Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = soil salinization risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10338 KB  
Article
Halophyte-Mediated Metal Immobilization and Divergent Enrichment in Arid Degraded Soils: Mechanisms and Remediation Framework for the Tarim Basin, China
by Jingyu Liu, Lang Wang, Shuai Guo and Hongli Hu
Sustainability 2025, 17(19), 8771; https://doi.org/10.3390/su17198771 - 30 Sep 2025
Abstract
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). [...] Read more.
Understanding heavy metal behavior in arid saline soils is critical for phytoremediation in degraded lands. This study investigated metal distribution and plant enrichment in the Tarim Basin using 323 soil and 55 plant samples (Populus euphratica, Tamarix ramosissima, cotton, jujube). Analyses included redundancy analysis (RDA) and bioconcentration factor (BCF) assessments. Key findings reveal that elevated salinity (total salts, TS > 200 g/kg) and alkalinity (pH > 8.5) immobilized As, Cd, Cu, and Zn. Precipitation and competitive leaching reduced metal mobility by 42–68%. Plant enrichment strategies diverged significantly: P. euphratica hyperaccumulated Cd (BCF = 1.59) and Zn (BCF = 2.41), while T. ramosissima accumulated As and Pb (BCF > 0.05). Conversely, cotton posed Hg transfer risks (BCF = 2.15), and jujube approached Cd safety thresholds in phosphorus-rich soils. RDA indicated that pH and total salinity (TS) jointly suppressed metal bioavailability, explaining 57.6% of variance. Total phosphorus (TP) and soil organic carbon (SOC) enhanced metal availability (36.8% variance), with notable TP-Cd synergy (Pearson’s r = 0.42). We propose a dual-threshold management framework: (1) leveraging salinity–alkalinity suppression (TS > 200 g/kg + pH > 8.5) for natural immobilization; and (2) implementing TP control (TP > 0.8 g/kg) to mitigate crop Cd risks. P. euphratica demonstrates targeted phytoremediation potential for degraded saline agricultural systems. This framework guides practical management by spatially delineating zones for natural immobilization versus targeted remediation (e.g., P. euphratica planting in Cd/Zn hotspots) and implementing phosphorus control in high-risk croplands. Full article
Show Figures

Figure 1

25 pages, 2481 KB  
Article
Impacts of Long-Term Treated Wastewater Irrigation and Rainfall on Soil Chemical and Microbial Indicators in Semi-Arid Calcareous Soils
by Eiman Hasan and Ahmad Abu-Awwad
Sustainability 2025, 17(19), 8663; https://doi.org/10.3390/su17198663 - 26 Sep 2025
Abstract
Frequent and severe droughts intensify water scarcity in arid and semi-arid regions, creating an urgent need for alternative water resources in agriculture. Treated wastewater (TWW) has emerged as a sustainable option; however, its long-term use may alter soil properties and pose risks if [...] Read more.
Frequent and severe droughts intensify water scarcity in arid and semi-arid regions, creating an urgent need for alternative water resources in agriculture. Treated wastewater (TWW) has emerged as a sustainable option; however, its long-term use may alter soil properties and pose risks if not carefully managed. This study tested the hypothesis that long-term TWW irrigation increases soil salinity, alters fertility, and affects microbial quality, with rainfall partially mitigating these effects. Soil samples (n = 96 at each time point) were collected from two calcareous soils in Jordan, silt loam (Mafraq) and silty clay loam (Ramtha), under four treatments (control and 2, 5, and 10 years of TWW irrigation) at three depths (0–30, 30–60, and 60–90 cm). Sampling was conducted at two intervals, before and after rainfall, to capture the seasonal variation. Soil indicators included the pH, electrical conductivity (EC), sodium (Na+), chloride (Cl), calcium (Ca2+), magnesium (Mg2+), exchangeable sodium percentage (ESP), sodium adsorption ratio (SAR), organic matter (OM), total nitrogen (TN), and microbial parameters (total coliforms (TC), fecal coliforms (FC), and Escherichia coli). Data were analyzed using a linear mixed-effects model with repeated measures, and significant differences were determined using Tukey’s Honest Significant Difference (HSD) test at p < 0.05. The results showed that rainfall reduced Na+ by 70%, Cl by 86%, EC by 73%, the ESP by 28%, and the SAR by 30%. Furthermore, the TC and FC concentrations were diminished by almost 96%. Moderate TWW irrigation (5 years) provided the most balanced outcomes across both sites. This study provides one of the few long-term field-based assessments of TWW irrigation in semi-arid calcareous soils of Jordan, underscoring its value in mitigating water scarcity while emphasizing the need for monitoring to ensure soil sustainability. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 16110 KB  
Article
Integrating Sentinel-1/2 Imagery and Climate Reanalysis for Monthly Bare Soil Mapping and Wind Erosion Modeling in Shandong Province, China
by Aobo Liu and Yating Chen
Remote Sens. 2025, 17(19), 3298; https://doi.org/10.3390/rs17193298 - 25 Sep 2025
Abstract
Accurate identification of bare soil exposure and quantification of associated dust emissions are essential for understanding land degradation and air quality risks in intensively farmed regions. This study develops a monthly monitoring and modeling framework to quantify bare soil dynamics and wind erosion-induced [...] Read more.
Accurate identification of bare soil exposure and quantification of associated dust emissions are essential for understanding land degradation and air quality risks in intensively farmed regions. This study develops a monthly monitoring and modeling framework to quantify bare soil dynamics and wind erosion-induced particulate matter (PM) emissions across Shandong Province from 2017 to 2024. By integrating Sentinel-1/2 imagery, climate reanalysis, terrain and soil data, and employing a stacking ensemble classification model, we mapped bare soil areas at 10 m resolution with an overall accuracy of 93.1%. The results show distinct seasonal variation, with bare soil area peaking in winter and early spring, exceeding 25,000 km2 or 15% of the total area, which is far above the 6.4% estimated by land cover products. Simulations using the CLM5.0 dust module indicate that annual PM10 emissions from bare soil averaged (2.72 ± 1.09) × 105 tons across 2017–2024. Emissions were highest in March and lowest in summer months, with over 80% of the total emitted during winter and spring. A notable increase in emissions was observed after 2022, likely due to more frequent extreme wind events. Spatially, emissions were concentrated in coastal lowlands such as the Yellow River Delta and surrounding saline–alkali lands. Our approach explicitly advances traditional methods by generating monthly 10 m bare soil maps and linking satellite-derived dynamics with process-based dust emission modeling, providing a robust basis for targeted dust control and land management strategies. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

39 pages, 11616 KB  
Article
Integrating Advanced Technologies for Environmental Valuation in Legacy Mining Sites: The Role of Digital Twins at Lavrion Technological and Cultural Park
by Miguel Ángel Maté-González, Cristina Sáez Blázquez, Sergio Alejandro Camargo Vargas, Fernando Peral Fernández, Daniel Herranz Herranz, Enrique González González, Vasileios Protonotarios and Diego González-Aguilera
Sensors 2025, 25(19), 5941; https://doi.org/10.3390/s25195941 - 23 Sep 2025
Viewed by 264
Abstract
The rehabilitation of mining environments poses significant challenges due to the contamination risks associated with hazardous materials, such as arsenic and other chemical products. This research study presents the development of a Digital Twin for the Lavrion Technological and Cultural Park (LTCP), a [...] Read more.
The rehabilitation of mining environments poses significant challenges due to the contamination risks associated with hazardous materials, such as arsenic and other chemical products. This research study presents the development of a Digital Twin for the Lavrion Technological and Cultural Park (LTCP), a former mining and metalworking site that is currently undergoing environmental restoration. The Digital Twin integrates advanced technologies, including real-time sensor monitoring, geophysical methods, and 3D modeling, to provide a comprehensive tool for assessing and managing the environmental conditions of the site. Key elements of the project include the monitoring of hazardous-waste storage, the evaluation of contaminated soils, and the assessment of the Park’s infrastructure, which includes both deteriorating buildings and successfully restored structures. Real-time sensor data are collected to track critical parameters such as conductivity, temperature, salinity, and levels of pollutants, enabling proactive environmental management and mitigation of potential risks. The integration of these technologies enables continuous monitoring, historical data analysis, and improved decision making in the ongoing efforts to preserve the site’s ecological integrity. This study demonstrates the potential of using Digital Twins as an innovative solution for the sustainable management and valorization of mining heritage sites, offering insights into both technological applications and environmental conservation practices. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Graphical abstract

15 pages, 2483 KB  
Article
The Effects of Different Crop Rotations on the Quality of Saline Soils in the Yinbei Plain
by Jinmin Wu, Bangyan Zhang, Meiling Lin, Rui Bu, Xiaolong Bai, Xiaoli Zhang, Panting Liu and Bin Wang
Agronomy 2025, 15(9), 2131; https://doi.org/10.3390/agronomy15092131 - 5 Sep 2025
Viewed by 380
Abstract
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and [...] Read more.
Rice cultivation has the ability to ameliorate saline soils, but this monoculture pattern can lead to negative plant–soil feedback. In a previous study, we investigated the effects of long-term rice cultivation on saline soil chemistry, salt ions, root characteristics, and agglomerate formation, and concluded that the optimal rice planting period is 5 years. However, we do not know which crop rotation is most effective in improving this negative soil feedback and enhancing soil quality. In this study, we carried out an experiment on saline land planted with rice over 5 years and set up four different rotations, including rice–Hunan Jizi, rice–maize, rice–sweet sorghum, and rice–soybean, with perennial rice planting as CK, to analyze soil texture under different treatments. Physicochemical properties and enzyme activities were also analyzed under different treatments, and the soil quality index (SQI) was constructed using principal component analysis and correlation analysis for comprehensive evaluation of each treatment. The results showed that (1) the saline-alkali soil texture of perennial rice planting in the Yinbei Plain was silty soil, and different rice drought rotation methods changed the soil texture from silty to silty loam, which improved the fractal dimension of the soil. The fractal dimension of saline-alkali soil was significantly positively correlated with the clay volume content, negatively correlated with silt volume content, and negatively correlated with sand volume content. (2) There was no risk of structural degradation (SI > 9%) in saline-alkali soil planted in perennial rice, and it appeared that RS (rice–soybean) could improve the stability coefficient of soil structure in the 0~40 cm soil layer. (3) Different rice and drought rotation methods could significantly affect the physical and chemical properties and enzyme activities of soil, and the quality of soil in the 0~40 cm soil layer was evaluated; RS (rice–soybean) and RC (rice–maize) were suitable for rice drought rotation in the Yinbei area. The structural equation model showed that salinity and soil nutrients were the key factors restricting the improvement of saline-alkali soil quality in Yinbei. These results will deepen the current understanding of bio-modified saline soils. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

19 pages, 3656 KB  
Article
Effects of Groundwater Depth on Soil Water and Salinity Dynamics in the Hetao Irrigation District: Insights from Laboratory Experiments and HYDRUS-1D Simulations
by Zhuangzhuang Feng, Liping Dai, Qingfeng Miao, José Manuel Gonçalves, Haibin Shi, Yuxin Li and Weiying Feng
Agronomy 2025, 15(9), 2025; https://doi.org/10.3390/agronomy15092025 - 23 Aug 2025
Viewed by 569
Abstract
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and [...] Read more.
The management of groundwater depth (GWD) in alluvial soils under irrigation in arid climates is critical for soil and water conservation, given its influence on salt dynamics and water availability for crops. GWD is influenced by the interaction of irrigation water supply and drainage system design and operation. Controlling GWD is a significant issue in the Hetao Irrigation District due to continuous irrigation, arid climate, and high risks of soil salinization, which concerns farmers and water management authorities. To address this issue, a study was conducted based on open-air laboratory experimentation to rigorously assess the effects of GWD on soil salt dynamics and capillary rise contribution to maize cultivation under level basin irrigation. Data collected served as the basis for parameterizing and calibrating the HYDRUS-1D model, facilitating simulation of soil water and salt dynamics to enhance understanding of GWD effects ranging from 1.25 m to 2.25 m. It was concluded that during calibration and validation, the model demonstrated strong performance; SWC simulations achieved R2 > 0.69, RMSE < 0.03 cm3 cm−3, and NSE approaching 1; and EC simulations yielded R2 ≥ 0.74 with RMSE < 0.22 S cm−1. Additionally, the simulated bottom boundary moisture flux closely matched the measured values. The most favorable GWD range should be between 1.75 m and 2.0 m, minimizing the negative impacts of irrigation-induced soil salinity while maximizing water use efficiency and crop productivity. A higher GWD causes crop water stress, while a lower value results in a greater risk of soil salinity. This study anticipates future field application in Hetao to assess drainage system effectiveness and variability in salinity and productivity effects. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 5394 KB  
Article
Chemical Speciation and Ecological Risk of Heavy Metals in Municipal Sewage Sludge from Bangkok, Thailand
by Rujirat Buthnoo and Daoroong Sungthong
Sustainability 2025, 17(17), 7572; https://doi.org/10.3390/su17177572 - 22 Aug 2025
Cited by 1 | Viewed by 716
Abstract
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized [...] Read more.
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized wastewater treatment plants in Bangkok, Thailand, by analyzing physicochemical properties, total metal concentrations, and chemical speciation. Three ecological risk indices, the geo-accumulation index (Igeo), risk assessment code (RAC), and potential ecological risk index (PERI), were applied to assess contamination status, mobility, and ecological threat. The sludge exhibited high levels of organic matter and essential nutrients, indicating potential for agricultural reuse; however, elevated electrical conductivity at some sites may pose salinity risks if unmanaged. Speciation analysis revealed that Cd and Zn were largely present in mobile and redox-sensitive fractions, Cr and Pb were primarily in stable residual forms, and Cu and Ni occurred in moderately mobile forms influenced by environmental conditions. Across all indices, Cd consistently posed the highest ecological risk, followed by Zn, in a site-dependent manner, while Cr and Pb represented low risk. These findings provide a clearer understanding of metal behavior in sewage sludge and underscore the importance of integrating chemical speciation with multi-index risk assessment in sludge management. Incorporating such approaches into national guidelines, particularly in countries lacking established heavy metal limits, can strengthen monitoring frameworks, guide safe and sustainable reuse, and support regulatory development in contexts with limited monitoring data. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

22 pages, 1058 KB  
Review
Recent Advances in Organic Pollutant Removal Technologies for High-Salinity Wastewater
by Jun Dai, Yun Gao, Kinjal J. Shah and Yongjun Sun
Water 2025, 17(16), 2494; https://doi.org/10.3390/w17162494 - 21 Aug 2025
Viewed by 887
Abstract
Industrial processes like farming, food processing, petroleum refinery, and leather manufacturing produce a lot of high-salinity wastewater. This wastewater presents serious environmental risks, such as soil degradation, eutrophication, and water salinization, if it is released without adequate treatment. The sources and features of [...] Read more.
Industrial processes like farming, food processing, petroleum refinery, and leather manufacturing produce a lot of high-salinity wastewater. This wastewater presents serious environmental risks, such as soil degradation, eutrophication, and water salinization, if it is released without adequate treatment. The sources and features of high-salinity wastewater are outlined in this review, along with the main methods for removing organic pollutants, such as physicochemical, biological, and combined treatment approaches. Membrane separation, coagulation–flocculation, and advanced oxidation processes are the primary physicochemical techniques. Anaerobic and aerobic technologies are the two categories into which biological treatments fall. Physicochemical–biological combinations and the fusion of several physicochemical techniques are examples of integrated technologies. In order to achieve sustainable and effective treatment and resource recovery of high-salinity wastewater, this review compares the effectiveness and drawbacks of each method and recommends that future research concentrate on the development of salt-tolerant catalysts, anti-fouling membrane materials, halophilic microbial consortia, and optimized hybrid treatment systems. Full article
Show Figures

Figure 1

23 pages, 20709 KB  
Article
Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species
by Michał Arciszewski, Magdalena Pogorzelec, Urszula Bronowicka-Mielniczuk and Marzena Parzymies
Water 2025, 17(16), 2451; https://doi.org/10.3390/w17162451 - 19 Aug 2025
Viewed by 587
Abstract
Species translocation is an increasingly used method in active plant conservation, but its high costs and risk of failure highlight the need for prior research to support its effectiveness. Salix lapponum plantlets obtained through micropropagation were subjected to two biological experiments under laboratory [...] Read more.
Species translocation is an increasingly used method in active plant conservation, but its high costs and risk of failure highlight the need for prior research to support its effectiveness. Salix lapponum plantlets obtained through micropropagation were subjected to two biological experiments under laboratory conditions. The plants were watered with aqueous solutions of NaCl (Experiment 1) and N-NO3 (Experiment 2) for a period of four weeks. The experiments were designed to simulate processes occurring in the natural habitats of the species- increased substrate salinity and eutrophication. To determine the plant response to the presence of NaCl and N-NO3 in the soil substrate, various morpho-physiological traits were examined, including selected growth parameters, relative water content (RWC), photosynthetic pigment content, selected chlorophyll fluorescence parameters, reactive oxygen species (ROS) accumulation, antioxidant enzyme activity, and anthocyanin content. The results showed that both tested factors acted as abiotic stressors. Exposure to NaCl solutions of various concentrations led to a significant deterioration in morpho-physiological parameters, whereas low concentrations of nitrate nitrogen stimulated the growth of S. lapponum. In response to stress, the plants activated defense mechanisms such as increased anthocyanin synthesis, elevated antioxidant enzyme activity, and maintenance of a high relative water content. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

22 pages, 4715 KB  
Article
Remote Sensing-Based Mapping of Soil Health Descriptors Across Cyprus
by Ioannis Varvaris, Zampela Pittaki, George Themistokleous, Dimitrios Koumoulidis, Dhouha Ouerfelli, Marinos Eliades, Kyriacos Themistocleous and Diofantos Hadjimitsis
Environments 2025, 12(8), 283; https://doi.org/10.3390/environments12080283 - 17 Aug 2025
Viewed by 1040
Abstract
Accurate and spatially detailed soil information is essential for supporting sustainable land use planning, particularly in data-scarce regions such as Cyprus, where soil degradation risks are intensified by land fragmentation, water scarcity, and climate change pressure. This study aimed to generate national-scale predictive [...] Read more.
Accurate and spatially detailed soil information is essential for supporting sustainable land use planning, particularly in data-scarce regions such as Cyprus, where soil degradation risks are intensified by land fragmentation, water scarcity, and climate change pressure. This study aimed to generate national-scale predictive maps of key soil health descriptors by integrating satellite-based indicators with a recently released geo-referenced soil dataset. A machine learning model was applied to estimate a suite of soil properties, including organic carbon, pH, texture fractions, macronutrients, and electrical conductivity. The resulting maps reflect spatial patterns consistent with previous studies focused on Cyprus and provide high resolution insights into degradation processes, such as organic carbon loss, and salinization risk. These outputs provide added value for identifying priority zones for soil conservation and evidence-based land management planning. While predictive uncertainty is greater in areas lacking ground reference data, particularly in the northeastern part of the island, the modeling framework demonstrates strong potential for a national-scale soil health assessment. The outcomes are directly relevant to ongoing soil policy developments, including the forthcoming Soil Monitoring Law, and provide spatial prediction models and indicator maps that support the assessment and mitigation of soil degradation. Full article
(This article belongs to the Special Issue Remote Sensing Technologies for Soil Health Monitoring)
Show Figures

Figure 1

17 pages, 1001 KB  
Article
A Preliminary Evaluation of the Use of Solid Residues from the Distillation of Medicinal and Aromatic Plants as Fertilizers in Mediterranean Soils
by Anastasia-Garyfallia Karagianni, Anastasia Paraschou and Theodora Matsi
Agronomy 2025, 15(8), 1903; https://doi.org/10.3390/agronomy15081903 - 7 Aug 2025
Viewed by 525
Abstract
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum [...] Read more.
The current study focuses on a preliminary evaluation of the use of solid residues produced from the distillation of selected medicinal and aromatic plants (MAP) as fertilizers for alkaline soils. Specifically, the residues of hemp (Cannabis sativa L.), helichrysum (Helichrysum Italicum (Roth) G. Don), lavender (Lavandula angustifolia Mill.), oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.) were added in an alkaline and calcareous soil at the rates of 0 (control), 1, 2, 4 and 8%, in three replications (treatments), and the treated soils were analyzed. The results showed that upon application of the residues, soil electrical conductivity (EC), organic C, total N and the C/N ratio significantly increased, especially at the 4 and 8% rates. The same was found for soil available P, K, B, Cu and Mn. The effects of the residues on soil pH, cation exchange capacity (CEC) and available Zn and Fe were rather inconclusive, whereas soil available N significantly decreased, which was somewhat unexpected. From the different application rates tested, it seems that all residues could improve soil fertility (except N?) when they were applied to soil at rates of 2% and above, without exceeding the 8% rate. The reasons for the latter statement are soil EC and available Mn: the doubling of EC upon application of the residues and the excessive increase in soil available Mn in treatments with 8% residues raise concerns of soil salinization and Mn phytotoxicity risks, respectively. This work provides the first step towards the potential agronomic use of solid residues from MAP distillation in alkaline soils. However, for the establishment of such a perspective, further research is needed in respect to the effect of residues on plant growth and soil properties, by means of at least pot experiments. Based on the results of the current study, the undesirable effect of residues on soil available N should be investigated in depth, since N is the most important essential element for plant growth, and possible risks of micronutrient phytotoxicities should also be studied. In addition, application rates between 2 and 4% should be studied extensively in order to recommend optimum application rates of residues to producers. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 12693 KB  
Article
Upscaling Soil Salinization in Keriya Oasis Using Bayesian Belief Networks
by Hong Chen, Jumeniyaz Seydehmet and Xiangyu Li
Sustainability 2025, 17(15), 7082; https://doi.org/10.3390/su17157082 - 5 Aug 2025
Viewed by 637
Abstract
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a [...] Read more.
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a spatial probabilistic model of salinization. A Bayesian Belief Network is integrated with spline interpolation in ArcGIS to map the likelihood of salinization, while Partial Least Squares Structural Equation Modeling (PLS-SEM) is applied to analyze the interactions among multiple drivers. The test results of this model indicate that its average sensitivity exceeds 80%, confirming its robustness. Salinization risk is categorized into degradation (35–79% probability), stability (0–58%), and improvement (0–48%) classes. Notably, 58.27% of the 1836.28 km2 Keriya Oasis is found to have a 50–79% chance of degradation, whereas only 1.41% (25.91 km2) exceeds a 50% probability of remaining stable, and improvement probabilities are never observed to surpass 50%. Slope gradient and soil organic matter are identified by PLS-SEM as the strongest positive drivers of degradation, while higher population density and coarser soil textures are found to counteract this process. Spatially explicit probability maps are generated to provide critical spatiotemporal insights for sustainable oasis management, revealing the complex controls and limited recovery potential of soil salinization. Full article
Show Figures

Figure 1

19 pages, 4641 KB  
Article
The Hydrochemical Dynamics and Water Quality Evolution of the Rizhao Reservoir and Its Tributary Systems
by Qiyuan Feng, Youcheng Lv, Jianguo Feng, Weidong Lei, Yuqi Zhang, Mingyu Gao, Linghui Zhang, Baoqing Zhao, Dongliang Zhao and Kexin Lou
Water 2025, 17(15), 2224; https://doi.org/10.3390/w17152224 - 25 Jul 2025
Viewed by 524
Abstract
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This [...] Read more.
Rizhao Reservoir, Shandong Province, China, as a key regional water supply hub, provides water for domestic, industrial, and agricultural uses in and around Rizhao City by intercepting runoff, which plays a central role in guaranteeing water supply security and supporting regional development. This study systematically collected 66 surface water samples to elucidate the hydrochemical characteristics within the reservoir area, identify the principal influencing factors, and clarify the sources of dissolved ions, aiming to enhance the understanding of the prevailing water quality conditions. A systematic analysis of hydrochemical facies, solute provenance, and governing processes in the study area’s surface water was conducted, employing an integrated mathematical and statistical approach, comprising Piper trilinear diagrams, correlation analysis, and ionic ratios. Meanwhile, the entropy weight-based water quality index (EWQI) and irrigation water quality evaluation methods were employed to assess the surface water quality in the study area quantitatively. Analytical results demonstrate that the surface water system within the study area is classified as freshwater with circumneutral to slightly alkaline properties, predominantly characterized by Ca-HCO3 and Ca-Mg-SO4-Cl hydrochemical facies. The evolution of solute composition is principally governed by rock–water interactions, whereas anthropogenic influences and cation exchange processes exert comparatively minor control. Dissolved ions mostly originate from silicate rock weathering, carbonate rock dissolution, and sulfate mineral dissolution processes. Potability assessment via the entropy-weighted water quality index (EWQI) classifies surface waters in the study area as Grade I (Excellent), indicating compliance with drinking water criteria under defined boundary conditions. Irrigation suitability analysis confirms minimal secondary soil salinization risk during controlled agricultural application, with all samples meeting standards for direct irrigation use. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

27 pages, 1900 KB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Cited by 2 | Viewed by 1050
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

16 pages, 1665 KB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Viewed by 778
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

Back to TopTop