Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (446)

Search Parameters:
Keywords = soil marks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 12443 KiB  
Article
Exploring Continental and Submerged Paleolandscapes at the Pre-Neolithic Site of Ouriakos, Lemnos Island, Northeastern Aegean, Greece
by Myrsini Gkouma, Panagiotis Karkanas, Olga Koukousioura, George Syrides, Areti Chalkioti, Evangelos Tsakalos, Maria Ntinou and Nikos Efstratiou
Quaternary 2025, 8(3), 42; https://doi.org/10.3390/quat8030042 (registering DOI) - 1 Aug 2025
Abstract
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial [...] Read more.
Recent archaeological discoveries across the Aegean, Cyprus, and western Anatolia have renewed interest in pre-Neolithic seafaring and early island colonization. However, the environmental contexts that support such early coastal occupations remain poorly understood, largely due to the submergence of Pleistocene shorelines following post-glacial sea-level rise. This study addresses this gap through an integrated geoarchaeological investigation of the pre-Neolithic site of Ouriakos on Lemnos Island, northeastern Aegean (Greece), dated to the mid-11th millennium BCE. By reconstructing both the terrestrial and submerged paleolandscapes of the site, we examine ecological conditions, resource availability, and sedimentary processes that shaped human activity and site preservation. Employing a multiscale methodological approach—combining bathymetric survey, geomorphological mapping, soil micromorphology, geochemical analysis, and Optically Stimulated Luminescence (OSL) dating—we present a comprehensive framework for identifying and interpreting early coastal settlements. Stratigraphic evidence reveals phases of fluvial, aeolian, and colluvial deposition associated with an alternating coastline. The core findings reveal that Ouriakos was established during a phase of environmental stability marked by paleosol development, indicating sustained human presence. By bridging terrestrial and marine data, this research contributes significantly to the understanding of human coastal mobility during the Pleistocene–Holocene transition. Full article
Show Figures

Figure 1

23 pages, 3769 KiB  
Article
Study on the Spatio-Temporal Distribution and Influencing Factors of Soil Erosion Gullies at the County Scale of Northeast China
by Jianhua Ren, Lei Wang, Zimeng Xu, Jinzhong Xu, Xingming Zheng, Qiang Chen and Kai Li
Sustainability 2025, 17(15), 6966; https://doi.org/10.3390/su17156966 (registering DOI) - 31 Jul 2025
Abstract
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully [...] Read more.
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully aggregation and their driving factors. This study utilized high-resolution remote sensing imagery, gully interpretation information, topographic data, meteorological records, vegetation coverage, soil texture, and land use datasets to analyze the spatio-temporal patterns and influencing factors of erosion gully evolution in Bin County, Heilongjiang Province of China, from 2012 to 2022. Kernel density evaluation (KDE) analysis was also employed to explore these dynamics. The results indicate that the gully number in Bin County has significantly increased over the past decade. Gully development involves not only headward erosion of gully heads but also lateral expansion of gully channels. Gully evolution is most pronounced in slope intervals. While gentle slopes and slope intervals host the highest density of gullies, the aspect does not significantly influence gully development. Vegetation coverage exhibits a clear threshold effect of 0.6 in inhibiting erosion gully formation. Additionally, cultivated areas contain the largest number of gullies and experience the most intense changes; gully aggregation in forested and grassland regions shows an upward trend; the central part of the black soil region has witnessed a marked decrease in gully aggregation; and meadow soil areas exhibit relatively stable spatio-temporal variations in gully distribution. These findings provide valuable data and decision-making support for soil erosion control and transformation efforts. Full article
(This article belongs to the Special Issue Sustainable Agriculture, Soil Erosion and Soil Conservation)
Show Figures

Figure 1

21 pages, 5917 KiB  
Article
Cyanobacterial Assemblages Inhabiting the Apatity Thermal Power Plant Fly Ash Dumps in the Russian Arctic
by Denis Davydov and Anna Vilnet
Microorganisms 2025, 13(8), 1762; https://doi.org/10.3390/microorganisms13081762 - 28 Jul 2025
Viewed by 161
Abstract
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly [...] Read more.
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems. Pollutants migrate into terrestrial and aquatic systems, compromising soil quality and water resources, and posing documented risks to the environment and human health. Primary succession on the coal ash dumps of the Apatity thermal power plant (Murmansk Region, NW Russia) was initiated by cyanobacterial colonization. We studied cyanobacterial communities inhabiting three spoil sites that varied in time since decommissioning. These sites are characterized by exceptionally high concentrations of calcium and magnesium oxides—levels approximately double those found in the region’s natural soils. A total of 18 cyanobacterial taxa were identified in disposal sites. Morphological analysis of visible surface crusts revealed 16 distinct species. Furthermore, 24 cyanobacterial strains representing 11 species were successfully isolated into unialgal culture and tested with a molecular genetic approach to confirm their identification from 16S rRNA. Three species were determined with molecular evidence. Cyanobacterial colonization of coal fly ash disposal sites begins immediately after deposition. Primary communities initially exhibit low species diversity (four taxa) and do not form a continuous ground cover in the early years. However, as succession progresses—illustrated by observations from a 30-year-old deposit—spontaneous surface revegetation occurs, accompanied by a marked increase in cyanobacterial diversity, reaching 12 species. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

27 pages, 48299 KiB  
Article
An Extensive Italian Database of River Embankment Breaches and Damages
by Michela Marchi, Ilaria Bertolini, Laura Tonni, Luca Morreale, Andrea Colombo, Tommaso Simonelli and Guido Gottardi
Water 2025, 17(15), 2202; https://doi.org/10.3390/w17152202 - 23 Jul 2025
Viewed by 199
Abstract
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, [...] Read more.
River embankments are critical flood defense structures, stretching for thousands of kilometers across alluvial plains. They often originated as natural levees resulting from overbank flows and were later enlarged using locally available soils yet rarely designed according to modern engineering standards. Substantially under-characterized, their performance to extreme events provides an invaluable opportunity to highlight their vulnerability and then to improve monitoring, management, and reinforcement strategies. In May 2023, two extreme meteorological events hit the Emilia-Romagna region in rapid succession, causing numerous breaches along river embankments and therefore widespread flooding of cities and territories. These were followed by two additional intense events in September and October 2024, marking an unprecedented frequency of extreme precipitation episodes in the history of the region. This study presents the methodology adopted to create a regional database of 66 major breaches and damages that occurred during May 2023 extensive floods. The database integrates multi-source information, including field surveys; remote sensing data; and eyewitness documentation collected before, during, and after the events. Preliminary interpretation enabled the identification of the most likely failure mechanisms—primarily external erosion, internal erosion, and slope instability—often acting in combination. The database, unprecedented in Italy and with few parallels worldwide, also supported a statistical analysis of breach widths in relation to failure mechanisms, crucial for improving flood hazard models, which often rely on generalized assumptions about breach development. By offering insights into the real-scale behavior of a regional river defense system, the dataset provides an important tool to support river embankments risk assessment and future resilience strategies. Full article
(This article belongs to the Special Issue Recent Advances in Flood Risk Assessment and Management)
Show Figures

Figure 1

13 pages, 1249 KiB  
Article
Pinelands: Impacts of Different Long-Term Land Uses on Soil Physical Properties in Red Ferrosols
by Ana Carolina de Mattos e Avila, Jackson Adriano Albuquerque and Gunnar Kirchhof
Land 2025, 14(7), 1471; https://doi.org/10.3390/land14071471 - 15 Jul 2025
Viewed by 306
Abstract
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical [...] Read more.
Century-long land-use practices have a profound impact on soil physical and chemical properties, with direct implications for soil health and agricultural sustainability. This study aimed to assess the effects of four contrasting land uses—remnant vegetation, pasture, cultivated areas, and loafing areas—on the physical and chemical properties of Red Ferrosols in the Toowoomba region, Queensland, Australia. Soil samples were collected from upper and lower slope positions for each land use. Physical properties, including bulk density, porosity, water retention, and permeability, as well as chemical properties such as organic carbon, nitrogen, phosphorus, and potassium, were analysed. The results showed that remnant vegetation preserved the most favourable soil conditions, with lower bulk density, higher porosity, and greater water retention. Cultivated areas exhibited significant soil degradation, marked by compaction, reduced infiltration, and depleted organic matter. Loafing areas displayed localised nutrient enrichment but higher compaction due to livestock trampling. Pastures maintained intermediate conditions, retaining some beneficial soil characteristics. These findings emphasise the critical need for sustainable land management strategies to protect soil structure and function, supporting the long-term productivity and resilience of Red Ferrosols. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 373
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

24 pages, 4357 KiB  
Article
Attribution Analysis on Runoff Reduction in the Upper Han River Basin Based on Hydro-Meteorologic and Land Use/Cover Change Data Series
by Xiaoya Wang, Shenglian Guo, Menyue Wang, Xiaodong He and Wei Wang
Water 2025, 17(14), 2067; https://doi.org/10.3390/w17142067 - 10 Jul 2025
Viewed by 284
Abstract
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying [...] Read more.
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying evapotranspiration, infiltration and soil moisture content. Based on hydro-meteorological data from 1961 to 2023 and LUCC data series from 1985 to 2023, this study aimed to identify the temporal trend in hydro-meteorological variables, to quantify the impacts of underlying land surface and climate factors at different time scales and to clarify the effects of LUCCs and basin greening on the runoff generation process. The results showed that (1) inflow runoff declined at a rate of −1.71 mm/year from 1961 to 2023, with a marked shift around 1985, while potential evapotranspiration increased at a rate of 2.06 mm/year within the same time frame. (2) Annual climate factors accounted for 61.01% of the runoff reduction, while underlying land surface contributed 38.99%. Effective precipitation was the dominant climatic factor during the flood season, whereas potential evapotranspiration had a greater influence during the dry season. (3) From 1985 to 2023, the LUCC changed significantly, mainly manifested by the increasing forest area and decreasing crop land area. The NDVI also showed an upward trend over the years; the actual evapotranspiration increased by 1.163 billion m3 due to the LUCC. This study addresses the climate-driven and human-induced hydrological changes in the Danjiangkou Reservoir and provides an important reference for water resource management. Full article
Show Figures

Figure 1

22 pages, 6546 KiB  
Article
Remote Sensing-Based Assessment of Evapotranspiration Patterns in a UNESCO World Heritage Site Under Increasing Water Competition
by Maria C. Moyano, Monica Garcia, Luis Juana, Laura Recuero, Lucia Tornos, Joshua B. Fisher, Néstor Fernández and Alicia Palacios-Orueta
Remote Sens. 2025, 17(14), 2339; https://doi.org/10.3390/rs17142339 - 8 Jul 2025
Viewed by 352
Abstract
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity ( [...] Read more.
In water-scarce regions, natural ecosystems and agriculture increasingly compete for limited water resources, intensifying stress during periods of drought. To assess these competing demands, we applied a modified PT-JPL model that incorporates the thermal inertial approach as a substitute for relative humidity (RH) in estimating soil evaporation—a method that significantly outperforms the original PT-JPL formulation in Mediterranean semi-arid irrigated areas. This remote sensing framework enabled us to quantify spatial and temporal variations in water use across both natural and agricultural systems within the UNESCO World Heritage site of Doñana. Our analysis revealed an increasing evapotranspiration (ET) trend in intensified agricultural areas and rice fields surrounding the National Park (R = 0.3), contrasted by a strong negative ET trend in wetlands (R < −0.5). These opposing patterns suggest a growing diversion of water toward irrigation at the expense of natural ecosystems. The impact was especially marked during droughts, such as the 2011–2016 period, when precipitation declined by 16%. In wetlands, ET was significantly correlated with precipitation (R > 0.4), highlighting their vulnerability to reduced water inputs. These findings offer crucial insights to support sustainable water management strategies that balance agricultural productivity with the preservation of ecologically valuable systems under mounting climatic and anthropogenic pressures typical of semi-arid Mediterranean environments. Full article
Show Figures

Figure 1

18 pages, 3954 KiB  
Article
Remolding Water Content Effect on the Behavior of Frozen Clay Soils Subjected to Monotonic Triaxial Loading
by Shuai Qi, Jinhui Liu, Wei Ma, Jing Wang, Houwang Bai and Shaojian Wang
Appl. Sci. 2025, 15(13), 7590; https://doi.org/10.3390/app15137590 - 7 Jul 2025
Viewed by 217
Abstract
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect [...] Read more.
Understanding the mechanical behavior of frozen clay subgrade soils was essential for ensuring the safe and stable operation of transportation lines. However, the influence of remolding water content w on this behavior remained unclear. To address this gap, this study examined the effect of w through monotonic triaxial testing. Three typical remolding water contents (w = 19%, 27.5% and 35%) and three confining pressures (σ3 = 200 kPa, 700 kPa and 1200 kPa) were considered. Results showed that the mechanical behavior of frozen clay soils displayed a clear dependence on w, which was controlled by microstructural evolution. As w increased, the shear strength qmax, resilient modulus E0 and cohesion c increased, which resulted from the progressive development of ice bonding within the shear plane. A threshold w value was found at wopt = 27.5%, marking a structural transition and separating the variations of qmax, E0 and c into two regimes. When w ≤ 27.5%, the soil fabric was controlled by clay aggregates. As w increased, the growth in ice cementation was confined within these aggregates, leading to limited increase in qmax, E0 and c. However, as w exceeded 27.5%, the soil fabric transitioned into a homogeneous matrix of dispersed clay particles. In this case, increasing w greatly promoted the development of an interconnected ice cementation network, thus significantly facilitating the increase in qmax, E0 and c. The friction angle φ decreased with w increasing, primarily due to the lubrication effect caused by the growing ice. In addition, the enhanced lubrication effect in the clay particle-dominated fabric (w > 27.5%) resulted in a larger reduction rate of φ. Regarding Poisson’s ratio v and dilation angle ψ, the w increase led to growth in both parameters. This phenomenon could be explained by the increased involvement of solid ice into the soil structure. Full article
Show Figures

Figure 1

32 pages, 16283 KiB  
Article
Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis
by Jiayi Yang, Tian Huang, Lijie Xia and Jinyao Li
Foods 2025, 14(13), 2381; https://doi.org/10.3390/foods14132381 - 5 Jul 2025
Viewed by 496
Abstract
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. [...] Read more.
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. Terpenoids are a class of natural products derived from methyl hydroxypropanoic acid, for which their structural units consist of multiple isoprene (C5) units. They are one of the largest and most structurally diverse classes of natural compounds. However, there are still large gaps in knowledge regarding their exact biological activities and effects. Atherosclerosis (AS) is a prevalent cardiovascular disease marked by the chronic inflammation of the vascular system, and lipid metabolism plays a key role in its pathogenesis. This study determined the extraction and purification processes of AATP through single-factor experiments and response surface optimization methods. The purity of AATP was increased from 20.85% ± 0.94 before purification to 52.21% ± 0.75, which is 2.5 times higher than before purification. Studies have shown that the total terpenoids of A. absinthium significantly reduced four indices of serum lipids in atherosclerosis (AS) rats, thereby promoting lipid metabolism, inhibiting inflammatory processes, and hindering aortic wall thickening and hepatic fat accumulation. It is known from network pharmacology studies that AATP regulates the Janus kinase/signal transducer (JAK/STAT) signaling axis. Molecular docking studies have indicated that the active component of AATP effectively binds to Janus kinase (JAK2) and signal transducer (STAT3) target proteins. The results indicate that AATP can inhibit the release of pro-inflammatory mediators (such as reactive oxygen species (ROS)) in LPS-induced RAW264.7 macrophages. It also inhibits the M1 polarization of RAW264.7 macrophages. Protein immunoblotting analysis revealed that it significantly reduces the phosphorylation levels of Janus kinase (JAK2) and the signal transducer and activator of transcription 3 (STAT3). Research indicates that the active components in A. absinthium may exert anti-atherosclerotic effects by regulating lipid metabolism and inhibiting inflammatory responses. It holds potential value for development as a functional food or drug for the prevention and treatment of atherosclerosis. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

4 pages, 172 KiB  
Editorial
Innovative Strategies to Decompose Pollutants
by Fabrizio Olivito and Pravin Jagdale
Toxics 2025, 13(7), 569; https://doi.org/10.3390/toxics13070569 - 5 Jul 2025
Viewed by 294
Abstract
In an era marked by growing environmental awareness and a global commitment to achieving carbon neutrality, many human activities continue to contribute significantly to the pollution of water, soil, and air through the release of both organic and inorganic contaminants [...] Full article
(This article belongs to the Special Issue Innovative Strategies to Decompose Pollutants)
13 pages, 1512 KiB  
Article
Uncertainty in Kinetic Energy Models for Rainfall Erosivity Estimation in Semi-Arid Regions
by José Bandeira Brasil, Ana Célia Maia Meireles, Carlos Wagner Oliveira, Sirleide Maria de Menezes, Francisco Dirceu Duarte Arraes and Maria Simas Guerreiro
Hydrology 2025, 12(7), 181; https://doi.org/10.3390/hydrology12070181 - 4 Jul 2025
Viewed by 402
Abstract
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models [...] Read more.
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models for estimating rainfall kinetic energy (KE) and erosivity index (EI30) in this region, for all events and erosive events, using high-resolution rainfall data collected at the Federal University of Cariri (UFCA), Ceará. A total of 283 natural rainfall events were analyzed, with KE and EI30 values calculated using multiple models: Wischmeier and Smith, USDA, Van Dijk, a temporal variation-based model (KE_VT), and a regional model developed for Brazil’s semi-arid zone, which served as the reference. The results show a predominance of small rainfall events (<5.2 mm), though maximum EI30 values exceeded 1300 MJ ha−1 mm h−1, highlighting the potential for extreme erosive events. Comparative analysis revealed that all international models significantly underestimated KE and EI30 values compared to the regional reference, with the KE_VT model showing the closest approximation (13% underestimation), for all events and erosive events. Statistical assessments using the Wilcoxon test, Nash–Sutcliffe efficiency, and Willmott concordance index confirmed the superior performance of the KE_VT, for all events and erosive events. These findings underscore the importance of considering intra-event rainfall variability and regional calibration when modeling erosivity in semi-arid climates, contributing to more effective soil conservation and hydrological planning. Full article
Show Figures

Figure 1

15 pages, 17950 KiB  
Article
Transcriptome Analysis Reveals Key Pathways and Candidate Genes for Resistance to Plasmodiophora brassicae in Radish
by Yinbo Ma, Xinyuan Li, Feng Cui, Qian Yu, Baoyang Liu, Xinyi Guo and Liwang Liu
Horticulturae 2025, 11(7), 777; https://doi.org/10.3390/horticulturae11070777 - 3 Jul 2025
Viewed by 385
Abstract
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot [...] Read more.
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot resistance remains elusive in radish compared to other Brassicaceae species. In this study, 52 radish inbred lines were screened for disease responses following P. brassicae inoculation, with the resistant line T6 and the susceptible line T14 selected for transcriptome analysis. RNA-Seq was performed at 10, 20, and 30 days post inoculation (DPI) to elucidate transcriptional responses. The susceptible line T14 exhibited a higher number of differentially expressed genes (DEGs) and persistent upregulation across all time points, indicating ineffective defense responses and metabolic hijacking by the pathogen. In contrast, the resistant line T6 displayed temporally coordinated defense activation marked by rapid induction of core immune mechanisms: enhanced plant–pathogen interaction recognition, MAPK cascade signaling, and phytohormone transduction pathways, consistent with effector-triggered immunity priming and multilayered defense orchestration. These findings indicate that resistance in T6 could be mediated by the rapid activation of multilayered defense mechanisms, including R gene-mediated recognition, MAPK-Ca2+-ROS signaling, and jasmonic acid (JA) pathway modulation. The outcomes of this study would not only facilitate clarifying the molecular mechanism underlying clubroot resistance, but also provide valuable resources for genetic improvement of clubroot resistance in radish. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

12 pages, 2724 KiB  
Article
Growth, Spectral Vegetation Indices, and Nutritional Performance of Watermelon Seedlings Subjected to Increasing Salinity Levels
by Alfonso Llanderal, Gabriela Vasquez Muñoz, Malena Suleika Pincay-Solorzano, Stanislaus Antony Ceasar and Pedro García-Caparros
Agronomy 2025, 15(7), 1620; https://doi.org/10.3390/agronomy15071620 - 2 Jul 2025
Viewed by 363
Abstract
The production of high-quality horticultural seedlings is essential for successful field transplantation. Nevertheless, increasing soil salinization poses a significant challenge, particularly in salt-affected regions. Watermelon seedlings were cultivated in pots with a substrate (mixture of ground blonde peat (60%), black peat (30%), and [...] Read more.
The production of high-quality horticultural seedlings is essential for successful field transplantation. Nevertheless, increasing soil salinization poses a significant challenge, particularly in salt-affected regions. Watermelon seedlings were cultivated in pots with a substrate (mixture of ground blonde peat (60%), black peat (30%), and perlite (10%) with pH 5.5–6.0) within a bamboo nethouse and subjected to varying salinity levels, i.e., 2–8 dS m−1 (T1, T2, T3, and T4). At the end of the experimental period (4 weeks), the growth parameters, spectral vegetation indices, and chemical parameters of the sap and leachate were evaluated. The results demonstrated that increased salinity levels reduced the biomass of watermelon seedlings. In addition, elevated salinity levels were associated with increased values of B (48%) and NBI (46%) and decreased values of G (9%) and NGI (7%) at the end of the experimental period. The effects of the salinity levels were also evident in the sap chemical parameters, with marked increases in Cl, Ca2+, and Na+ concentrations (9.6, 3.1, and 4.9 times, respectively) and decreases in the N-NO3, P, and K+ concentrations (51, 8, and 25%, respectively). The leachate analysis reported clear increases in the values of EC and concentrations of Cl, Ca2+, and Na+ at the end of the experimental period. To validate the relevance of these findings, further research under field conditions and across a range of climatic environments is warranted. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 987 KiB  
Article
Valorization of Agro-Industrial Wastes as Organic Amendments to Reduce Herbicide Leaching into Soil
by Gabriel Pérez-Lucas, Andrea Martínez-Zapata and Simón Navarro
J. Xenobiot. 2025, 15(4), 100; https://doi.org/10.3390/jox15040100 - 30 Jun 2025
Viewed by 328
Abstract
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are [...] Read more.
High levels of pesticide use are associated with intensive crop production. Pesticides are increasingly prevalent in surface and groundwater, which is a major environmental concern. Various methods have been proposed to improve the retention and/or degradation of pesticides in soils. These methods are mainly based on soil adaptation with organic wastes to mitigate soil and water pollution. In addition, there has recently been increased interest in assessing the influence of organic waste additions on pesticide movement in soils with low contents of organic matter. Agriculture and related industries generate large amounts of waste each year. Because of their components, they have the great ability to produce high-value products for environmental restoration. This study reports on the influence of four different agro-industrial wastes (orange peel, beer bagasse, grape pomace, and gazpacho waste) used as organic amendments on the leaching of metobromuron and chlorbromuron (phenylurea herbicides) on a silty clay loam soil (gypsic–calcaric regosol) with low organic matter contents from a semiarid area (southeastern Spain). The adsorption, leaching, and dissipation processes of these herbicides were evaluated on a laboratory scale in amended and unamended soils. In addition, the main leaching indices (GUS, LIX, LEACH, M LEACH, LIN, GLI, HI, and ELI) commonly used to assess groundwater protection against pesticide pollution were evaluated. The sorption coefficients (KOC) increased in the amended soils. Metobromuron was found in leachates in all cases, although a marked reduction was observed in amended soils, while chlorbromuron was mainly retained in soils, especially in the top layer. The disappearance time (DT50) for metobromuron and chlorbromuron in soil ranged from 11 to 56 d and 18 to 95 d, respectively. All indices except GLI categorize metobromuron as mobile or very mobile in unamended soil. For chlorbromuron, GUS, LIX, LEACH, MLEACH, and Hornsby classify this compound as a medium-to-high leache, while GLI and ELI classify it as having low mobility. In amended soils, most indices classify metobromuron as transitioning to mobile, while most indices catalog chlorbromuron as immobile/transition. Full article
Show Figures

Graphical abstract

Back to TopTop