Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = soil health gap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

30 pages, 3150 KiB  
Review
Making the Connection Between PFASs and Agriculture Using the Example of Minnesota, USA: A Review
by Sven Reetz, Joel Tallaksen, John Larson and Christof Wetter
Agriculture 2025, 15(15), 1676; https://doi.org/10.3390/agriculture15151676 - 2 Aug 2025
Viewed by 345
Abstract
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a [...] Read more.
Exposure to per- and polyfluoroalkyl substances (PFASs) can cause detrimental health effects. The consumption of contaminated food is viewed as a major exposure pathway for humans, but the relationship between agriculture and PFASs has not been investigated thoroughly, and it is becoming a pressing issue since health advisories are continuously being reassessed. This semi-systematic literature review connects the release, environmental fate, and agriculture uptake of PFASs to enhance comprehension and identify knowledge gaps which limit accurate risk assessment. It focuses on the heavily agricultural state of Minnesota, USA, which is representative of the large Midwestern US Corn Belt in terms of agricultural activities, because PFASs have been monitored in Minnesota since the beginning of the 21st century. PFAS contamination is a complex issue due to the over 14,000 individual PFAS compounds which have unique chemical properties that interact differently with air, water, soil, and biological systems. Moreover, the lack of field studies and monitoring of agricultural sites makes accurate risk assessments challenging. Researchers, policymakers, and farmers must work closely together to reduce the risk of PFAS exposure as the understanding of their potential health effects increases and legacy PFASs are displaced with shorter fluorinated replacements. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

33 pages, 872 KiB  
Review
Implications of Fertilisation on Soil Nematode Community Structure and Nematode-Mediated Nutrient Cycling
by Lilian Salisi Atira and Thomais Kakouli-Duarte
Crops 2025, 5(4), 50; https://doi.org/10.3390/crops5040050 - 30 Jul 2025
Viewed by 233
Abstract
Soil nematodes are essential components of the soil food web and are widely recognised as key bioindicators of soil health because of their sensitivity to environmental factors and disturbance. In agriculture, many studies have documented the effects of fertilisation on nematode communities and [...] Read more.
Soil nematodes are essential components of the soil food web and are widely recognised as key bioindicators of soil health because of their sensitivity to environmental factors and disturbance. In agriculture, many studies have documented the effects of fertilisation on nematode communities and explored their role in nutrient cycling. Despite this, a key gap in knowledge still exists regarding how fertilisation-induced changes in nematode communities modify their role in nutrient cycling. We reviewed the literature on the mechanisms by which nematodes contribute to nutrient cycling and on how organic, inorganic, and recycling-derived fertilisers (RDFs) impact nematode communities. The literature revealed that the type of organic matter and its C:N ratio are key factors shaping nematode communities in organically fertilised soils. In contrast, soil acidification and ammonium suppression have a greater influence in inorganically fertilised soils. The key sources of variability across studies include differences in the amount of fertiliser applied, the duration of the fertiliser use, management practices, and context-specific factors, all of which led to differences in how nematode communities respond to both fertilisation regimes. The influence of RDFs on nematode communities is largely determined by the fertiliser’s origin and its chemical composition. While fertilisation-induced changes in nematode communities affect their role in nutrient cycling, oversimplifying experiments makes it difficult to understand nematodes’ functions in these processes. The challenges and knowledge gaps for further research to understand the effects of fertilisation on soil nematodes and their impact on nutrient cycling have been highlighted in this review to inform sustainable agricultural practices. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
Show Figures

Figure 1

23 pages, 414 KiB  
Review
Environmental Detection of Coccidioides: Challenges and Opportunities
by Tanzir Hossain, Gabriel Ibarra-Mejia, Adriana L. Romero-Olivares and Thomas E. Gill
Environments 2025, 12(8), 258; https://doi.org/10.3390/environments12080258 - 28 Jul 2025
Viewed by 682
Abstract
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its [...] Read more.
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its incidence is rising. Underreporting may stem from diagnostic and testing difficulties, insufficient environmental sampling for pathogen detection to determine endemicity, and a shortage of data on Coccidioides dispersion. As climate change creates increasingly arid locations in the US favorable for Coccidioides proliferation, determining its total endemicity becomes more difficult. This literature review examining published research from 2000 to 2025 revealed a paucity of publications examining the endemicity of Coccidioides and research gaps in detection methods, including limited studies on the reliability of sampling for geographical and temporal variations, challenges in assessing various sample materials, poorly defined storage conditions, and the lack of precise, less restrictive, cost-effective laboratory procedures. Addressing these challenges requires interdisciplinary collaboration among Coccidioides researchers, wildlife experts, atmospheric and climate scientists, and policymakers. If these obstacles are solved, standardized approaches for identifying Coccidioides, classified by climate zones and ecoregions, could be developed, saving financial resources, labor, and time for future researchers studying the environmental drivers of coccidioidomycosis. Full article
27 pages, 1900 KiB  
Review
A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives
by Feng Tian, Yiwen Wang, Yawen Zhao, Ruyu Sun, Man Qi, Suqing Wu and Li Wang
Water 2025, 17(15), 2184; https://doi.org/10.3390/w17152184 - 22 Jul 2025
Viewed by 261
Abstract
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis [...] Read more.
Soil acidification, salinization, and heavy metal pollution pose serious threats to global food security and sustainable agricultural development. Biochar, with its high porosity, large surface area, and abundant functional groups, can effectively improve soil properties. However, due to variations in feedstocks and pyrolysis conditions, it may contain potentially harmful substances. Industrial wastes such as fly ash, steel slag, red mud, and phosphogypsum are rich in minerals and show potential for soil improvement, but direct application may pose environmental risks. The co-application of biochar with these wastes can produce composite amendments that enhance pH buffering capacity, nutrient availability, and pollutant immobilization. Therefore, a review of biochar-industrial waste composites as soil amendments is crucial for addressing soil degradation and promoting resource utilization of wastes. In this study, the literature was retrieved from Web of Science, Scopus, and Google Scholar using keywords including biochar, fly ash, steel slag, red mud, phosphogypsum, combined application, and soil amendment. A total of 144 articles from 2000 to 2025 were analyzed. This review summarizes the physicochemical properties of biochar and representative industrial wastes, including pH, electrical conductivity, surface area, and elemental composition. It examines their synergistic mechanisms in reducing heavy metal release through adsorption, complexation, and ion exchange. Furthermore, it evaluates the effects of these composites on soil health and crop productivity, showing improvements in soil structure, nutrient balance, enzyme activity, and metal immobilization. Finally, it identifies knowledge gaps as well as future prospects and recommends long-term field trials and digital agriculture technologies to support the sustainable application of these composites in soil management. Full article
Show Figures

Figure 1

21 pages, 9917 KiB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Viewed by 280
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

22 pages, 1279 KiB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 394
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

23 pages, 1142 KiB  
Review
Impact of Nitrogen Fertiliser Usage in Agriculture on Water Quality
by Opeyemi Adebanjo-Aina and Oluseye Oludoye
Pollutants 2025, 5(3), 21; https://doi.org/10.3390/pollutants5030021 - 14 Jul 2025
Viewed by 453
Abstract
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human [...] Read more.
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human health. This study examines the relationship between synthetic nitrogen fertiliser usage and water pollution while identifying gaps in existing research to guide future studies. A systematic search across databases (Scopus, Web of Science, and Greenfile) identified 18 studies with quantitative data, synthesised using a single-group meta-analysis of means. As the data were continuous, the mean was used as the effect measure, and a random-effects model was applied due to varied study populations, with missing data estimated through statistical assumptions. The meta-analysis found an average nitrate concentration of 34.283 mg/L (95% confidence interval: 29.290–39.276), demonstrating the significant impact of nitrogen fertilisers on water quality. While this average remains marginally below the thresholds set by the World Health Organization (50 mg/L NO3) and EU Nitrate Directive, it exceeds the United States Environmental Protection Agency limit (44.3 mg/L NO3), signalling potential health risks, especially in vulnerable or unregulated regions. The high observed heterogeneity (I2 = 100%) suggests that factors such as soil type, agricultural practices, application rate, and environmental conditions influence nitrate levels. While agriculture is a key contributor, other anthropogenic activities may also affect nitrate concentrations. Future research should comprehensively assess all influencing factors to determine the precise impact of nitrogen fertilisers on water quality. Full article
Show Figures

Figure 1

25 pages, 1275 KiB  
Review
Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
by Yanga Mgxaji, Charles S. Mutengwa, Patrick Mukumba and Admire R. Dzvene
Agronomy 2025, 15(7), 1683; https://doi.org/10.3390/agronomy15071683 - 11 Jul 2025
Viewed by 353
Abstract
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient [...] Read more.
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient availability. It focuses on the sources and properties of BGS, its application methods, and their effects on the soil nutrient dynamics and crop productivity. The findings indicate that BGS improves the soil health and crop yields, offering an eco-friendly alternative to synthetic fertilizers, especially in resource-limited settings. Despite these benefits, research gaps persist, including the need for long-term field trials, the optimization of application strategies for sandy soils, and comprehensive economic evaluations. Additionally, concerns such as nutrient imbalances, phosphorus accumulation, and slurry composition variability must be addressed. This review recommends standardizing BGS nutrient profiling and adopting site-specific management practices to maximize its agronomic benefits and environmental safety. Integrating BGS into sustainable soil fertility programs could contribute significantly to achieving agricultural resilience and circular economy goals. Full article
Show Figures

Figure 1

18 pages, 409 KiB  
Review
Impact of Drought on Soil Microbial Communities
by Sujani De Silva, Lithma Kariyawasam Hetti Gamage and Vesh R. Thapa
Microorganisms 2025, 13(7), 1625; https://doi.org/10.3390/microorganisms13071625 - 10 Jul 2025
Viewed by 612
Abstract
Drought, an increasingly prevalent climate stressor due to global warming, profoundly impacts agricultural systems, particularly the soil microbiome. Soil microorganisms are crucial for nutrient cycling, plant health, and ecosystem stability; however, drought-induced changes disrupt microbial community structure, function, and interactions with plants. This [...] Read more.
Drought, an increasingly prevalent climate stressor due to global warming, profoundly impacts agricultural systems, particularly the soil microbiome. Soil microorganisms are crucial for nutrient cycling, plant health, and ecosystem stability; however, drought-induced changes disrupt microbial community structure, function, and interactions with plants. This review synthesizes current knowledge on the effects of drought on soil microbiomes, with a focus on microbial diversity, resilience, and functional shifts in agricultural contexts. It highlights key microbial mechanisms underpinning plant drought tolerance, including symbioses with plant growth-promoting bacteria and fungi. Furthermore, it addresses knowledge gaps in the long-term effects of repeated drought events, microbial adaptations, and plant–soil feedback mechanisms. By advancing our understanding of drought–microbiome dynamics, this review aims to inform sustainable agricultural practices and resilience strategies to mitigate the adverse impacts of drought on crop productivity and ecosystem health. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

22 pages, 2196 KiB  
Review
A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics
by Muhammad Amjad, Elanchezhian Arulmozhi, Yeong-Hyeon Shin, Moon-Kyung Kang and Woo-Jae Cho
Agronomy 2025, 15(7), 1627; https://doi.org/10.3390/agronomy15071627 - 3 Jul 2025
Viewed by 997
Abstract
Traditional farming practices are becoming increasingly inadequate to meet global food demand due to water scarcity, prolonged production cycles, climate variability, and declining arable land. In contrast, aeroponic, smart, soil-free farming technologies offer a more sustainable alternative by reducing land use and providing [...] Read more.
Traditional farming practices are becoming increasingly inadequate to meet global food demand due to water scarcity, prolonged production cycles, climate variability, and declining arable land. In contrast, aeroponic, smart, soil-free farming technologies offer a more sustainable alternative by reducing land use and providing efficient water use, given that aeroponics intermittently delivers water in mist form rather than maintaining continuous root zone moisture. However, aeroponics faces critical challenges in irrigation management due to non-standardized structures and limited real-time control. A key limitation is the inability to dynamically respond to temperature (T), relative humidity (RH), light intensity (Li), electrical conductivity (EC), pH, and photosynthesis rate (Pn), resulting in suboptimal crop yields and resource wastage. Despite growing interest, there remains a research gap in integrating internet of things (IoT) and machine learning technologies into aeroponic systems for adaptive control. IoT-enabled sensors provide real-time data on ambient conditions and plant health, while ML models can adaptively optimize misting intervals based on the fluctuations in Pn and environmental inputs. These technologies are particularly well suited to address the dynamic, data-intensive nature of aeroponic environments. This review purposes a novel, standardized IoT–ML framework to control irrigation by emphasizing IoT sensing and ML-based decision making in aeroponics. This integrated approach is essential for minimizing water loss, enhancing resource efficiency, and advancing the sustainability of controlled-environment agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 1654 KiB  
Review
Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil
by Caroline Figueiredo Oliveira, Thaynara Garcez da Silva, Estefani Kariane Oliveira, Fabíola Lucini and Elcio Ferreira Santos
AgriEngineering 2025, 7(7), 214; https://doi.org/10.3390/agriengineering7070214 - 3 Jul 2025
Viewed by 410
Abstract
Iron deficiency is a widespread public health concern, particularly in regions where rice (Oryza sativa) and beans (Phaseolus spp.) are staple foods with naturally low bioavailable iron content. Agronomic biofortification is a practical strategy to increase micronutrient levels in crops [...] Read more.
Iron deficiency is a widespread public health concern, particularly in regions where rice (Oryza sativa) and beans (Phaseolus spp.) are staple foods with naturally low bioavailable iron content. Agronomic biofortification is a practical strategy to increase micronutrient levels in crops through soil, foliar, and seed-based fertilization techniques. This review synthesizes scientific studies published between 2014 and 2024 that evaluated the effectiveness of agronomic iron biofortification methods in rice and beans. The results demonstrate that site-specific interventions, such as the selection of iron sources and application methods, can improve iron concentration in grains and contribute to more nutritious and resilient food systems. However, challenges remain. There is limited information about human iron bioavailability, and the response to fertilization varies depending on soil and environmental conditions. To address these gaps, future research should include bioavailability assessments and field validation. Even so, integrating iron biofortification into standard fertilization practices is a promising approach to improve food quality and combat hidden hunger in vulnerable populations. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

14 pages, 1081 KiB  
Review
High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes
by Sapana Pandey, Christopher J. Matocha, Hanna Poffenbarger and Krista Jacobsen
Horticulturae 2025, 11(7), 773; https://doi.org/10.3390/horticulturae11070773 - 2 Jul 2025
Viewed by 363
Abstract
Yellow shoulder disorder (YSD) is characterized by discolored regions beneath the fruit’s epidermis, impacting the ripening process and rendering tomatoes unsuitable for marketing. YSD poses a significant challenge in high-tunnel (HT) tomato production, a system that has gained prominence for its ability to [...] Read more.
Yellow shoulder disorder (YSD) is characterized by discolored regions beneath the fruit’s epidermis, impacting the ripening process and rendering tomatoes unsuitable for marketing. YSD poses a significant challenge in high-tunnel (HT) tomato production, a system that has gained prominence for its ability to extend growing seasons and enhance crop quality. This review delves into the various factors influencing YSD occurrence, including soil nutritional status, weather, plant variety, and the interactions between these factors, contributing to the occurrence of YSD in HT microclimate. The severity of YSD symptoms, ranging from minor to significant discoloration, highlights the complexity of this disorder. This review highlights research gaps on the effects of temperature, relative humidity, nutrient imbalance, soil water management, clay minerals, and how their interactions influence YSD in HT microclimates, emphasizing the need for comprehensive studies to understand the complex relationships between soil health, nutrient management, and tomato quality in HT microclimates and the need for further research to sustain high-quality tomato production in HTs. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

31 pages, 1097 KiB  
Project Report
Assessment of Knowledge Gaps Related to Soil Literacy
by Roger Roca Vallejo, Anna Krzywoszynska, Loukas Katikas, Karen Naciph Mora, Marie Husseini, Sónia Morais Rodrigues, Roos van de Logt, Karen Johnson, Borut Vrščaj, Camilla Ramezzano, Katja Črnec and Almut Ballstaedt
Land 2025, 14(7), 1372; https://doi.org/10.3390/land14071372 - 30 Jun 2025
Viewed by 509
Abstract
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under [...] Read more.
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under the Soils for Europe (SOLO) project, which aims to identify research and innovation knowledge gaps to strengthen soil literacy in Europe. Drawing on literature reviews, stakeholder engagement, and interdisciplinary dialogue, the paper highlights 18 prioritised knowledge gaps across different topics. These include a lack of integrated pedagogical strategies, limited outreach to specific social groups, and underdeveloped communication methods linking soil knowledge to stewardship actions. The article proposes adaptive and inclusive approaches to soil education that respect multiple knowledge systems and values and emphasises the importance of embedding soil literacy into sustainability agendas and governance processes. By addressing these challenges, the paper contributes to broader efforts supporting the EU Soil Mission and the goals of World Soil Day by promoting public awareness, citizen engagement, and responsible soil care. Full article
(This article belongs to the Special Issue Celebrating World Soil Day)
Show Figures

Figure 1

Back to TopTop