High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes
Abstract
1. Introduction
2. Methods
3. Results
3.1. High-Tunnel Microclimates Favor the Development of YSD by Affecting Lycopene Synthesis
3.2. K Regulation of Ripening May Be Difficult to Achieve in HT Microclimate Conditions
3.3. High Soil Temperatures in HTs Increase the Risk of YSD by Affecting Tomato Root Growth, Nutrient Uptake, and Source-Sink Dynamics
3.4. Common Irrigation Practices in HT Systems May Limit Soil K Availability and Increase the Risk of YSD
3.5. Nutrient Imbalances Driven by Intensive Production Practices Increase Risk for YSD
3.6. Soil Mineralogy Influences K Fixation, Potentially Increasing the Risk of YSD
3.7. Management to Reduce YSD May Be Cultivar- and Growth-Habit Specific
3.8. Interaction Between Genetic and Environmental Factors Could Be Responsible for YSD
3.9. Interactions Between Main Factors Result in Complex Mechanisms Associated with YSD
4. Reducing the Risk of YSD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEC | cation exchange capacity |
EQIP | Environmental Quality Incentive Program |
HT | high tunnel |
USDA-NRCS | United States Department of Agriculture–Natural Resources Conservation Service |
YSD | yellow shoulder disorder |
References
- Montri, A.; Biernbaum, J.A. Management of the soil environment in high tunnels. HortTechnology 2009, 19, 34–36. [Google Scholar] [CrossRef]
- Blomgren, T.; Frisch, T.; Moore, S. High Tunnels: Using Low-Cost Technology to Increase Yields, Improve Quality and Extend the Season. Regional Farm and Food Project and Cornell University. Retrived from: Agriculture. 2007. Available online: https://u.osu.edu/vegprolab/crop-environment-publications/high-tunnels-using-low-cost-technology-to-increase-yields-improve-quality-and-extend-the-season/ (accessed on 10 November 2023).
- Wells, O.S.; Loy, J.B. Rowcovers and high tunnels enhance crop production in the Northeastern United States. HortTechnology 1993, 3, 92–95. [Google Scholar] [CrossRef]
- Lamont, W.J., Jr. Overview of the use of high tunnels worldwide. HortTechnology 2009, 19, 25–29. [Google Scholar] [CrossRef]
- Rabobank. World Vegetable Map 2018. RaboResearch Food & Agribusiness. 2018. Available online: https://research.rabobank.com/far/en/sectors/regional-food-agri/world_vegetable_map_2018.html (accessed on 28 September 2023).
- Hadley, D. Controlled Environment Horticulture Industry Potential in NSW. University of New England. 2017. Available online: https://www.une.edu.au/about-une/faculty-of-science-agriculture-business-and-law/unebs/centre-for-agribusiness/documents/controlled-environment-horticulture-industry-potential-hadley.pdf (accessed on 15 December 2023).
- U.S. Department of Agriculture-Natural Resource Conservation Service. EQIP and RCPP-EQIP Contracted High Tunnels 2012–2021. 2021. Available online: https://www.nrcs.usda.gov/programs-initiatives/eqip-high-tunnel-initiative (accessed on 15 February 2024).
- Frey, C.J.; Zhao, X.; Brecht, J.K.; Black, Z.E.; Zhao, X. High tunnel and grafting effects on organic tomato plant disease severity and root-knot nematode infestation in a subtropical climate with sandy soils. HortScience 2020, 55, 46–54. [Google Scholar] [CrossRef]
- O’Connell, S.; Rivard, C.; Peet, M.M.; Harlow, C.; Louws, F. High tunnel and field production of organic heirloom tomatoes: Yield, fruit Quality, disease, and microclimate. HortScience 2012, 47, 1283–1290. [Google Scholar] [CrossRef]
- Kaiser, C.; Ernst, M. High Tunnel Tomatoes. CCD-CP-62; Center for CROP Diversification, University of Kentucky College of Agriculture, Food and Environment: Lexington, KY, USA, 2017; Available online: https://publications.ca.uky.edu/ccd-cp-62 (accessed on 24 December 2023).
- Guan, W. A New Soil Test for High Tunnel Growers; Purdue University Cooperative Extension Service: West Lafayette, IN, USA, 2020; ISSUE: 668; Available online: https://vegcropshotline.org/article/a-new-soil-test-for-high-tunnel-growers/ (accessed on 15 December 2024).
- Rudisill, M.A.; Bordelon, B.P.; Turco, R.F.; Hoagland, L.A. Sustaining soil quality in intensively managed high tunnel vegetable production systems: A role for green manures and chicken litter. HortScience 2015, 50, 461–468. [Google Scholar] [CrossRef]
- Gerszberg, A.; Hnatuszko-Konka, K. Tomato tolerance to abiotic stress: A review of most often engineered target sequences. Plant Growth Regul. 2017, 83, 175–198. [Google Scholar] [CrossRef]
- Hajime, A.; Hane, S.; Hoshino, Y.; Hirata, T. Cover Crop Use in Tomato Production in Plastic High Tunnel. Hortic. Environ. Biotechnol. 2009, 50, 324–328. [Google Scholar]
- Wildung, D.; Johnson, P. High Tunnel Production Manual for Commercial Growers; University of Minnesota: Minneapolis, MN, USA, 2012; Available online: http://www.plantgrower.org/uploads/6/5/5/4/65545169/high-tunnel-manual-2012.pdf (accessed on 7 December 2023).
- Moretti, C.L.; Mattos, L.M.; Calbo, A.G.; Sargent, S.A. Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Res. Int. 2010, 43, 1824–1832. [Google Scholar] [CrossRef]
- Higgins, G.; Scheufele, S. Tomato, Physiological Ripening Disorders; University of Massachusetts Agriculture and Landscape Program: Amherst, MA, USA, 2019; Available online: https://ag.umass.edu/vegetable/fact-sheets/tomato-physiological-ripening-disorders (accessed on 17 December 2023).
- Hartz, T.K.; Miyao, G.; Mullen, R.J.; Brittan, K.L. Potassium requirements for maximum yield and fruit quality of processing tomato. Am. Soc. Hortic. Sci. 1999, 124, 199. [Google Scholar] [CrossRef]
- Picha, D.H. Physiological factors associated with yellow shoulder expression in tomato fruit. J. Am. Soc. Hortic. Sci. 1987, 112, 798–801. [Google Scholar] [CrossRef]
- Schlimme, D.V.; Corey, K.A.; Frey, B.C. Evaluation of lye and steam peeling using four processing tomato cultivars. J. Food Sci. 1984, 49, 1415–1418. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Agricultural Marketing Service. Fruit and Vegetable Division. Fresh Products Branch. United States Standards for Grades of Fresh Tomatoes: Effective. 1 October 1991 (Reprinted—January 1997). 1997. Available online: https://www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf (accessed on 2 March 2023).
- Bogash, S.; Orzolek, M. Yellow Shoulder on Tomato. In Proceedings of the Greenhouse and High Tunnels Session. 2012; pp. 1–7. Available online: http://www.hort.cornell.edu/expo/proceedings/2012/Greenhouse%20and%20High%20Tunnels/High%20Tunnels%20Bogash.pdf (accessed on 27 May 2024).
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Maynard, E.T.; Calsoyas, I.S.; Malecki, J. Potassium Applications and Yellow Shoulder disorder of Tomatoes in High Tunnels; Purdue University: West Lafayette, IN, USA, 2016; Available online: https://docs.lib.purdue.edu (accessed on 24 January 2024).
- Sacks, E.J.; Francis, D.M. Genetic and environmental variation for tomato flesh color in a population of modern breeding lines. J. Am. Soc. Hortic. Sci. 2001, 126, 221–226. [Google Scholar] [CrossRef]
- Eshu, S.; Rangare, S.B.; Yadav, V.; Rangare, N.R. Physiological disorders in tomato (Solanum lycopersicum Mill.)—An abnormalities. Trends Biosci. 2014, 7, 3779–3785. [Google Scholar]
- Shrestha, S.L.; Sah, R.L. Evaluation of tomato cultivars for central Terai of Nepal. Nepal J. Sci. Technol. 2015, 15, 11–16. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Mhazo, N.; Oseni, T.O.; Shongwe, V.D. Common physiological disorders of tomato (Lycopersicon esculentum) fruit found in Swaziland. J. Agric. Soc. Sci. 2009, 5, 123–127. Available online: http://www.fspublishers.org (accessed on 27 November 2023).
- Suzuki, K. Physiological Disorders and Their Management in Greenhouse Tomato Cultivation at High Temperatures. In Adaptation to Climate Change in Agriculture; Iizumi, T., Hirata, R., Matsuda, R., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Wang, W.; Liu, D.; Qin, M.; Xie, Z.; Chen, R.; Zhang, Y. Effects of supplemental lighting on potassium transport and fruit coloring of tomatoes grown in hydroponics. Int. J. Mol. Sci. 2021, 22, 2687. [Google Scholar] [CrossRef]
- Redondo, I.B. Comparison of Six Selections of the Heirloom Tomato. 2013. Available online: https://www.ub.edu/masterae/wp-content/uploads/2014/05/CULTIVO-DE-HORTALIZAS-H33.pdf (accessed on 15 January 2024).
- Romero-Aranda, R.; Fernández-Muñoz, R.; López-Casado, G.; Cuartero, J. Yellow Shoulder Disorder in Tomatoes Under Natural and Controlled Conditions; Department of Plant Breeding, La Mayora Experimental Station, Spanish National Research Council (CSIC): Algarrobo-Costa, Spain, 2004; Volume 53, pp. 34–35. Available online: https://www.researchgate.net/publication/265818400_Avances_en_la_genetica_de_la_fisiopatia_de_la_mancha_solar_en_tomate (accessed on 28 September 2023).
- Hernandez-Perez, O.I.; Valdez-Aguilar, L.A.; Alia-Tejacal, I.; Cartmill, A.D.; Cartmill, D.L. Tomato fruit yield, quality, and nutrient status in response to potassium: Calcium balance and electrical conductivity in the nutrient solution. J. Soil Sci. Plant Nutr. 2020, 20, 484–492. [Google Scholar] [CrossRef]
- Jarquín-Enríquez, L.; Mercado-Silva, E.; Maldonado, J.L.; Lopez-Baltazar, J. Lycopene content and color index of tomatoes are affected by the greenhouse cover. Sci. Hortic. 2013, 155, 43–48. [Google Scholar] [CrossRef]
- Shaheen, M.R.; Ayyub, C.M.; Amjad, M.; Waraich, E.A. Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. J. Sci. Food Agric. 2015, 96, 2698–2704. [Google Scholar] [CrossRef]
- Yui, S.; Ishii, T.; Fujino, M.; Yanokuchi, Y.; Kataoka, S.; Ishiuchi, D.; Uchiumi, T.; Matsunaga, H.; Okimura, M.; Kawazu, Y. Breeding and characteristics of ʻTomato intermediate mother plant No 10’, high lycopene tomato breeding line for staked culture. Breed. Res. 2009, 11, 95–99. [Google Scholar] [CrossRef]
- Venter, F. Investigation on green-back of tomatoes. Acta Hortic. 1966, 4, 99–101. [Google Scholar] [CrossRef]
- Lipton, W.J. Effects of high humidity and solar radiation on temperature and color of tomato fruits. J. Am. Soc. Hortic. Sci. 1970, 95, 680–684. [Google Scholar] [CrossRef]
- Brust, J. Yellow Shoulders in Tomato: A Big Problem This Season. Weekly Crop Update. University of Delaware Cooperative Extension. 2011. Available online: https://sites.udel.edu/weeklycropupdate/?p=3457 (accessed on 25 September 2024).
- Hwang, I.; Kim, Y.; Han, J.; Nou, I.S. Orange color is associated with CYC-B expression in tomato fleshy fruit. Mol. Breed. 2016, 36, 42. [Google Scholar] [CrossRef]
- Preedy, V.R.; Watson, R.R. (Eds.) Tomatoes and Tomato Products: Nutritional, Medicinal and Therapeutic Properties; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Stommel, J.; Abbott, J.A.; Saftner, R.A.; Camp, M. Sensory and objective quality attributes of beta-carotene and lycopene-rich tomato fruit. J. Am. Soc. Hortic. Sci. 2005, 130, 244. [Google Scholar] [CrossRef]
- Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene content and colour of ripening tomatoes as affected by environmental conditions. J. Sci. Food Agric. 2006, 86, 568–572. [Google Scholar] [CrossRef]
- Helyes, L.; Lugasi, A.; Pek, Z. Effect of natural light on surface temperature and lycopene content of vine-ripened tomato fruit. Can. J. Plant Sci. 2007, 87, 927–929. [Google Scholar] [CrossRef]
- Francis, D.M.; Barringer, S.A.; Whitmoyer, R.E. Ultrastructural characterization of Yellow Shoulder Disorder in a uniform ripening tomato genotype. HortScience 2000, 35, 1114–1117. [Google Scholar] [CrossRef]
- UMass Extension. Tomato Physiological Ripening Disorders. In Vegetable Program Fact Sheet; University of Massachusetts Amherst: Amherst, MA, USA, 2022; Available online: https://www.umass.edu/agriculture-food-environment/vegetable/fact-sheets/tomato-physiological-ripening-disorders (accessed on 20 June 2025).
- Ambroszczyk, A.M.; Cebula, S.; Sekara, A. The effect of plant pruning on the light conditions and vegetative development of eggplant (Solanum melongena L.) in greenhouse cultivation. Veg. Crops Res. Bull. 2008, 68, 57–70. [Google Scholar] [CrossRef]
- Cox, S.E.; Stushnoff, C.; Sampson, D.A. Relationship of fruit color and light exposure to lycopene content and antioxidant properties of tomato. Can. J. Plant Sci. 2003, 83, 913–919. [Google Scholar] [CrossRef]
- Guan, W. Whether to Put Shade Cloth on High Tunnel Tomatoes. Vegetable Crops Hotline, ISSUE: 619 2016. Available online: https://vegcropshotline.org/article/temperature-and-light-intensity-in-a-high-tunnel-covered-with-30-black-shade-cloth/ (accessed on 16 December 2023).
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, P.; Rajora, N.; Bhardwaj, S.; Sudhakaran, S.S.; Kumar, A.; Raturi, G.; Chakraborty, K.; Gupta, O.P.; Devanna, B.N.; Tripathi, D.K. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 2021, 162, 110–123. [Google Scholar] [CrossRef]
- Zhu, J. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Schroeder, J.I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 1994, 370, 655–658. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Du, S.; Wang, G.; Zhang, J.; Jiang, J. Effects of exogenous (K+) potassium application on plant hormones in the roots of Tamarix ramosissima under NaCl stress. Genes 2022, 13, 1803. [Google Scholar] [CrossRef] [PubMed]
- Giri, A.; Heckathorn, S.; Mishra, S.; Krause, C. Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots. Plants 2017, 6, 6. [Google Scholar] [CrossRef]
- Sharma, D.K.; Andersen, S.B.; Ottosen, O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2015, 153, 284–298. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Stommel, J.R. Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. HortScience 1995, 30, 115–117. [Google Scholar] [CrossRef]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Zinn, K.E.; Tunc-Ozdemir, M.; Harper, J.F. Temperature stress and plant sexual reproduction: Uncovering the weakest links. J. Exp. Bot. 2010, 61, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Zhou, T.; Liu, Y.; Raza, S.; Zhou, J. Effects of high potassium and low temperature on the growth and magnesium nutrition of different tomato cultivars. HortScience 2018, 53, 710–714. [Google Scholar] [CrossRef]
- Zhang, Y.; Suzuki, K.; Liu, H.; Nukaya, A.; Kiriiwa, Y. Fruit yellow-shoulder disorder as related to mineral element uptake of tomatoes grown in high temperature. Sci. Hortic. 2018, 242, 25–29. [Google Scholar] [CrossRef]
- Biernbaum, J. Water, Soil, and Fertility Management in Organic High Tunnels; Michigan State University: East Lansing, MI, USA, 2013; Available online: https://www.canr.msu.edu/hrt/uploads/535/78622/HighTunnelWaterSoilFertility2013-10pgs.pdf (accessed on 21 November 2023).
- Gaskell, M.; Fouche, B.; Smith, S.R.; Koike, S.; Lanini, T.; Mitchell, J.P. Organic Vegetable Production in California—Science and Practice. HortTechnology 2000, 10, 699. [Google Scholar] [CrossRef]
- Lei, L.; McDonald, L.M. Soil moisture and temperature effects on nitrogen mineralization in a high tunnel farming system. Commun. Soil Sci. Plant Anal. 2019, 50, 2140–2150. [Google Scholar] [CrossRef]
- Gluck, B.I.; Hanson, E.J. Effect of drip irrigation and winter precipitation on distribution of soil salts in three season high tunnels. Acta Hortic. 2013, 987, 99–104. [Google Scholar] [CrossRef]
- Camberato, J. Low Soil Moisture and Compaction Promote Potassium Deficiency. In Pest & Crop Newsletter; College of Agriculture, Purdue University: West Lafayette, IN, USA, 2020; Available online: https://extension.entm.purdue.edu/newsletters/pestandcrop/article/low-soil-moisture-and-compaction-promote-potassium-deficiency/ (accessed on 22 May 2024).
- Lawrence, D.; Majumdar, A.; Glover, T.; Boozer, R. High Tunnel Irrigation and Fertigation. Alabama Cooperative Extension System. 23 February 2022. Available online: https://www.aces.edu/blog/topics/crop-production/high-tunnel-irrigation-and-fertigation/ (accessed on 24 August 2023).
- Pierre, J.F.; Jacobsen, K.L.; Wszelaki, A.; Butler, D.; Velandia, M.; Woods, T.; Sideman, R.; Grossman, J.; Coolong, T.; Hoskins, B.; et al. Sustaining soil health in high tunnels: A paradigm shift toward soil-centered management. HortTechnology 2024, 34, 594–603. [Google Scholar] [CrossRef]
- Picha, D.H.; Hall, C.B. Influences of potassium, cultivar, and season on tomato graywall and blotchy ripening. J. Am. Soc. Hortic. Sci. 1981, 106, 704–708. [Google Scholar] [CrossRef]
- Van Lune, P.; Van Goor, B.J. Ripening disorders of tomatoes as affected by the K/Ca ratio in the culture solution. J. Hortic. Sci. 1977, 52, 173–180. [Google Scholar] [CrossRef]
- Trankner, M.; Tavakol, E.; Jakli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhao, X.H.; Jiang, C.J.; Wang, X.G.; Han, Y.; Wang, J.; Yu, H. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric. Sci. 2017, 8, 1263–1277. [Google Scholar] [CrossRef]
- Contii, M.E.; Horra, A.M.; de la Effron, D.; Zourarakis, D. Factors affecting potassium fixation on Argentine agricultural soils. Commun. Soil Sci. Plant Anal. 2001, 32, 2679–2690. [Google Scholar] [CrossRef]
- Portela, E.; Monteiro, F.; Fonseca, M.; Abreu, M.M. Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma 2019, 343, 226–234. [Google Scholar] [CrossRef]
- Liu, Y.J.; Laird, D.A.; Barak, P. Release and fixation of ammonium & potassium under long-term fertility management. Soil Sci. Soc. Am. J. 1997, 61, 310–313. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, M.; Zhang, W. Factors affecting potassium fixation in seven soils under 15- year long-term fertilization. Chin. Sci. Bull. 2009, 54, 1773–1780. [Google Scholar] [CrossRef]
- Hartz, T.K.; Johnstone, P.R.; Francis, D.M.; Miyao, E.M. Processing Tomato Yield and Fruit Quality Improved with Potassium Fertigation. HortScience 2005, 40, 1862–1867. [Google Scholar] [CrossRef]
- Cassman, K.G.; Bryant, D.C.; Roberts, B.A. Comparison of soil test methods for predicting cotton response to soil and fertilizer potassium on potassium-fixing soils. Commun. Soil Sci. Plant Anal. 1990, 21, 1727–1743. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Potassium in crop production. Adv. Agron. 1980, 33, 59–110. [Google Scholar]
- Binner, I.; Dultz, S.; Schellhorn, M.; Schenk, M.K. Potassium adsorption and release properties of clays in peat-based horticultural substrates for increasing the cultivation safety of plants. Appl. Clay Sci. 2017, 145, 28–36. [Google Scholar] [CrossRef]
- Raheb, A.; Heidari, A. Effects of clay mineralogy and physicochemical properties on potassium availability under soil aquic conditions. J. Soil Sci. Plant Nutr. 2012, 12, 747–761. [Google Scholar] [CrossRef]
- Bajwa, M.I. Soil clay mineralogy in relation to fertility management: Effect of soil clay mineral composition on potassium fixation under conditions of upland rice soils. Fertil. Res. 1981, 2, 193–197. [Google Scholar] [CrossRef]
- Ghiri, M.N.; Abtahi, A. Factors affecting potassium fixation in calcareous soils of southern Iran. Arch. Agron. Soil Sci. 2012, 58, 335–352. [Google Scholar] [CrossRef]
- Oborn, I.; Andrist-Rangel, Y.; Askekaard, M.; Grant, C.A.; Watson, C.A.; Edwards, A.C. Critical aspects of potassium management in agricultural systems. Soil Use Manag. 2005, 21, 102–112. [Google Scholar] [CrossRef]
- Kuchenbuch, R.; Claassen, N.; Jungk, A. Potassium availability in relation to soil moisture. Plant Soil 1986, 95, 221–231. [Google Scholar] [CrossRef]
- Hesami, A.; Sarikhani, S.; Hosseini, S.S. Effect of shoot pruning and flower thinning on quality and quantity of semi-determinate tomato (Lycopersicon esculentum Mill.). Not. Sci. Biol. 2012, 4, 108–111. [Google Scholar] [CrossRef]
- Lhamo, T.; Gyalmo, T.; Pem, T.; Bajgai, Y. Effect of different pruning systems on yield and quality of tomato grown under greenhouse. Bhutanese J. Agric. 2022, 5, 71–82. [Google Scholar] [CrossRef]
- Goodspeed, D. How to Prevent Yellow Shoulder Disorder on Tomatoes. 2021. Available online: https://blog.jungseed.com/how-to-prevent-yellow-shoulder-disorder-on-tomatoes/ (accessed on 24 January 2024).
- Scott, J.W. Yellow shoulder. In Compendium of Tomato Diseases; APS Press: St. Paul, MN, USA, 2014. [Google Scholar]
- Yeager, T. The uniform fruit color gene in the tomato. Proc. Am. Soc. Hortic. Sci. 1935, 33, 512. [Google Scholar]
- Strobel, J.W.; Hayslip, N.C.; Burgis, D.S.; Everett, P.H. Walter: A Determinate Tomato Resistant to Races 1 and 2 of the Fusarium wilt Pathogen. Florida Agricultural Experiment Station Circular. 1969. Available online: https://www.apsnet.org/publications/phytopathology/backissues/Documents/1974Articles/Phyto64n12_1507.PDF (accessed on 11 September 2023).
- Mattia, M.R.; Scott, J.W. Effect of immature green tomato fruit color on yellow shoulder incidence and soluble solids content of ripe fruit. J. Am. Soc. Hortic. Sci. 2017, 142, 444–453. [Google Scholar] [CrossRef]
- Gislerod, H.R.; Selmer-Olsen, A.R.; Mortensen, L.M. The effect of air humidity on nutrient uptake of some greenhouse plants. Plant Soil 1987, 102, 193–196. [Google Scholar] [CrossRef]
- Zhao, X.; Carey, E.E. Summer production of lettuce, and microclimate in high tunnel and open field plots in Kansas. HortTechnology 2009, 19, 113–119. [Google Scholar] [CrossRef]
- Hoskins, B. High Tunnel Soil Management Update. In Proceedings of the New England Vegetable & Fruit Conference and Trade Show, NEVFC, Manchester, UK, 12–14 December 2017; Available online: https://projects.sare.org/wp-content/uploads/2017-NEVFC-Proceedings-FINAL.pdf (accessed on 18 February 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, S.; Matocha, C.J.; Poffenbarger, H.; Jacobsen, K. High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes. Horticulturae 2025, 11, 773. https://doi.org/10.3390/horticulturae11070773
Pandey S, Matocha CJ, Poffenbarger H, Jacobsen K. High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes. Horticulturae. 2025; 11(7):773. https://doi.org/10.3390/horticulturae11070773
Chicago/Turabian StylePandey, Sapana, Christopher J. Matocha, Hanna Poffenbarger, and Krista Jacobsen. 2025. "High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes" Horticulturae 11, no. 7: 773. https://doi.org/10.3390/horticulturae11070773
APA StylePandey, S., Matocha, C. J., Poffenbarger, H., & Jacobsen, K. (2025). High Tunnels as a Unique Theatre for Investigating the Complex Causes of Yellow Shoulder Disorder in Tomatoes. Horticulturae, 11(7), 773. https://doi.org/10.3390/horticulturae11070773