Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil
Abstract
1. Introduction
2. Methodology of Data Collection
3. Results and Discussion
3.1. Selection and Characterization of Studies
3.2. Iron and Anemia in the Global Population
3.3. Importance of Beans and Rice in the Diet
3.4. Agronomic Technologies for Iron Biofortification
3.5. Technical Performance of Iron Biofortification Strategies
3.6. Iron Delivery Technologies in Biofortification
3.7. The Impact of Iron Biofortification on Public Health
3.8. Limitations and Engineering-Based Solutions for Iron Biofortification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferreira, C.M.; Barrigossi, J.A.F. Arroz E Feijão Tradição E Segurança Alimentar; Embrapa: Brasília, Brazil, 2021; 166p, Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1134359/1/lv-2021.pdf (accessed on 26 April 2025).
- Rodrigues, R.M.; Souza, A.M.; Bezerra, I.N.; Pereira, R.A.; Yokoo, E.M.; Sichieri, R. Evolução dos alimentos mais consumidos no Brasil entre 2008–2009 e 2017–2018. Rev. Saude Publica 2021, 55, 4s. [Google Scholar] [CrossRef]
- Firdose, K.; Firdose, N. Dietary Iron; IntechOpen: London, UK, 2022; 19p. [Google Scholar] [CrossRef]
- Tan, G.Z.H.; Das Bhowmik, S.S.; Hoang, T.M.L.; Karbaschi, M.R.; Johnson, A.A.T.; Williams, B.; Mundree, S.G. Finger on the Pulse: Pumping Iron into Chickpea. Front. Plant Sci. 2017, 8, 1755. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, N.; Liu, X.; Xiao, H.; Zhang, H.; Zhou, K.; Deng, J. Incidence Trends of Inherited Anemias at the Global, Regional, and National Levels Over Three Decades. J. Epidemiol. Glob. Health 2023, 14, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Drakesmith, H.; Black, J.; Hipgrave, D.; Biggs, B.A. Control of iron deficiency anemia in low- and middle-income countries. Blood 2013, 121, 2607–2617. [Google Scholar] [CrossRef]
- Yeboah, F.A.; Bioh, J.; Amoani, B.; Effah, A.; Senu, E.; Mensah, O.S.O.; Agyei, A.; Kwarteng, S.; Agomuo, S.K.S.; Opoku, S.; et al. Iron deficiency anemia and its association with cognitive function among adolescents in the Ashanti Region—Ghana. BMC Public Health 2024, 24, 3209. [Google Scholar] [CrossRef]
- Kumar, S.; DePauw, R.M.; Kumar, S.; Kumar, J.; Kumar, S.; Pandey, M.P. Breeding and adoption of biofortified crops and their nutritional impact on human health. Ann. N. Y. Acad. Sci. 2023, 1520, 5–19. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Silva, M.G.; Silva, G.N.; Ducatti, K.R.; Rocha, M.M.; Reis, A.R.; Rabêlo, F.H.S.; Lavres, J.; Santos, E.F. Agronomic Biofortification Increases Concentrations of Zinc and Storage Proteins in Cowpea Grains. Agriculture 2024, 14, 911. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Hussain, S.; Maqsood, M.; Zamir, S.I.; Ishfaq, M.; Ali, N.; Ahmad, M.; Maqsood, M.F. Enhancing the accumulation and bioavailability of iron in rice grains via agronomic interventions. Crop Pasture Sci. 2021, 73, 32–43. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Mokrzycki, J.; Mierzwa-Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense-A Review. J. Soil Sci. Plant Nutr. 2022, 22, 1129–1159. [Google Scholar] [CrossRef]
- Ullah, H.; Ahmed, S.F.; Santiago-Arenas, R.; Himanshu, S.K.; Mansour, E.; Cha-um, S.; Datta, A. Tolerance mechanism and management concepts of iron toxicity in rice: A critical review. Adv. Agron. 2023, 177, 215–257. [Google Scholar] [CrossRef]
- Ofori, K.F.; Antoniello, S.; English, M.M.; Aryee, A.N.A. Improving nutrition through biofortification–A systematic review. Front. Nutr. 2022, 9, 1–20. [Google Scholar] [CrossRef]
- Santos, E.F.; Figueiredo, C.O.; Rocha, M.A.P.; Lanza, M.G.D.B.; Silva, V.M.; Reis, A.R. Phosphorus and Selenium Interaction Effects on Agronomic Biofortification of Cowpea Plants. J. Soil Sci. Plant Nutr. 2023, 23, 4385–4395. [Google Scholar] [CrossRef]
- Santos, E.F.; Filho, E.C.; Fontes, L.E.M.F.; Silva, M.A.P.; Silva, G.N.; Oliveira, A.A.; Reis, A.R. Selenium agronomic biofortification and genotypic variability in physiological responses of cowpea plants under field conditions. Acta Physiol. Plant. 2025, 47, 18. [Google Scholar] [CrossRef]
- Ramzani, P.M.A.; Khan, W.U.D.; Iqbal, M.; Kausar, S.; Ali, S.; Rizwan, M.; Virk, Z.A. Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 18585–18595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhu, L.; Ma, Z.; Wang, J. Improved iron acquisition of Astragalus sinicus under low iron-availability conditions by soil-borne bacteria Burkholderia cepacia. J. Plant Interact. 2018, 13, 9–20. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Ayub, A.; Hussain, S.; Ahmad, M.; Rehman, A.; Ishfaq, M.; Ali, M.F.; Shabaan, M.; Yong, J.W.H. Iron biofortification in cereal crops: Recent progress and prospects. Food Energy Secur. 2024, 13, e547. [Google Scholar] [CrossRef]
- Macedo, F.G.; Santos, E.F.; Lavres, J. Agricultural crop influences availability of nickel in the rhizosphere; a study on base cation saturations, Ni dosages and crop succession. Rhizosphere 2020, 13, 100182. [Google Scholar] [CrossRef]
- Ihemere, U.E.; Narayanan, N.N.; Sayre, R.T. Iron biofortification and homeostasis in transgenic cassava roots expressing the algal iron assimilatory gene, FEA1. Front. Plant Sci. 2012, 3, 171. [Google Scholar] [CrossRef]
- Dias, D.; Moreira, M.C.; Gomes, M.; Toledo, R.L.; Nutti, M.; Sant’Ana, H.P.; Martino, H. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability. Nutrients 2015, 7, 9683–9696. [Google Scholar] [CrossRef]
- Junqueira-Franco, M.V.M.; Oliveira, J.E.D.; Nutti, M.R.; Pereira, H.S.; Carvalho, J.L.V.; Abrams, S.A.; Brandão, C.F.C.; Marchini, J.S. Iron absorption from beans with different contents of iron, evaluated by stable isotopes. Clin. Nutr. ESPEN 2018, 25, 121–125. [Google Scholar] [CrossRef]
- Taskin, M.B.; Gunes, A. Iron biofortification of wheat grains by foliar application of nano zero-valent iron (nZVI) and other iron sources with urea. J. Soil Sci. Plant Nutr. 2022, 22, 4642–4652. [Google Scholar] [CrossRef]
- Inacio, K.A.M.; Farfan, N.C.; Azevedo, C.E.X.; Polatto, M.A.G.; Carrion, N.S.; Mendes, P.V.S.; Santos, E.F. Potential of Cassava Clones for Iron, Zinc, and Selenium Biofortification. Agriculture 2024, 14, 268. [Google Scholar] [CrossRef]
- Cichy, K.; Chiu, C.; Isaacs, K.; Glahn, R. Dry Bean Biofortification With Iron and Zinc; Springer Nature: Singapore, 2022; pp. 225–270. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 71, 1–9. [Google Scholar] [CrossRef]
- Narayanan, N.; Beyene, G.; Chauhan, R.D.; Gaitán-Solís, E.; Gehan, J.; Butts, P.; Siritunga, D.; Okwuonu, I.; Woll, A.; Jiménez-Aguilar, D.M.; et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 2019, 37, 144–151. [Google Scholar] [CrossRef]
- Kaur, N.; Thuanthong, A.; Kaur, S.; Agarwal, A.; Sabharwal, M.; Sahu, J.K.; Arcot, J.; Tripathi, A.D.; Koirala, P.; Nirmal, N. Combat the growing prevalence of anaemia through underutilised iron-rich plant-based foods. J. Agric. Food Res. 2025, 19, 101688. [Google Scholar] [CrossRef]
- Krishna, T.P.A.; Ceasar, S.A.; Maharajan, T. Biofortification of crops to fight anemia: Role of vacuolar iron transporters. J. Agric. Food Chem. 2023, 71, 3583–3598. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumari, M.; Vyas, S. Strategies to combat Iron deficiency Anemia among lactating women in India: A review. Food. Humanit. 2024, 2, 100253. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Al-Ashkar, I.; Habib-ur-Rahman, M.; Sabagh, A.E.; Ilić, P. Biofortification of iron in potato through rhizobacteria and plant growth regulator. Potato Res. 2024, 67, 785–793. [Google Scholar] [CrossRef]
- Torres, L.C.R.; Amaral, J.E.P.G.; Canniatti-Brazaca, S.G. Promoters effectiveness in the improvement in iron and zinc absorption from the rice and bean. Food Sci. Technol. 2020, 40, 363–368. [Google Scholar] [CrossRef]
- Petry, N.; Egli, I.; Gahutu, J.B.; Tugirimana, P.L.; Boy, E.; Hurrell, R. Phytic Acid Concentration Influences Iron Bioavailability from Biofortified Beans in Rwandese Women with Low Iron Status. J. Nutr. 2014, 144, 1681–1687. [Google Scholar] [CrossRef]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.Á. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Naveed, M.; Khalid, H.; Ayub, M.A.; Rehman, M.Z.U.; Rizwan, M.; Rasul, A.; Haq, M.A.U. Biofortification of cereals with zinc and iron: Recent advances and future perspectives. Resour. Use Effic. Agric. 2020, 615–646. [Google Scholar] [CrossRef]
- Dhanyalakshmi, K.H.; Mohan, R.; Behera, S.; Jha, U.C.; Moharana, D.; Behera, A.; Beena, R. Next generation nutrition: Genomic and molecular breeding innovations for iron and zinc biofortification in rice. Rice Sci. 2024, 31, 526–544. [Google Scholar] [CrossRef]
- Gulyas, B.Z.; Mogeni, B.; Jackson, P.; Walton, J.; Caton, S.J. Biofortification as a food-based strategy to improve nutrition in high-income countries: A scoping review. Crit. Rev. Food Sci. Nutr. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Sindhu, S.S. Iron sensing, signalling and acquisition by microbes and plants under environmental stress: Use of iron-solubilizing bacteria in crop biofortification for sustainable agriculture. Plant Sci. 2025, 112496. [Google Scholar] [CrossRef]
- Gupta, B.B.; Mishra, S.K.; Banoth, S.K.; Baliyan, S.; Chauhan, H. Iron and zinc biofortification of rice by synergistic expression of OsNAS2 gene with monocot (Pennisetum glaucum) and dicot (Phaseolus vulgaris) ferritins. Plant Physiol. Biochem. 2023, 205, 108195. [Google Scholar] [CrossRef]
- Yousefi, Z.; Sharifi, P.; Rabiee, M. Effect of Foliar Application of Zinc and Iron on Seed Yield and Yield Components of Common Bean (Phaseolus vulgaris). J. Agric. Sci. 2023, 45, 154–162. [Google Scholar] [CrossRef]
- Corrêa, S.R.; Brigide, P.; Vaz-Tostes, M.G.; Costa, N.M.B. Cultivars of biofortified cowpea and sweet potato: Bioavailability of iron and interaction with vitamin A in vivo and in vitro. J. Food Sci. 2020, 85, 816–823. [Google Scholar] [CrossRef]
- Liu, M.; Xu, J.; Lou, H.; Fan, W.; Yang, J.; Zheng, S. Characterization of VuMATE1 Expression in Response to Iron Nutrition and Aluminum Stress Reveals Adaptation of Rice Bean (Vigna umbellata) to Acid Soils through Cis Regulation. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Binagwa, P.H.; He, G.; Bonsi, E.; Traore, S.; Jaynes, J.; Bonsi, C. Determining grain seed micronutrient contents (iron and zinc) and cooking time for selected dry bean cultivars. Afr. J. Food Agric. Nutr. Dev. 2020, 20, 15415–15430. [Google Scholar] [CrossRef]
- De la Cruz Lázaro, E.; Félix, J.W.; Sánchez-Chávez, E.; Tosquy-Valle, O.; Preciado-Rangel, P.; Márquez-Quiroz, C. Biofortificación de Frijol (Phaseolus vulgaris L.) Var. Verdín Con Quelato Y Sulfato De Hierro. Rev. Terra Latinoam. 2024, 42, 1–11. [Google Scholar] [CrossRef]
- Patel, P.; Trivedi, G.; Saraf, M. Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ. Sustain. 2018, 1, 357–365. [Google Scholar] [CrossRef]
- Márquez-Quiroz, C.; De-la-Cruz-Lázaro, E.; Osorio-Osorio, R.; Sánchez-Chávez, E. Biofortification of cowpea beans with iron: Iron’s influence on mineral content and yield. J. Soil. Sci. Plant Nutr. 2015, 4, 839–847. [Google Scholar] [CrossRef]
- Fageria, N.K.; Santos, A.B. Requirement of Micronutrients by Lowland Rice. Commun. Soil Sci. Plant Anal. 2014, 45, 844–863. [Google Scholar] [CrossRef]
- Trijatmiko, K.R.; Dueñas, C.; Tsakirpaloglou, N.; Torrizo, L.; Arines, F.M.; Adeva, C.; Slamet-Loedin, I.H. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 2016, 6, 19792. [Google Scholar] [CrossRef]
- Prom-U.-Thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Cakmak, I. Simultaneous biofortification of rice with zinc, iodine, iron and selenium through foliar treatment of a micronutrient cocktail in five countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef]
- Felix, J.W.; Sánchez-Chávez, E.; De-la-Cruz-Lázaro, E.; Márquez-Quiroz, C. Edaphic and foliar biofortification of common black bean (Phaseolus vulgaris L.) with iron. Legume Res.-Int. J. 2021, 44, 192–196. [Google Scholar] [CrossRef]
- Kroh, G.E.; Pilon, M. Connecting the negatives and positives of plant iron homeostasis. New Phytol. 2019, 223, 1052–1055. [Google Scholar] [CrossRef]
- Kumar, R.K.; Chu, H.H.; Abundis, C.; Vasques, K.; Rodriguez, D.C.; Chia, J.C.; Huang, R.; Vatamaniuk, O.K.; Walker, E.L. Iron-nicotianamine transporters are required for proper long-distance iron signaling. Plant Physiol. 2017, 175, 1254–1268. [Google Scholar] [CrossRef]
- Khan, M.A.; Castro-Guerrero, N.A.; McInturf, S.A.; Nguyen, N.T.; Dame, A.N.; Wang, J.; Bindbeutel, R.K.; Joshi, T.; Jurisson, S.S.; Nusinow, D.A. Changes in iron availability in Arabidopsis are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. Plant Cell Environ. 2018, 41, 2263–2276. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2018, 133, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sen, H.; Kumar, A.; Janeja, H.S. Biofortification of Major Crops through Conventional and Modern Biotechnological Approaches to Fight Hidden Hunger: An Overview. J. Adv. Biol. Biotechnol. 2024, 27, 96–113. [Google Scholar] [CrossRef]
- Loureiro, M.P.; Cunha, L.R.; Nastaro, B.T.; Pereira, K.Y.S.; Nepomoceno, M.L. Biofortificação de alimentos: Problema ou solução? Segurança Aliment. Nutr. 2018, 25, 66–84. [Google Scholar] [CrossRef]
- Pal, V.; Singh, G.; Dhaliwal, S.S. A New Approach in Agronomic Biofortification for Improving Zinc and Iron Content in Chickpea (Cicer arietinum L.) Grain with Simultaneous Foliar Application of Zinc Sulphate, Ferrous Sulphate and Urea. J. Soil Sci. Plant Nutr. 2021, 21, 883–896. [Google Scholar] [CrossRef]
- Chugh, G.; Siddique, K.H.; Solaiman, Z.M. Iron fortification of food crops through nanofertilisation. Crop Pasture Sci. 2022, 73, 736–748. [Google Scholar] [CrossRef]
- Jalal, A.; Oliveira, C.E.D.S.; Gato, I.M.B.; Moreira, V.D.A.; Lima, B.H.; Bastos, A.D.C.; Teixeira Filho, M.C.M. Interaction of mineral nutrients and plant growth-promoting microbes for biofortification of different cropping systems. J. Plant Growth Regul. 2024, 1–17. [Google Scholar] [CrossRef]
- Vasconcelos, M.W.; Gruissem, W.; Bhullar, N.K. Iron biofortification in the 21st century: Setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr. Opin. Biotechnol. 2017, 44, 8–15. [Google Scholar] [CrossRef]
- Santos, E.; Marcante, N.; Muraoka, T.; Camacho, M. Phosphorus use efficiency in pima cotton (Gossypium barbadense L.) Genotypes. Chil. J. Agric. Res. 2015, 75, 210–215. [Google Scholar] [CrossRef]
- Oliveira, C.F.; Fanaya, E.D.; Mateus, N.S.; Lavres, J.; Santos, E.F. Improving zinc supply enhances cotton nutritional phosphorus efficiency. J. Plant Nutr. 2023, 46, 2451–2461. [Google Scholar] [CrossRef]
- Santos, E.F.; Macedo, F.G.; Rodrigues, M.; Pavinato, P.S.; Lavres, J. Low zinc availability limits the response to phosphorus fertilization in cotton. J. Plant Nutr. Soil Sci. 2024, 187, 375–387. [Google Scholar] [CrossRef]
- Shi, Q.; Pang, J.; Yong, J.W.H.; Bai, C.; Pereira, C.G.; Song, Q.; Wu, D.; Dong, Q.; Cheng, X.; Wang, F.; et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. Plant Soil 2020, 447, 99–116. Plant Soil 2020, 447, 99–116. [Google Scholar] [CrossRef]
- Lara-Ramos, L.; Fernández-Bayo, J.; Delgado, G.; Fernández-Arteaga, A. Agronomic iron-biofortification by activated hydrochars of spent coffee grounds. Front. Sustain. Food Syst. 2023, 7, 1092306. [Google Scholar] [CrossRef]
- Aung, M.A.; Masuda, H.; Kobayashi, T.; Nakanishi, H.; Yamakawa, T.; Nishizawa, N.K. Iron biofortification of Myanmar rice. Front. Plant Sci. 2013, 4, 158. [Google Scholar] [CrossRef] [PubMed]
- Glahn, R.P.; Noh, H. Redefining Bean Iron Biofortification: A Review of the Evidence for Moving to a High Fe Bioavailability Approach. Front. Sustain. Food Syst. 2021, 5, 682130. [Google Scholar] [CrossRef]
- Oteh, O.U.; Mbanasor, J.A.; Agwu, N.M.; Hefferon, K.; Onwusiribe, C.N.; Steur, H. Understanding the biofortified cassava market in Nigeria: Determinants of consumer demand and farmer supply. Food Sci. Technol. 2023, 9, 2263972. [Google Scholar] [CrossRef]
- Silva, A.B.P.; Borges, L.F.S.; Lucini, F.; Silva, G.N.; Santos, E.F. Technologies in Agronomic Biofortification with Zinc in Brazil: A Review. Plants 2025, 14, 1828. [Google Scholar] [CrossRef] [PubMed]
- Bucky, A.; Pičmanová, M.; Porley, V.; Pont, S.; Johnstore, A.; Stewart, D. Zinc and iron biofortification of crops grown in a vertical farm. Proc. Nutr. Soc. 2024, 83, E251. [Google Scholar] [CrossRef]
- Conceição, L.T.; Silva, G.N.; Holsback, H.M.S.; Oliveira, C.F.; Marcante, N.C.; de Souza Martins, É.; Santos, E.F. Potential of basalt dust to improve soil fertility and crop nutrition. J. Agric. Food Res. 2022, 10, 100443. [Google Scholar] [CrossRef]
- Oliveira, C.D.F.; Silva, G.N.; Marcante, N.C.; Vasconcelos, V.; Mandro, M.A.E.; Santos, E.F. Assessing the agronomic efficiency of rock dust as a nutrient source in agriculture. Rev. Ciência Agronômica 2025, 56, e202392639. [Google Scholar] [CrossRef]
- Lurthy, T.; Pivato, B.; Lemanceau, F.; Mazurier, S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. Front. Plant Sci. 2021, 12, 744445. [Google Scholar] [CrossRef]
- Vahedi, R.; Rasouli-Sadaghiani, M.H.; Barin, M.; Vetukuri, R.R. Effect of Biochar and Microbial Inoculation on P, Fe, and Zn Bioavailability in a Calcareous Soil. Processes 2022, 10, 343. [Google Scholar] [CrossRef]
- Glahn, R.; Tako, E.; Hart, J.; Haas, J.; Lung’aho, M.; Beebe, S. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda. Nutrients 2017, 9, 787. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, S.M.P.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013, 54, 961–971. [Google Scholar] [CrossRef]
Reference | Plant | Long-Term Study | Biofortification Method | Application Technique | Effect |
---|---|---|---|---|---|
(Dias et al., 2015) [22] | Rice and bean | No | Conventional plant breeding | Not applicable | Increased Fe * bioavailability and antioxidant capacity |
(Gupta et al., 2023) [40] | Rice | Yes | Genetic engineering | Genetic transformation | Increased Fe content |
(Petry et al., 2014) [34] | Bean | No | Conventional plant breeding | Not applicable | Increased Fe concentration and absorption |
(Junqueira-Franco et al., 2018) [23] | Bean | No | Conventional plant breeding | Not applicable | No increase in Fe content |
(Yousefi et al., 2023) [41] | Beans | No | Agronomic practices | Foliar application | Increased yield and Fe concentration |
(Corrêa et al., 2020) [42] | Cowpea | No | Agronomic practices | Management of biofortified plants | Increased Fe bioavailability |
(Liu et al., 2016) [43] | Bean | No | Genetic engineering and agronomic practices | Molecular genetics and hydroponics | Improved Fe absorption and availability |
(Binagwa et al., 2020) [44] | Bean | No | Agronomic practices | Soil application | Increased Fe bioavailability |
(Zulfiqar et al., 2021) [11] | Rice | No | Agronomic practices | Seed treatment, Fe osmopriming, surface broadcasting, and foliar application | Increased productivity and Fe bioavailability |
(De la Cruz Lázaro et al., 2024) [45] | Bean | No | Agronomic practices | Foliar application | Increased Fe bioavailability |
(Ramzani et al., 2016) [17] | Rice | No | Agronomic practices | Soil application | Improved plant growth, physiology, rice yield, and nutritional value of the grains |
(Patel et al., 2018) [46] | Bean | No | Agronomic practices | Seed treatment | Increased vegetative parameters, Fe content, protein, and carbohydrates |
(Márquez-Quiroz et al., 2015) [47] | Bean | No | Agronomic practices | Nutrient solution application | Increased productivity and Fe bioavailability |
(Fageria and Santos, 2014) [48] | Rice | No | Agronomic practices | Soil application | Increased yield and Fe concentration |
(Trijatmiko et al., 2016) [49] | Rice | No | Genetic engineering | Transgenesis | Increased Fe concentration without compromising productivity |
(Prom-U-Thai et al., 2020) [50] | Rice | Yes | Agronomic practices | Foliar application | There were no statistical differences depending on the application of Fe |
(Felix et al., 2021) [51] | Bean | No | Agronomic practices | Soil and foliar application | It increased Fe concentrations in the grains, as well as levels of ash, fat, protein, crude fiber, total phenols, and anthocyanins, while decreasing carbohydrate content and energy |
Reference | Plant | Biofortification Level (%) | Country |
---|---|---|---|
(Yousefi et al., 2023) [41] | Bean | 22 | Iran |
(Corrêa et al., 2020) [42] | Bean | 29 | Brazil |
(Liu et al., 2016) [43] | Bean | 31 | China |
(Binagwa et al., 2020) [44] | Bean | 60 | Africa |
(Zulfiqar et al., 2021) [11] | Rice | 37 | Pakistan |
(De la Cruz Lázaro et al., 2024) [45] | Bean | 76 | Mexico |
(Ramzani et al., 2016) [17] | Rice | 60 | Pakistan |
(Patel et al., 2018) [46] | Bean | 34 | India |
(Márquez-Quiroz et al., 2015) [47] | Bean | 29 | Mexico |
(Fageria and Santos, 2014) [48] | Rice | 27 | Brazil |
(Trijatmiko et al., 2016) [49] | Rice | 60 | The Philippines and Colombia |
(Felix et al., 2021) [51] | Bean | 40 | Mexico |
Reference | Plant | Iron form Evaluated | Impact on Nutritional Quality |
---|---|---|---|
(Junqueira-Franco et al., 2018) [23] | Bean | Ferrous sulfate | No significant effect |
(Dias et al., 2015) [22] | Rice and bean | Ferrous sulfate | Increases |
(Yousefi et al., 2023) [41] | Bean | Iron chelate | Increases |
(Liu et al., 2016) [43] | Bean | Iron chelate | Increases |
(Corrêa et al., 2020) [42] | Cowpea | Ferrous sulfate | Increases |
(Márquez-Quiroz et al., 2015) [47] | Bean | Iron chelate and ferrous sulfate | Increases |
(De la Cruz Lázaro et al., 2024) [45] | Bean | Iron chelate and ferrous sulfate | Increases |
(Zulfiqar et al., 2021) [11] | Rice | Ferrous sulfate | Increases |
(Ramzani et al., 2016) [17] | Rice | Ferrous sulfate | Increases |
(Prom-U-Thai et al., 2020) [50] | Rice | micronutrient cocktail solution | No significant effect |
(Felix et al., 2021) [51] | Bean | Iron chelate and ferrous sulfate | Increases |
Age | Men | Women | Pregnant | Lactating |
---|---|---|---|---|
Up to 6 months | 0.27 | 0.27 | - | - |
7–12 months | 11 | 11 | - | - |
1–3 years | 7 | 7 | - | - |
4–8 years | 10 | 10 | - | - |
9–13 years | 8 | 8 | - | - |
14–18 years | 11 | 15 | 27 | 10 |
19–50 years | 8 | 18 | 27 | 9 |
50+ years | 8 | 8 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.F.; Silva, T.G.d.; Oliveira, E.K.; Lucini, F.; Santos, E.F. Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil. AgriEngineering 2025, 7, 214. https://doi.org/10.3390/agriengineering7070214
Oliveira CF, Silva TGd, Oliveira EK, Lucini F, Santos EF. Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil. AgriEngineering. 2025; 7(7):214. https://doi.org/10.3390/agriengineering7070214
Chicago/Turabian StyleOliveira, Caroline Figueiredo, Thaynara Garcez da Silva, Estefani Kariane Oliveira, Fabíola Lucini, and Elcio Ferreira Santos. 2025. "Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil" AgriEngineering 7, no. 7: 214. https://doi.org/10.3390/agriengineering7070214
APA StyleOliveira, C. F., Silva, T. G. d., Oliveira, E. K., Lucini, F., & Santos, E. F. (2025). Technological Innovations in Agronomic Iron Biofortification: A Review of Rice and Bean Production Systems in Brazil. AgriEngineering, 7(7), 214. https://doi.org/10.3390/agriengineering7070214