Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Analysis of Plant Material
2.3.1. Selected Biometric Features and Plant Growth
2.3.2. Relative Water Content
2.3.3. Photosynthetic Pigments Content
2.3.4. Selected Chlorophyll a Fluorescence Parameters
2.3.5. Anthocyanin Content
2.3.6. Guaiacol Peroxidase Activity
2.3.7. Histochemical Detection of Reactive Oxygen Species (ROS)
2.4. Statistical Analyses
3. Results
3.1. Experiment 1. Effect of Substrate Salinity
3.1.1. Plant Growth
3.1.2. Relative Water Content
3.1.3. Photosynthetic Pigments Content
3.1.4. Selected Chlorophyll Fluorescence Parameters
3.1.5. Anthocyanin Content
3.1.6. Antioxidant Enzyme Activity
3.1.7. Histochemical Detection of Reactive Oxygen Species (ROS)
3.2. Experiment 2. The Effect of Nitrate Nitrogen
3.2.1. Plant Growth
3.2.2. Relative Water Content
3.2.3. Photosynthetic Pigments Content
3.2.4. Selected Chlorophyll Fluorescence Parameters
3.2.5. Anthocyanin Content
3.2.6. Antioxidant Enzyme Activity
3.2.7. Histochemical Detection of Reactive Oxygen Species (ROS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive Oxygen Species |
RWC | Relative Water Content |
References
- Beusen, A.H.; Bouwman, A.F.; Van Beek, L.P.; Mogollón, J.M.; Middelburg, J.J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 2016, 13, 2441–2451. [Google Scholar] [CrossRef]
- Zarkami, R.; Abedini, A.; Sadeghi Pasvisheh, R. Analysis of the eutrophication in a wetland using a data-driven model. Environ. Monit. Assess. 2022, 194, 882. [Google Scholar] [CrossRef]
- Khan, F.A.; Ansari, A.A. Eutrophication: An ecological vision. Bot. Rev. 2005, 71, 449–482. [Google Scholar] [CrossRef]
- Khan, M.N.; Mohammad, F. Eutrophication: Challenges and solutions. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 2, pp. 1–15. [Google Scholar] [CrossRef]
- Borgström, A.; Hansson, L.A.; Klante, C.; Sjöstedt, J. Wetlands as a potential multifunctioning tool to mitigate eutrophication and brownification. Ecol. Appl. 2024, 34, e2945. [Google Scholar] [CrossRef]
- de Oliveira, D.A.V.; Botero, W.G.; Santos, J.C.C.; da Silva, R.M.; Pitombo, L.M.; do Carmo, J.B.; Rosa, L.M.T.; de Oliveira, L.C. Interaction study between humin and phosphate: Possible environmental remediation for domestic wastewater. Water Air Soil Pollut. 2017, 228, 265. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Z.; Men, S.; Huang, Z.; Wang, C. Nitrogen and phosphorus adsorption in aqueous solutions by humic acids from weathered coal: Isotherm, kinetics and thermodynamic analysis. Water Sci. Technol. 2019, 79, 2175–2184. [Google Scholar] [CrossRef]
- Seniczak, A.; Seniczak, S.; Maraun, M.; Graczyk, R.; Mistrzak, M. Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation. Exp. Appl. Acarol. 2016, 68, 409–428. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
- Venterink, H.O.; Davidsson, T.E.; Kiehl, K.; Leonardson, L. Impact of drying and re-wetting on N, P and K dynamics in a wetland soil. Plant Soil 2002, 243, 119–130. [Google Scholar] [CrossRef]
- Swindles, G.T.; Morris, J.P.; Mullan, D.J.; Payne, R.J.; Roland, T.P.; Amesbury, M.J.; Lamentowicz, M.; Turner, E.T.; Gallego-Sala, A.; Sim, T.; et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 2019, 12, 922–928. [Google Scholar] [CrossRef]
- Kreyling, J.; Tanneberger, F.; Jansen, F.; Van Der Linden, S.; Aggenbach, C.; Blüml, V.; Couwenberg, J.; Emsens, W.J.; Joosten, H.; Klimkowska, A.; et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 2021, 12, 5693. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardón, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R.; Shoukat, A.; Hussan, M.U.; Sarwar, M.I. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 2009, 132, 259–269. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 243–254. [Google Scholar] [CrossRef]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef]
- Hoang, T.M.L.; Tran, T.N.; Nguyen, T.K.T.; Williams, B.; Wurm, P.; Bellairs, S.; Mundree, S. Improvement of salinity stress tolerance in rice: Challenges and opportunities. Agronomy 2016, 6, 54. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S.; Stasińska-Jakubas, M.; Wójciak, M.; Sowa, I.; Matraszek-Gawron, R. NaCl-induced elicitation alters physiology and increases accumulation of phenolic compounds in Melissa officinalis L. Int. J. Mol. Sci. 2021, 22, 6844. [Google Scholar] [CrossRef]
- Polle, A.; Chen, S. On the salty side of life: Molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell Environ. 2015, 38, 1794–1816. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Heywood, V.H.; Iriondo, J.M. Plant conservation: Old problems, new perspectives. Biol. Conserv. 2003, 113, 321–335. [Google Scholar] [CrossRef]
- Cardona, C.; Cortés-Fernández, I.; Cerrato, M.D.; Gil, L. Salinity tolerance of two critically endangered endemic species and its implications for distribution and conservation of model microinsular Mediterranean species. Plant Ecol. 2024, 225, 139–151. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; García-Calvo, L.; García, P.; Acebes, J.L. Anticipating extinctions of glacial relict populations in mountain refugia. Biol. Conserv. 2016, 201, 243–251. [Google Scholar] [CrossRef]
- Boxriker, M.; Ferenc, V.; Liancourt, P.; Thiv, M. Almost nothing left to lose: Suitable habitat for glacial relicts strongly declines under future climate and land use scenarios. Glob. Ecol. Conserv. 2025, 59, e03541. [Google Scholar] [CrossRef]
- Serafin, A.; Pogorzelec, M.; Banach, B.; Szczurowska, A.; Mielniczuk, J. Physico-chemical groundwater conditions at Salix lapponum stands in Eastern Poland. Dendrobiology 2015, 73, 65–74. [Google Scholar] [CrossRef]
- Kłosowski, S.; Kłosowski, G. Flora Polski Rośliny Wodne i Bagienne; Multico: Warszawa, Poland, 2006; pp. 1–333. [Google Scholar]
- Kruszelnicki, J. Salix lapponum L. Wierzba lapońska. In Polska Czerwona Księga Roślin. Paprotniki i Rośliny Kwiatowe, 3rd ed.; Kaźmierczakowa, R., Zarzycki, K., Mirek, Z., Eds.; Instytut Ochrony Przyrody PAN: Kraków, Poland, 2014; pp. 86–88. [Google Scholar]
- Pogorzelec, M.; Banach-Albinska, B.; Serafin, A.; Szczurowska, A. Population resources of an endangered species Salix lapponum L. in Polesie Lubelskie Region (eastern Poland). Acta Agrobot. 2014, 67, 4. [Google Scholar] [CrossRef]
- Finger, A.; Rao, S.; Cowie, N.; MacDonell, T.; Beck, A.; Denny, B. Conservation genetics of montane willow populations in Scotland—Limited natural recovery despite long-distance gene flow and high genetic diversity. Environ. Res. Ecol. 2023, 2, 015001. [Google Scholar] [CrossRef]
- Parzymies, M.; Pogorzelec, M.; Głębocka, K.; Śliwińska, E. Genetic stability of the endangered species Salix lapponum L. regenerated in vitro during the reintroduction process. Biology 2020, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Stamati, K.; Hollingsworth, P.M.; Russell, J.J.P.S. Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Syst. Evol. 2007, 269, 75–88. [Google Scholar] [CrossRef]
- Arciszewski, M.; Pogorzelec, M.; Parzymies, M.; Bronowicka-Mielniczuk, U.; Mieczan, T. Do Endangered Glacial Relicts Have a Chance for Effective Conservation in the Age of Global Warming? A Case Study: Salix lapponum in Eastern Poland. Biology 2024, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Hroneš, M.; Hrachová, S.; Dančák, M.; Vašut, R.J. Vrba laponská (Salix lapponum L.) v Krkonoších. Opera Corcon. 2011, 48, 69–78. [Google Scholar]
- Hroneš, M.; Hrachová Macurová, S.; Hradílek, Z.; Hekera, P.; Duchoslav, M. Habitat conditions, stage structure and vegetation associations of geographically isolated subalpine populations of Salix lapponum L. (Salicaceae) in the Krkonoše Mts (Czech Republic). Biologia 2018, 73, 319–332. [Google Scholar] [CrossRef]
- Hroneš, M.; Hrachová Macurová, S.; Hradílek, Z.; Hekera, P.; Duchoslav, M. Female-biased sex ratio despite the absence of spatial and niche segregation between sexes in alpine populations of dioecious Salix lapponum (Salicaceae). Alp. Bot. 2019, 129, 1–9. [Google Scholar] [CrossRef]
- Pogorzelec, M. Influence of chosen environmental abiotic factors on Salix lapponum L. populations in Polesie Lubelskie Region. Pol. J. Environ. Stud. 2008, 17, 581–586. [Google Scholar]
- Pogorzelec, M. Salix lapponum L. (downy willow) in stands under anthropopressure in the Łęczna-Włodawa Lakeland. Acta Agrobot. 2010, 63, 1. [Google Scholar] [CrossRef]
- Arciszewski, M.; Pogorzelec, M.; Bronowicka-Mielniczuk, U.; Niedźwiecki, M.; Parzymies, M.; Serafin, A. The Search for Suitable Habitats for Endangered Species at Their Historical Sites—Conditions for the Success of Salix lapponum and Salix myrtilloides Reintroduction. Int. J. Environ. Res. Public Health 2023, 20, 1133. [Google Scholar] [CrossRef]
- Pogorzelec, M.; Parzymies, M.; Banach-Albińska, B.; Serafin, A.; Klemedtsson, L. Experimental reintroduction of the boreal species Salix lapponum L. to refuges at the southern limit of its range—Short-term results. Boreal Environ. Res. 2020, 25, 161–169. [Google Scholar]
- Pogorzelec, M.; Hawrylak-Nowak, B.; Banach-Albińska, B.; Szczurowska, A.; Parzymies, M.; Spólna, K. From ex situ cultivation to stands in natural habitats: Critical periods for plants during the reintroduction of Salix lapponum L. in Eastern Poland. J. Nat. Conserv. 2022, 67, 126172. [Google Scholar] [CrossRef]
- González, L.; González-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Springer: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Martínez, A.E.; Favret, E.A. Anthocyanin synthesis and lengthening in the first leaf of barley isogenic lines. Plant Sci. 1990, 71, 35–43. [Google Scholar] [CrossRef]
- Malolepsza, U.; Urbanek, H. Changes in peroxidase activity in bean suspension cultures after B. cinerea and elicitor treatment. J. Phytopathol. 1994, 141, 314–322. [Google Scholar] [CrossRef]
- Kumar, D.; Yusuf, M.A.; Singh, P.; Sardar, M.; Sarin, N.B. Histochemical detection of superoxide and H2O2; accumulation in Brassica juncea seedlings. Bio-Protocol 2014, 4, e1108. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Sci. Total Environ. 2024, 937, 173377. [Google Scholar] [CrossRef]
- Twardek, W.M.; Taylor, J.J.; Rytwinski, T.; Aitken, S.N.; MacDonald, A.L.; Van Bogaert, R.; Cooke, S.J. The application of assisted migration as a climate change adaptation tactic: An evidence map and synthesis. Biol. Conserv. 2023, 280, 109932. [Google Scholar] [CrossRef]
- Dalrymple, S.E.; Winder, R.; Campbell, E.M. Exploring the potential for plant translocations to adapt to a warming world. J. Ecol. 2021, 109, 2264–2270. [Google Scholar] [CrossRef]
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Sengupta, S.; Fritschi, F.B.; Azad, R.K.; Nechushtai, R.; Mittler, R. The impact of multifactorial stress combination on plant growth and survival. New Phytol. 2021, 230, 1034–1048. [Google Scholar] [CrossRef]
- Heywood, V.H. Plant conservation in the Anthropocene—Challenges and future prospects. Plant Divers. 2017, 39, 314–330. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Hernández, J.A.; Ferrer, M.A.; Jiménez, A.; Barceló, A.R.; Sevilla, F. Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 2001, 127, 817–831. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Bayat, H.; Shafie, F.; Shahraki, B. Salinity effects on growth, chlorophyll content, total phenols, and antioxidant activity in Salvia lavandulifolia Vahl. Adv. Hortic. Sci. 2022, 36, 145–153. [Google Scholar] [CrossRef]
- Chen, B.M.; Wang, Z.H.; Li, S.X.; Wang, G.X.; Song, H.X.; Wang, X.N. Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 2004, 167, 635–643. [Google Scholar] [CrossRef]
- Yazici, I.; Türkan, I.; Sekmen, A.H.; Demiral, T. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ. Exp. Bot. 2007, 61, 49–57. [Google Scholar] [CrossRef]
- Fernandes, C.S.; Sá, F.D.S.; Ferreira Neto, M.; Dias, N.D.S.; Reges, L.B.; Gheyi, H.R.; Paiva, E.P.; Silva, A.A.; Melo, A.D. Ionic homeostasis, biochemical components and yield of Italian zucchini under nitrogen forms and salt stress. Braz. J. Biol. 2021, 82, e233567. [Google Scholar] [CrossRef] [PubMed]
- Hniličková, H.; Hnilička, F.; Martinkova, J.; Kraus, K. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ. 2017, 63, 362–367. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Bertamini, M.; Grando, M.; Zocca, P.; Pedrotti, M.; Lorenzi, S.; Cappellin, L. Linking monoterpenes and abiotic stress resistance in grapevines. BIO Web Conf. 2019, 13, 01003. [Google Scholar] [CrossRef]
- Ran, X.; Wang, X.; Gao, X.; Liang, H.; Liu, B.; Huang, X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.). PLoS ONE 2021, 16, e0260086. [Google Scholar] [CrossRef]
- Yousefi, B.; Karamian, R. Effect of Salinity Stress and Salicylic Acid on Morpho-physiological and Growth Characteristics Satureja mutica Fisch. & C.A. Mey. J. Rangel. Sci. 2025, 15, 1–9. [Google Scholar] [CrossRef]
- Ashraf, M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 2009, 27, 84–93. [Google Scholar] [CrossRef]
- Arciszewski, M.; Pogorzelec, M.; Hawrylak-Nowak, B.; Parzymies, M.; Piejak, M. Towards successful reintroduction of Salix myrtilloides: The importance of monitoring plant physiological indicators during acclimatization. Dendrobiology 2024, 92, 100–111. [Google Scholar] [CrossRef]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Kucukoduk, M. Sphaerophysa kotschyana, an endemic species from Central Anatolia: Antioxidant system responses under salt stress. J. Plant Res. 2013, 126, 729–742. [Google Scholar] [CrossRef]
- Dabravolski, S.A.; Isayenkov, S.V. The Role of Anthocyanins in Plant Tolerance to Drought and Salt Stresses. Plants 2023, 12, 2558. [Google Scholar] [CrossRef]
- Eryılmaz, F. The relationships between salt stress and anthocyanin content in higher plants. Biotechnol. Biotechnol. Equip. 2006, 20, 47–52. [Google Scholar] [CrossRef]
- Napar, W.P.F.; Kaleri, A.R.; Ahmed, A.; Nabi, F.; Sajid, S.; Ćosić, T.; Yao, Y.; Liu, J.; Raspor, M.; Gao, Y. The anthocyanin-rich tomato genotype LA-1996 displays superior efficiency of mechanisms of tolerance to salinity and drought. J. Plant Physiol. 2022, 271, 153662. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Rauf, M.; Akhtar, M.; Mukhtar, Z.; Saeed, N.A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ. Sci. Pollut. Res. 2020, 27, 17661–17670. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Pogorzelec, M.; Parzymies, M.; Pawlik-Skowrońska, B.; Arciszewski, M.; Mielniczuk, J. Searching for optimal substitute habitats for plants by biological experiments—A case study of the endangered species Aldrovanda vesiculosa L. (Droseraceae). Int. J. Environ. Res. Public Health 2022, 19, 10743. [Google Scholar] [CrossRef] [PubMed]
Experiment 1 | Experiment 2 | ||
---|---|---|---|
Variant | Variant | ||
NaCl20 | 20 mmol/L NaCl, EC = 3230 μS/cm | N1 | 1 mg/L N-NO3 |
NaCl40 | 40 mmol/L NaCl, EC = 4200 μS/cm | N10 | 10 mg/L N-NO3 |
NaCl80 | 80 mmol/L NaCl, EC < 8000 μS/cm | N100 | 100 mg/L N-NO3 |
C | Control (distilled water) | C | Control (distilled water) |
Term | Variant | F0 | Fm | Fv/Fm |
---|---|---|---|---|
Term 1 | C | 207.3 ± 15.9 | 885.6 ± 60.0 | 0.765 ± 0.014 |
NaCl20 | 217.7 ± 57.1 | 747.9 ± 234.0 | 0.733 ± 0.076 | |
NaCl40 | 203.6 ± 14.3 | 845.8 ± 49.7 | 0.758 ± 0.018 | |
NaCl80 | 196.8 ± 19.6 | 857.7 ± 51.1 | 0.770 ± 0.018 | |
Term 2 | C | 173.8 ± 19.3 | 839.5 ± 64.2 | 0.793 ± 0.016 |
NaCl20 | 169.2 ± 24.7 | 843.8 ± 38.4 | 0.800 ± 0.020 | |
NaCl40 | 177.9 ± 12.0 | 832.7 ± 56.1 | 0.785 ± 0.021 | |
NaCl80 | 179.8 ± 31.0 | 850.1 ± 61.8 | 0.788 ± 0.033 | |
Term 3 | C | 178.6 ± 8.4 | 806.9 ± 60.5 | 0.777 ± 0.013 |
NaCl20 | 204.5 ± 48.6 | 757.7 ± 69.8 | 0.724 ± 0.083 | |
NaCl40 | 246.9 ± 39.3 | 742.7 ± 55.5 | 0.668 ± 0.040 | |
NaCl80 | 221.3 ± 40.6 | 695.2 ± 110.6 | 0.670 ± 0.092 |
Term | Variant | F0 | Fm | Fv/Fm |
---|---|---|---|---|
Term 1 | C | 207.3 ± 15.9 | 885.6 ± 60.0 | 0.765 ± 0.014 |
N1 | 180.6 ± 28.8 | 834.7 ± 65.8 | 0.733 ± 0.022 | |
N10 | 181.4 ± 23.6 | 806.4 ± 70.3 | 0.758 ± 0.020 | |
N100 | 180.8 ± 12.9 | 823.6 ± 48.5 | 0.770 ± 0.008 | |
Term 2 | C | 173.8 ± 19.3 | 839.5 ± 64.2 | 0.793 ± 0.016 |
N1 | 156.2 ± 9.2 | 837.7 ± 26.0 | 0.800 ± 0.008 | |
N10 | 167.3 ± 21.9 | 840.8 ± 72.8 | 0.785 ± 0.016 | |
N100 | 170 ± 19.1 | 827.1 ± 32.9 | 0.788 ± 0.017 | |
Term 3 | C | 178.6 ± 8.4 | 806.9 ± 60.5 | 0.777 ± 0.013 |
N1 | 167.8 ± 11.4 | 837 ± 37.9 | 0.724 ± 0.011 | |
N10 | 174.3 ± 17.4 | 822.6 ± 48.2 | 0.668 ± 0.013 | |
N100 | 180.6 ± 21.2 | 823.9 ± 32.7 | 0.670 ± 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arciszewski, M.; Pogorzelec, M.; Bronowicka-Mielniczuk, U.; Parzymies, M. Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species. Water 2025, 17, 2451. https://doi.org/10.3390/w17162451
Arciszewski M, Pogorzelec M, Bronowicka-Mielniczuk U, Parzymies M. Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species. Water. 2025; 17(16):2451. https://doi.org/10.3390/w17162451
Chicago/Turabian StyleArciszewski, Michał, Magdalena Pogorzelec, Urszula Bronowicka-Mielniczuk, and Marzena Parzymies. 2025. "Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species" Water 17, no. 16: 2451. https://doi.org/10.3390/w17162451
APA StyleArciszewski, M., Pogorzelec, M., Bronowicka-Mielniczuk, U., & Parzymies, M. (2025). Eutrophication and Salinization as Risk Factors in the Translocation Process of an Endangered Glacial Relict Species. Water, 17(16), 2451. https://doi.org/10.3390/w17162451