the fields where the straw was chopped and spread compared to the fields where the straw was removed. In the deeper soil layer (10–25 cm), no tillage with cover crops and direct seeding without cover crops reduced the number of annual and perennial weed seeds compared to deep tillage. The aim of this experiment was to investigate the effects of long-term tillage of different intensities and straw retention systems on weeds in crop fields. The results were obtained in 2019 and 2021 (winter wheat, spring barley, spring oilseed rape). Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

26 pages, 1641 KiB  
Article
How Weed Flora Evolves in Cereal Fields in Relation to the Agricultural Environment and Farming Practices in Different Sub-Regions of Eastern Hungary
by Erzsébet Tóth, Zita Dorner, János György Nagy and Mihály Zalai
Agronomy 2025, 15(5), 1033; https://doi.org/10.3390/agronomy15051033 - 25 Apr 2025
Cited by 2 | Viewed by 474
Abstract
This study explores the relationship between abiotic factors, farming practices, and weed growth in winter wheat fields in Eastern Hungary. It examines the order of weed dominance and the influence of soil, environmental, and agricultural variables on weed composition and diversity before herbicide [...] Read more.
This study explores the relationship between abiotic factors, farming practices, and weed growth in winter wheat fields in Eastern Hungary. It examines the order of weed dominance and the influence of soil, environmental, and agricultural variables on weed composition and diversity before herbicide application. The research was conducted across four sub-regions in the Great Hungarian Plain, each with distinct soil, hydrological, and geographical conditions. Between 2018 and 2021, 103 fields were surveyed and weed species cover was recorded using EPPO-based identification and quadrat sampling. Soil properties, environmental conditions, and farming practices were documented through soil analysis, geographical data, and farmer interviews. Statistical analyses were preformed including ANCOVA, redundancy analysis, and Shannon diversity index calculations. The results show that common weed species include Veronica hederifolia, Stellaria media, and Apera spica-venti, with winter annuals dominating. Soil compaction and salinity affected weed diversity, while increased copper and zinc concentrations had minor effects on weed coverage. Farming practices, particularly tillage systems and fertilizer use, had a significant effect on species richness and diversity. Different regional and annual weed distributions were observed, with correlation between certain tillage systems and specific weed species. The results emphasize the need for climate-conscious farming practices, and we recommend prioritising shallow cultivation and deep loosening over ploughing in order to manage weed populations effectively. These insights contribute to sustainable weed management strategies in cereal production. Full article
(This article belongs to the Special Issue Weed Ecology, Evolution and Management)
Show Figures

Figure 1

23 pages, 14608 KiB  
Article
Structural Design and Analysis of Bionic Shovel Based on the Geometry of Mole Cricket Forefoot
by Shengbo Lin, Hongyan Sun, Guangen Yan, Kexin Que, Sijia Xu, Zhong Tang, Guoqiang Wang and Jiali Li
Agriculture 2025, 15(8), 854; https://doi.org/10.3390/agriculture15080854 - 15 Apr 2025
Viewed by 467
Abstract
In the mechanized harvesting of root vegetables, loosening is a key factor that restricts harvesting efficiency. Existing mechanical loosening methods have poor loosening effect and high operational resistance. Therefore, more efficient agricultural machinery is needed to reduce energy consumption and improve harvesting efficiency. [...] Read more.
In the mechanized harvesting of root vegetables, loosening is a key factor that restricts harvesting efficiency. Existing mechanical loosening methods have poor loosening effect and high operational resistance. Therefore, more efficient agricultural machinery is needed to reduce energy consumption and improve harvesting efficiency. To this end, based on the efficient excavation mechanism of the first claw toe structure of the mole cricket forefoot, this paper designs the shovel tip structure of the bionic loosening shovel by extracting its contour curve and analyzing the excavation process, constructs the working resistance model and dynamic balance equation of the bionic loosening shovel, determines the optimal working parameters through two-factor and three-level orthogonal simulation experiments, and carries out comparative simulation experiments with the common loosening shovels. The results show that the optimal combination of operating parameters for the bionic loosening shovel is the rotational speed ω = 5 r/s and the traveling speed of the whole machine v = 0.5 m/s. The disturbance performance of the 31 bionic loosening shovel on the soil is improved by 51.59% compared with that of the common loosening shovel, and the working resistance is reduced by 12.17%. The results of this study proved that the bionic structure of the first claw toe of the mole cricket can significantly improve the working performance of the loosening shovel, which can effectively improve the cutting effect of the soil and reduce the energy loss during the working process. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

36 pages, 28924 KiB  
Article
Mechanical Research and Optimization of the Design of an Umbrella-Shaped Enlarged-Head Hollow Grouting Bolt with an Expansion Pipe
by Jiang Xiao, Tongxiaoyu Wang, Youyun Li, Yulin Wang, Yujiang Liu, Boyuan Zhang, Yihui Wang and Yufeng Guo
Appl. Sci. 2025, 15(8), 4182; https://doi.org/10.3390/app15084182 - 10 Apr 2025
Viewed by 576
Abstract
In geotechnical engineering, traditional anchor bolts often have problems such as an insufficient bearing capacity, their ease of loosening, and an unsatisfactory support effect under complex geological conditions (such as soft soil or broken surrounding rock), resulting in it being difficult to guarantee [...] Read more.
In geotechnical engineering, traditional anchor bolts often have problems such as an insufficient bearing capacity, their ease of loosening, and an unsatisfactory support effect under complex geological conditions (such as soft soil or broken surrounding rock), resulting in it being difficult to guarantee engineering stability. In order to solve these problems, this paper studies the supporting performance of a hollow grouting anchor with an umbrella-shaped expansion head with an expansion pipe. Through theoretical analysis, mechanical performance analysis, and experimental analysis, the supporting mechanisms and mechanical characteristics of a hollow grouting anchor with an umbrella-shaped expansion head are systematically discussed. The calculation formula for the maximum pull-out force of the umbrella-shaped expansion head is clarified, and the fixed range of the expansion body section in relation to the loose ring is quantified. Based on the analysis results, the structural parameters and material properties of the bolt were optimized, and the optimization effect was verified by numerical simulation. The results show that the optimized bolt has significantly improved the pull-out bearing capacity, shear resistance, and reinforcement effect on the soil. The maximum pull-out force of the umbrella-shaped expansion head can be increased by up to 35%, and the fixed range of the expansion body section can be expanded by 45%. The research provides an efficient and reliable support solution for geotechnical engineering fields, such as roadway engineering and tunnel engineering, which significantly improves the stability and safety of engineering under complex geological conditions. At the same time, it provides an important theoretical basis and practical reference for the design and construction of similar projects. Full article
(This article belongs to the Special Issue Progress and Challenges of Rock Engineering)
Show Figures

Figure 1

17 pages, 6381 KiB  
Article
Stability Analysis of the Longitudinal Slope Linear Shield Tunnel Excavation Face
by Mengxi Zhang and Shengwei Gu
Appl. Sci. 2025, 15(8), 4083; https://doi.org/10.3390/app15084083 - 8 Apr 2025
Cited by 1 | Viewed by 407
Abstract
In shield tunnel engineering, longitudinal slopes and other complex alignments are commonly encountered. Given the uneven stress distribution in the soil ahead of the tunnel face during excavation, studying and understanding the instability mechanisms of the excavation face is particularly crucial. In this [...] Read more.
In shield tunnel engineering, longitudinal slopes and other complex alignments are commonly encountered. Given the uneven stress distribution in the soil ahead of the tunnel face during excavation, studying and understanding the instability mechanisms of the excavation face is particularly crucial. In this study, a visualized transparent soil test was designed to investigate shield tunneling along a longitudinal slope. The displacement patterns of the soil in front of the excavation face were analyzed in detail. Furthermore, FLAC3D numerical simulations were employed to examine the variations in the ultimate support ratio and vertical stress of the soil under different slope conditions. The reliability of the results was also validated. The research findings reveal the stability characteristics of the excavation face and its influencing factors during shield tunneling at different slope angles. These findings provide a scientific basis for the design of shield tunnels with longitudinal slopes. The results of the study indicate that (1) the maximum destabilization width of the soil with slope i = 15% is increased by 18.2% and 36.8% compared to that with slope i = 0% and −15%, respectively; (2) the ultimate support force, as well as the horizontal and vertical displacements of the excavation face, increase significantly under an upward slope condition (i > 0) compared to those in a horizontal tunnel (i = 0) and a downward slope (i < 0); and (3) the longitudinal slope gradient i is negatively correlated with the inflection point depth, meaning that steeper slopes result in shallower loosening zone depths. Full article
Show Figures

Figure 1

21 pages, 1868 KiB  
Article
Empirical Models for Estimating Draught and Vertical Reaction Forces of a Duckfoot Tool in Compacted Soil: Effects of Moisture Content, Depth, Width, and Speed
by Aleksander Lisowski, Daniel Lauryn, Tomasz Nowakowski, Jacek Klonowski, Adam Świętochowski, Michał Sypuła, Jarosław Chlebowski, Jan Kamiński, Krzysztof Kostyra, Magdalena Dąbrowska, Adam Strużyk, Leszek Mieszkalski and Mateusz Stasiak
Appl. Sci. 2025, 15(7), 3573; https://doi.org/10.3390/app15073573 - 25 Mar 2025
Viewed by 308
Abstract
This paper presents the development of empirical mathematical models of draught force, Fx, and vertical force, Fy, acting on duckfoots attached to the tines with different stiffness and working in various soil conditions. The models consider technical variables such [...] Read more.
This paper presents the development of empirical mathematical models of draught force, Fx, and vertical force, Fy, acting on duckfoots attached to the tines with different stiffness and working in various soil conditions. The models consider technical variables such as stiffness, k, tool depth-to-width ratio, d/w, tool movement speed, v, and soil moisture content, MC, which have not been thoroughly analysed in the literature. The correlation coefficients for predicting Fx and Fy values were 0.4996 and 0.6227, respectively. Statistical analysis confirmed the significant effect of these parameters on the forces acting on the tools, with the variables d/w and v having the most critical impact on Fx and Fy. The SLSQP (sequential least squares programming) optimisation method was used to determine the optimal values of technical variables. The maximum value of Fx was 438.55 N, and the minimum was 98.98 N, with variable values at the edges of the studied ranges. Similarly, Fy values of 135.25 N and −84.55 N, respectively, were obtained. The optimisation results showed good fitness with experimental results, and the negative relative errors (from −1.72% do −4.81%), indicating overestimating, confirmed the accuracy of the model’s predictions. The justification of the research results allowed us to conclude that there is no basis for rejecting the explanatory hypotheses. The developed models have a generalisable value in the analysed ranges, and further research should focus on creating more universal, theoretical models of soil–tool interactions. Full article
Show Figures

Figure 1

17 pages, 5132 KiB  
Article
Assessing 16 Years of Tillage Dynamics on Soil Physical Properties, Crop Root Growth and Yield in an Endocalcic Chernozem Soil in Hungary
by Maimela Maxwell Modiba, Caleb Melenya Ocansey, Hanaa Tharwat Mohamed Ibrahim, Márta Birkás, Igor Dekemati and Barbara Simon
Agronomy 2025, 15(4), 801; https://doi.org/10.3390/agronomy15040801 - 24 Mar 2025
Viewed by 479
Abstract
The conservation tillage method is a more holistic method introduced in Hungary two decades ago. Its environmental benefits in agriculture were widely studied and documented. The impact of conservation tillage on soil compaction and penetration resistance remains debated, necessitating further research to clarify [...] Read more.
The conservation tillage method is a more holistic method introduced in Hungary two decades ago. Its environmental benefits in agriculture were widely studied and documented. The impact of conservation tillage on soil compaction and penetration resistance remains debated, necessitating further research to clarify its long-term effects in different soil types and cropping systems. The present study evaluates the impact on soil penetration resistance following 16 years of implementation of six distinct tillage practices. The study was conducted at Józsefmajor Experimental and Training Farm (JM) of the Hungarian University of Agriculture and Life Sciences near Hatvan. The study employed a randomized complete block design (RCBD) to evaluate six distinct tillage methods. These methods encompassed disking (D) at 12–14 cm depth, shallow cultivation (SC) at 18–20 cm depth, no-tilling (NT), deep cultivation (DC) at 22–25 cm depth, loosening (L) at 40–45 cm depth, and plowing (P) at 28–30 cm depth. In this study, soil compaction was assessed by measuring soil penetration resistance (SPR) at different depths (0–50 cm) and periods of the cropping year. Disking and NT significantly increased SPR between 10 and 20 cm, likely due to increased soil densification and reduced porosity in the absence of deep soil disturbance. While under sunflower cropping season significantly higher SPR was measured. In March 2021, the SPR at D and NT differed significantly from other measurement dates (September, October, November, and April). Regarding the difference between the depths, SPR increased with increasing depths in all treatment plots. The study findings revealed that NT and D tillage methods significantly increased soil penetration resistance in both cropping years, whereas L and P reduced SPR and enhanced the soil moisture storage potential of the soil particularly for the sunflower cropping period. The significance of the Spearman correlations observed suggested that SPR could be a valuable indicator of root growth potential under certain tillage conditions. Based on our results, we recommend the adoption of occasional deep soil loosening for reduced tillage systems (SC, D, DC, and NT) for both wheat and sunflower. This will create a compact-free zone for greater crop root proliferation, nutrient access, and SMC storage. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

28 pages, 7770 KiB  
Article
Gypsum and Tillage Practices for Combating Soil Salinity and Enhancing Crop Productivity
by Njomza Gashi, Zsombor Szőke, Antal Czakó, Péter Fauszt, Péter Dávid, Maja Mikolás, László Stündl, Ferenc Gál, Judit Remenyik, Zsolt Sándor and Melinda Paholcsek
Agriculture 2025, 15(6), 658; https://doi.org/10.3390/agriculture15060658 - 20 Mar 2025
Viewed by 1522
Abstract
Soil salinity is a major global challenge, reducing fertility and crop productivity. This study evaluated the effects of various soil management practices on the physical, chemical, and microbial properties of saline soils. Six treatments, combining loosening, ploughing, disking, and gypsum amendment, were applied [...] Read more.
Soil salinity is a major global challenge, reducing fertility and crop productivity. This study evaluated the effects of various soil management practices on the physical, chemical, and microbial properties of saline soils. Six treatments, combining loosening, ploughing, disking, and gypsum amendment, were applied to solonetzic meadow soil with high sodium levels. Soil penetration resistance was measured using a Penetronik penetrometer, while chemical analyses included pH, total salt content, calcium carbonate (CaCO3), humus, and exchangeable cations (Na+, K+, Ca2+, Mg2+). Microbial composition was determined through DNA extraction and nanopore sequencing. The results showed that level A had the lowest penetration resistance (333 ± 200 N/m2), indicating better conditions for plant growth. Gypsum and loosening treatment significantly improved penetration resistance (141 N/m2, p < 0.001), while gypsum amendment enhanced chemical properties (p < 0.05, p < 0.01, and p < 0.001). Gypsum application balanced soil parameters and influenced microbial communities. Reduced tillage favored functionally important microbial genera but did not support fungal diversity (p > 0.05). These findings highlight the effectiveness of gypsum amendment and tillage practices, like loosening and disking, in mitigating salinity stress and fostering beneficial microbial communities. Combining gypsum with these tillage methods proved most effective in enhancing soil health, offering insights for sustainable soil management in saline environments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 4574 KiB  
Article
Design and Development of Supersonic Shockwave Soil-Loosening Device That Can Improve the Aeration of Crop Root Zone
by Ming-Sen Hu, Uzu-Kuei Hsu, Shang-Han Tsai and Chia-Hsing Lee
Appl. Sci. 2025, 15(5), 2714; https://doi.org/10.3390/app15052714 - 3 Mar 2025
Viewed by 779
Abstract
When the soil at the plant roots is poorly ventilated due to few pores, the root system will grow short and shallow, leading to poor growth. In this paper, we developed a shockwave soil-loosening device. It can first drill a hollow drill bit [...] Read more.
When the soil at the plant roots is poorly ventilated due to few pores, the root system will grow short and shallow, leading to poor growth. In this paper, we developed a shockwave soil-loosening device. It can first drill a hollow drill bit containing multi-directional holes into the soil near the roots of the crops and then generate high-pressure gas to impact the soil outside the drill bit to increase the soil pores. Therefore, this can quickly improve soil aeration. We conducted numerical simulations of shockwave loosening to explore how 3.4 atm shockwaves are emitted from the drill bit’s porous nozzles and analyze the behavior and efficiency of shockwave loosening. We also performed visual observation experiments of shockwave multi-directional impact in a transparent acrylic water tank. Furthermore, we used eight pressure sensors to automatically measure the range of shockwave impact and found that when the storage tank volume was 5000 cm3, we could achieve a soil loosening range of 30 cm. Finally, this shockwave-loosening mechanism ensures that the soil surface will not be damaged during the loosening process, thus avoiding large-scale tillage disturbance of the soil. This will reduce carbon emissions stored in soil and released into the atmosphere. Full article
Show Figures

Figure 1

19 pages, 10534 KiB  
Article
Evolution Characteristics and Failure Mechanisms of Retrogressive Loess Landslides: A Case Study from the South Jingyang Platform, China
by Tao Ding, Zhiyuan He, Penghui Ma, Qingyi Mu, Yifan Xue, Yalin Nan and Kui Liu
Appl. Sci. 2025, 15(5), 2426; https://doi.org/10.3390/app15052426 - 24 Feb 2025
Viewed by 597
Abstract
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On [...] Read more.
The South Jingyang Platform, China, is well-known for its continuous irrigation-induced loess landslides. Many scholars have discussed the loess landslides in this area, as the frequent occurrence of these landslides has led to a gradual reduction in the size of the platform. On the basis of these studies, this paper provides an updated summary of the distribution, evolution characteristics, and future trends of these landslides over the past 20 years. It was found that from 2003 to 2023, a total of 76 landslides occurred, mainly concentrated in three areas. In addition to forming retrogressive landslide groups, the large amount of landslide deposits at the substrate also transforms into loess mudflows, causing a disaster chain. The rapid rise of the groundwater level is the main key factor causing these flowslides, and the widely distributed joints, cracks, and caves in the slopes serve as preferential flow channels, actively contributing to the accelerated rise of the groundwater level. This further decreases the stability of the slopes and is also a significant factor promoting the occurrence of landslides. The occurrence of falls and slides is mainly due to the loosening of the slope caused by previous flowslides, which affects the soil structure and triggers the migration of the soil’s critical state. This explains why flowslides occur in the deep saturated zone, while slides and falls often occur in the shallow unsaturated zone in the study area. Since 2015, flowslides have decreased due to changes in irrigation practices and stabilized groundwater levels, confirming the close relationship between flowslide occurrence and groundwater level fluctuations. Full article
Show Figures

Figure 1

27 pages, 12936 KiB  
Article
Bionic Optimal Design and Performance Study of Soil Loosening Shovels for Degraded Grasslands
by Zhaoyu Wang, Yong You, Xuening Zhang, Decheng Wang and Chengzhong Pan
Agriculture 2025, 15(5), 487; https://doi.org/10.3390/agriculture15050487 - 24 Feb 2025
Cited by 2 | Viewed by 557
Abstract
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze [...] Read more.
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze the effects of loosening depth (H) and operating speed (V) on key parameters, including the ridge disturbance area (As), furrow disturbance area (Af), loosening resistance (Fr), and trench specific resistance (Fc). Additionally, field tests were performed to validate the simulation results of the bionic loosening shovel. The findings indicate that the difference ratio (Da1) between the simulated and test values for the bionic loosening shovel remained consistently low, confirming the reliability of the simulation model in predicting variations in response parameters. Furthermore, comparative field tests were conducted to evaluate the loosening performance of the bionic loosening shovel against standard loosening shovels (the diamond-shaped loosening shovel and the arrow-shaped loosening shovel). The results show that the bionic loosening shovel achieved the lowest values for As, Af, and Fr under the same operating parameters. However, its effect on improving Af was limited. These findings provide valuable technical support for the enhancement and optimization of loosening shovels for degraded grasslands. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 1972 KiB  
Article
Ecological Pea Production in Hungary: Integrating Conservation Tillage with the Application of Rhizobium spp., Ensifer spp., Pseudomonas spp., and Bacillus spp. Bacterial Inoculants for Sustainable Farming
by Jana Marjanović, Abdulrahman Maina Zubairu, Sandor Varga, Shokhista Turdalieva, Réka Erika Döbröntey, Mária Ágnes Fodor and Apolka Ujj
Horticulturae 2025, 11(2), 213; https://doi.org/10.3390/horticulturae11020213 - 17 Feb 2025
Viewed by 875
Abstract
This study examines the impact of agroecological practices on soil quality and crop yields in small-scale farming, focusing on the combination of microbial soil inoculation, crop rotation, and conservation tillage methods. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the experiment [...] Read more.
This study examines the impact of agroecological practices on soil quality and crop yields in small-scale farming, focusing on the combination of microbial soil inoculation, crop rotation, and conservation tillage methods. Conducted at the SZIA Agroecological Garden MATE in Gödöllő, Hungary, the experiment used 12 plots, employing various conservation tillage techniques, including soil loosening with and without microbial inoculants, as well as no-till systems with and without inoculation. Six of the plots were inoculated with beneficial bacteria to enhance nitrogen fixation, phosphorus mobility, nutrient solubilization, phytohormone production, and pathogen suppression. In 2024, peas (Pisum sativum L.) were planted following potatoes in a small-scale market-oriented crop rotation, with the continuous monitoring of crop performance and soil characteristics. This ongoing study focuses on evaluating the long-term effects of crop rotation on key agricultural parameters, aiming to optimize practices over time. Statistical analysis (one-way ANOVA) revealed no significant differences across most parameters (p > 0.05), except for total sugar content (p < 0.05), which aligns with expectations given the limited tillage prior to the study. The standard significance level of p < 0.05 was used to balance error risks, ensure adequate statistical power, and maintain consistency with established agricultural research practices. However, the study trends indicated potential long-term benefits, particularly in plots with microbial inoculants, where pea yield and pod size showed improvement compared to non-inoculated and control plots. Microbial inoculants may show long-term effects, as they gradually improve soil health, support microbial communities, and enhance nutrient cycling, which takes time to become noticeable. These findings highlight the potential advantages of combining conservation tillage with microbial inoculants, suggesting that this combination could foster enhanced soil health and productivity over time. The novel setting of this study underscores the importance of long-term monitoring to fully capture the benefits of agroecological interventions, emphasizing their role in achieving sustainable agricultural practices and improving small-scale farming outcomes. Full article
Show Figures

Figure 1

Back to TopTop